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Abstract

In an elegant example of bench to bedside research, a hypothesis that cells in the outflow pathway 

actively regulate conventional outflow resistance was proposed in the 1990s and systematically 

pursued, exposing novel cellular and molecular mechanisms of IOP regulation. The critical 

discovery that pharmacological manipulation of the cytoskeleton of outflow pathway cells 

decreased outflow resistance placed a spotlight on the Rho kinase pathway that was known to 

regulate the cytoskeleton. Ultimately, a search for Rho kinase inhibitors led to the discovery of 

several molecules of therapeutic interest, leaving us today with two new ocular hypotensive agents 

approved for clinical use – ripasudil in Japan and netarsudil in the US. These represent members 

of the first new class of clinically useful ocular hypotensive agents since the US FDA approval of 

latanoprost in 1996.

The development of Rho kinase inhibitors as a class of medications to lower intraocular pressure 

in patients with glaucoma and ocular hypertension represents a triumph in translational research. 

Rho kinase inhibitors are effective alone or when combined with other known ocular hypotensive 

medications. They also offer the possibility of neuroprotective activity, a favorable impact on 

ocular blood flow and even an anti-fibrotic effect that may prove useful in conventional glaucoma 

surgery. Local adverse effects, however, including conjunctival hyperemia, subconjunctival 

hemorrhages and cornea verticillata, are common. Development of Rho kinase inhibitors targeted 

to the cells of the outflow pathway and the retina may allow these agents to have even greater 

clinical impact.
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The objectives of this review are to describe the basic science underlying the development of Rho 

kinase inhibitors as a therapy to lower intraocular pressure and to summarize the results of the 

clinical studies reported to date. The neuroprotective and vasoactive properties of Rho kinase 

inhibitors as well as the antifibrotic properties of these agents are reviewed in the context of their 

possible role in the medical and surgical treatment of glaucoma.
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I. Introduction

The glaucomas are a group of progressive optic neuropathies characterized by optic disc 

excavation and apoptotic loss of retinal ganglion cells with corresponding vision loss1. 

Although the underlying pathophysiologic mechanisms are multifactorial, intraocular 

pressure (IOP) is a continuous risk factor for the development and progression of the 

disease. The only therapeutic intervention that has been proven to be effective in slowing 

disease progression is IOP reduction.

IOP is the level of pressure in the eye at which the aqueous humor produced in the ciliary 

body and flowing into the posterior chamber of the eye is balanced by the aqueous humor 

leaving the eye through the conventional outflow pathway (trabecular meshwork, Schlemm’s 

canal, aqueous veins and collector channels) and unconventional outflow pathway (the 

uveoscleral and uveovortex pathways). IOP can be lowered by decreasing the rate of 

aqueous humor formation, decreasing the aqueous outflow resistance of the conventional 

outflow pathway, or by increasing aqueous outflow through the unconventional pathway2, 3.

IOP elevation, associated with primary open-angle glaucoma (POAG), is caused by an 

increased resistance to the outflow of aqueous humor from the eye4. Medical therapy for 

glaucoma started in 1875 with the discovery that pilocarpine lowers IOP5. Pilocarpine and 

other miotics such as carbachol and eserine stimulate contraction of the ciliary muscle, 

pulling on the trabecular meshwork and opening Schlemm’s canal, thereby decreasing 

outflow resistance and lowering IOP6–8. However, use of pilocarpine and other miotics to 

treat glaucoma is associated with significant adverse effects including spasm of 

accommodation in younger patients, accelerated development of cataract, iris and ciliary 

body cyst formation, and retinal detachment9–11. Epinephrine was introduced for lowering 

of IOP in the 1930s11 and was later replaced by dipivefrin; they are non-selective alpha-

adrenergic agonists and also lower outflow resistance, although the mechanism is not well 

understood. Both are associated with the frequent development of local adverse events, 

including blepharoconjunctivitis12, 13. These various adverse effects limit the utility of these 

drug classes for long-term therapy.

Beta-adrenergic antagonists, particularly timolol, were introduced in the 1970s to lower the 

rate of aqueous humor secretion into the eye, thereby lowering IOP. These agents have been 
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particularly successful, and they are well tolerated by most patients. Topical carbonic 

anhydrase inhibitors and alpha2-adrenergic agonists (brimonidine, apraclonidine) were later 

introduced and also lower the rate of flow of aqueous humor into the eye14–16.

The 1990s saw the introduction of latanoprost, the first of several clinically useful 

prostaglandin F2α analogues (PGAs), that substantially lower IOP (by about 30%) by acting 

on a second pathway through which aqueous humor can leave the eye20–23. Under normal 

circumstances in adults, the bulk of aqueous humor exits the eye through the conventional 

aqueous outflow pathway; however, a small fraction (15% or less on average, but variable 

throughout the day) flows through the unconventional outflow pathway 24–26. PGAs cause 

structural changes to the unconventional flow pathway through the ciliary muscle bundles, 

remodeling the extracellular matrix and generating open spaces in this region, thereby 

greatly increasing flow through this pathway and significantly decreasing IOP 27. 

Brimonidine may lower IOP, in part, by stimulating prostaglandin release thereby increasing 

unconventional outflow28, 29. PGAs are, for the most part, well tolerated by patients.

Although treatment modalities for lowering IOP include topical and systemic ocular 

hypotensive medical therapy as well as various laser and incisional surgical procedures, 

topical medical therapy is the most commonly utilized strategy and PGAs are the most 

commonly prescribed first-line agents30. For patients on medical therapy, clinical trial 

experience indicates that approximately 40–50% of patients require two or more 

medications to adequately lower IOP31, 32. Currently, beta-adrenergic antagonists, alpha2-

adrenergic agonists, and topical carbonic anhydrase inhibitors are commonly used 

adjunctively for long-term glaucoma therapy in combination with prostaglandin analogs. 

When used adjunctively with PGAs, the additional mean diurnal IOP reduction achieved 

with each of these agents is approximately 1.5–3 mmHg33. Beta-adrenergic antagonists34 

and alpha2-adrenergic agonists35 do not lower IOP during the nocturnal period if pressures 

are measured in the habitual position (i.e. supine during the nocturnal period).

There are only 4 classes of topical ocular hypotensive medical agents that are commonly 

used for long-term therapy: beta-adrenergic antagonists, carbonic anhydrase inhibitors, 

PGF2α analogs and alpha2-selective adrenergic agonists. Many patients are unable to tolerate 

one or more of these agents due to allergy, other adverse effects or contraindications. Even 

when all four agents are used in combination, IOP lowering can be insufficient36–38. Many 

patients require incisional surgery to achieve sufficiently low IOP to adequately stabilize 

their disease process. Such procedures are associated with a substantial risk of short and 

long-term complications that can lead to discomfort and vision loss39. There is a need, 

therefore, for additional and more effective medications for IOP lowering, particularly when 

added to prostaglandin analogs.

Laser trabeculoplasty reduces trabecular outflow resistance40 and various surgical 

procedures involve bypassing, incising or removing the trabecular meshwork41. It is notable, 

however, that none of the medications currently available to reduce IOP address the 

underlying cause of the elevated IOP that is commonly associated with glaucoma, namely 

increased outflow resistance4, 42. Agents with a novel mechanism of action directed at 

lowering this resistance would be expected to be clinically useful alone or adjunctively with 
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other existing medical therapies. The ideal agent would be highly effective during both 

diurnal and nocturnal periods, easy to use (i.e. once daily dosing) and well tolerated with 

minimal adverse effects. Additionally, pharmacologic properties that support retinal function 

such as neuroprotective activity and improved ocular perfusion would be desirable.

In 1993, Dr. David Epstein organized the second Trabecular Meshwork Study Club 

(sponsored by the Glaucoma Research Foundation) and invited experts on aqueous outflow 

but also reached out to experts in other areas of physiology including Dr. Benjamin Geiger, 

whose expertise was cell biology. This meeting was seminal as Dr. Geiger there met Dr. Paul 

Kaufman, and they began a collaboration examining the role of cells in regulating aqueous 

humor outflow resistance. They were able to show that cytoskeletally-active agents such as 

latrunculin (that depolymerizes f-actin) and H7 (a protein kinase inhibitor that affects rho 

kinase) significantly decreased aqueous humor outflow resistance43–46. These studies began 

a focus on the role of cell mechanics in the aqueous humor outflow pathways and the role of 

Rho kinase in this process.

II. Rho kinases modulate the cytoskeleton

Rho and Rho kinases

The Rho family (RhoA, RhoB, RhoC) are small G-proteins that are active when bound to 

guanosine triphosphate (GTP) and inactive when bound to guanosine diphosphate (GDP). 

They are activated by a number of secreted cytokines including endothelin-1, thrombin, 

agiontension II, lysophophatidic acid, and transforming growth factor (TGF)-β, or via 

integrin activation47. They regulate cell morphology, polarity, proliferation, adhesion, 

motion, cytokinesis, and apoptosis along with smooth muscle contraction and neurite 

elongation48–50.

The effectors of the Rho family are the Rho kinases, ROCK1 and ROCK2. These two serine/

threonine kinase isoforms are RhoGTP-binding proteins51. ROCK1 and ROCK2 contain an 

N-terminal kinase domain that phosphorylates target proteins, followed by a coiled-coil 

region with a Rho-binding domain and a domain with similarity in structure to pleckstrin, 

and then finally a cysteine-rich autoinhibitory domain toward the C terminus that limits 

kinase activity via intramolecular interactions (Fig. 1)49, 52. ROCK1 and ROCK2 have a 

similar structure with 65% overall homology, and 87% identity in the kinase domain, 

indicating that both isoforms can activate the same targets but allows for some differences in 

effect53. Their genes are located on chromosome 18 (18q11.1) and chromosome 2 (2p24), 

respectively52.

The activation mechanism of Rho kinase by Rho is shown in Fig. 1. Rho can bind to Rho 

kinase only when it in the active GTP-bound form. There are other independent activators 

for Rho kinase including arachidonic acid, phingosylphosphorylcholine and apoptosis51. 

Rho kinase phosphorylates a number of downstream target proteins. It acts to phosphorylate 

myosin light chain (MLC), stimulating myosin–actin interactions and promoting formation 

of stress fibers and focal adhesion complexes47, 51. Rho kinase also phosphorylates Lin-11/

Isl-1/Mec-3 kinase (LIMK) that then inhibits cofilin-mediated actin-filament disassembly 

leading to an increase in actin filament density, rigidity and stability51, 54, 55. Other 
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cytoskeletal effects of Rho kinase include depolymerization of intermediate filaments and 

modulation of microtubule dynamics and polarity51, 56. Through these actions, Rho kinase 

acts to increase the contractile state and stiffness of cells, particularly of the cell cortex, and 

regulates a variety of cell process, particularly those involving movement and smooth 

muscle contraction50, 52, 57.

Rho kinases inhibitors

Rho kinase inhibitors have a variety of effects. They can increase blood flow by causing 

vascular smooth muscle relaxation leading to vasodilation58. On the ocular surface, this can 

lead to conjunctival hyperemia59. Rho kinase inhibitors also have anti-tumor activity, acting 

to inhibit tumor cell invasion and metastasis, presumably by decreasing cell motility and cell 

division60. Rho kinase inhibitors prevent axonal degeneration and promote axon 

regeneration61, 62. Most known rho kinase inhibitors act on both ROCK1 and ROCK2. 

These include fasudil (HA-1077), approved for treatment of cerebral vasospasm in Japan 

and China63, and two rho kinase inhibitors currently approved for treatment of glaucoma: 

Ripasudil (K-115)64, a fluorinated analog of fasudil but with more potent and selective rho-

kinase inhibitory activity65–67 that is approved for use in Japan and netarsudil (AR-13324), 

an amino-isoquinoline amide similar to but more potent than AR-12286 that is approved for 

use in the United States. Other rho kinase inhibitors that act on both ROCK1 and ROCK2 

include Y-27632, H-1152, Wf-536, Y-39983, AMA-0076, GSK-269962A, SB-772077-B, 

SAR-407899, and RKI-144752, 68. Currently, the only ROCK2-specific inhibitor is 

KD-02552.

Interestingly, statins also inhibit Rho kinase69. Rho kinase activation requires intermediates 

involved in cholesterol synthesis, and the cholesterol-lowering activity of statins can 

interfere with this process49, 70. Statins have been shown to lower outflow resistance in post-

mortem human eyes71. However, a large population-based study in the United Kingdom 

demonstrated that statin use was not independently associated with lower IOP after 

adjustment for beta-blocker use72.

III. Role of Rho kinase inhibitors in lowering aqueous outflow resistance

Kaufman and Bill showed in 1977 that cytochalasin B, an actin depolymerizing agent, 

reversibly decreased outflow resistance suggesting a possible role of the cytoskeleton in 

determining aqueous humor outflow resistance73. The decreased outflow resistance was 

attributed to increased density of pores in Schlemm’s canal cells along with breaks between 

cells74. While the pores in the inner wall endothelium are thought to be too large and 

numerous to generate significant flow resistance themselves75, a hydrodynamic interaction 

known as the “funneling” between these pores and the extracellular matrix in the 

juxtacanalicular connective tissue (JCT) makes inner wall pore density an important 

determinant of outflow resistance76. The streamlines on which aqueous humor passes 

through the JCT are forced to “funnel” or converge to enter the widely spaced pores in the 

inner wall endothelium of Schlemm’s canal, and this non-uniform flow significantly 

increases outflow resistance. Decreased Schlemm’s canal cell stiffness has been shown to be 
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correlated with an increased number of these pores77 thereby decreasing aqueous outflow 

resistance.

Further evidence that agents affecting the cytoskeleton can alter aqueous outflow resistance 

was provided by Kaufman and Geiger. The actin depolymerizing agents latrunculin-A and 

latrunculin-B were shown to increase outflow facility44, 45 and were associated with 

increased pore density in the inner wall endothelium along with separation of the inner wall 

endothelium from the JCT78. H-7 is a cytoskeletally-active isoquinoline sulfonamide 

derivative that blocks the phosphorylation activity of a variety of kinases including Rho 

kinase thereby inhibiting cell contractility and inducing general cellular relaxation79. H-7 

acts to reversibly decrease outflow resistance43, 46, 80. Sabanay et al. used colloidal gold to 

show that H-7 alters flow pattern in the inner wall region consistent with loss of the 

funneling and decreased outflow resistance81, 82 (see Fig. 2).

The first specific Rho kinase inhibitors to be investigated for their effects on outflow were 

Y-27632 and fasudil. These agents have significant effects on the cytoskeleton of both 

trabecular meshwork and Schlemm’s canal cells, decreasing the density of actin stress fibers 

(Figs. 3, 4). These agents significantly increased outflow facility in enucleated porcine eyes 

and live rabbits, respectively, while leaving the inner wall endothelium intact83–85. Other rho 

kinase inhibitors (AR-12286, netarsudil, H-1152, Y-39983, AMA-0076) were also found to 

significantly decrease outflow resistance in postmortem porcine eyes86 and IOP in living 

rabbits and monkeys87–91; maximum reductions in outflow resistance and IOP as much as 

65% were achieved. No effect on unconventional outflow was seen88, 92. Perfusion of 

adenoviral vectors expressing dominant negative Rho-binding domain of Rho-kinase into 

post-mortem human eyes also decreased outflow resistance93.

The involvement of the Rho kinase pathway was further established when it was shown that 

MLC kinase significantly decreased outflow resistance and had no effect on unconventional 

flow, and H-1152 decreased MLC phosphorylation in the trabecular meshwork of drug-

perfused eyes86, 94. The downstream effectors of the Rho kinase pathway — MLC, LIM 

kinase and cofilin — are all expressed in human trabecular meshwork47. Trabecular 

meshwork cells have been shown to express both ROCK1 and ROCK248. Thus, the evidence 

of cytoskeletal regulation of outflow resistance is strong, as is the potential for altering this 

regulation using Rho kinase inhibitors.

A number of mechanisms have been proposed as to how modifying the cytoskeleton can 

alter outflow resistance. It has been proposed that Schlemm’s canal cell stiffness modulates 

aqueous outflow resistance by affecting the propensity of these cells to form pores77, 95, 96. 

Less stiff cells are able to form more pores, thus decreasing the funneling effect and 

decreasing outflow resistance. A related hypothesis is that changes in the Schlemm’s canal 

cell cytoskeleton lead to changes in focal adhesions thereby releasing the attachments 

between the Schlemm’s canal cells and the JCT, expanding the spaces in the JCT and 

decreasing the magnitude of the funneling effect47, 81–83, 97–99. Both of these hypotheses 

have strong experimental support.
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It has also been suggested that Rho kinase inhibitors lower aqueous outflow resistance by 

relaxing smooth muscle cells in the trabecular meshwork100. However, pilocarpine and other 

miotics that decrease aqueous outflow resistance do so by contracting the ciliary muscle that 

then pulls on the trabecular meshwork, thereby opening Schlemm’s canal6–8; this is not 

consistent with a relaxation mechanism. Thieme et al100 proposed that miotics may also 

cause contraction of trabecular meshwork cells, and this could have an opposite effect on 

outflow resistance from that of ciliary muscle contraction. However, aceclidine preferentially 

contracts the trabecular meshwork as compared to pilocarpine and yet lowers IOP more than 

pilocarpine101. Notably, Camras et al found that the circumferential stiffness of the 

trabecular meshwork in post-mortem glaucomatous human eyes is significantly reduced as 

compared with normal eyes, and these glaucomatous eyes had increased outflow 

resistance102.

IV. Clinical studies of the ocular effects of Rho kinase inhibitors

Clinical trial results have been published in the peer-reviewed literature for only four Rho 

kinase inhibitors: SNJ-1656103, 104, AR-12286105–107, ripasudil37, 38, 108–112 and 

netarsudil113–116. All of these agents are mixed ROCK1 and ROCK2 inhibitors. Table 1 

provides a summary of the phase 2 and phase 3 clinical trials.

SNJ-1656 (previously known as Y-39983)

SNJ-1656, developed by Senju Pharmaceutical Co, was the first Rho kinase inhibitor studied 

in a clinical trial to lower IOP. It is thirty times more effective in inhibiting Rho kinase 

activity than Y-27632, and in animal studies, topical administration of SNJ-1656 resulted in 

large reductions in outflow resistance and IOP88, 117. The phase 1 study evaluated the ocular 

hypotensive efficacy and safety compared to the vehicle in healthy subjects after a single 

instillation and after 7 days of repeated (QD or BID) instillation. Peak IOP reduction was 

achieved at 4 hours after instillation, 3.0 ± 1.2 mm Hg with the highest concentration tested 

(0.1%). Conjunctival hyperemia was observed in all patients but resolved in most cases 

within 24 hours after a single instillation103.

The placebo-controlled phase 2 study evaluated various concentrations of SNJ-1656 (0.03% 

to 0.1%) for 7 days in patients with POAG and OHT. The relative IOP reduction compared 

to placebo from a baseline of about 22 mmHg was 3 – 3.5 mmHg at peak (2 hours after 

instillation of the morning dose) and 2 mmHg at trough (prior to instillation of the morning 

dose). Mild to moderate conjunctival hyperemia occurred in about 60% of subjects. One 

subject experienced hepatic dysfunction that resolved after discontinuation of treatment; 

however, no other details were reported104.

AR-12286

AR-12286 was developed by Aerie Pharmaceuticals by screening a collection of water 

soluble aminoisoquinoline amides to find those that were both stable and active in affecting 

the shape of trabecular meshwork cells118. A phase 1 study in normal subjects of AR-12286 

0.5% for 8 days demonstrated significant IOP-lowering with an average maximum decrease 

of approximately 7 mmHg, however, there were frequent side effects including conjunctival 
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hyperemia, ocular irritation, increased lacrimation, and blurred vision106. A larger, placebo-

controlled randomized phase 2 clinical trial in patients with POAG or OHT evaluated 

AR-12286 at a lower maximum concentration (0.25%) over a 3-week study period showed a 

maximum average pressure reduction of approximately 4.5 mm Hg, as compared to 

placebo105. The most common side effect was conjunctival hyperemia, occurring in 

approximately 60% of patients. AR-12286 was abandoned by Aerie Pharmaceuticals, Inc. 

for use in glaucoma because netarsudil, also developed by Aerie Pharmaceuticals, was 

judged to have a longer duration of action119.

Ripasudil (K-115)

Ripasudil (Glanatec®) was approved in Japan for the treatment of glaucoma and OHT in 

September 2014. Ripasudil hydrochloride hydrate was originally discovered by D. Western 

Therapeutics Institute and developed for the treatment of glaucoma and OHT by Kowa 

Company, Ltd64. Phase 1 and phase 2 clinical trials as well as a 24-hour time course study 

established ripasudil 0.4% BID as a clinically useful concentration and dosing frequency for 

the treatment of glaucoma and OHT108–110. The 0.4% solution lowered IOP on average by 

2–4.4 mmHg two hours after instillation in patients with glaucoma or OHT as compared 

with placebo and continued to deliver statistically significant pressure reduction for at least 7 

hours. A non-comparative, one-year, open-label study reported IOP reduction from baseline 

of 2.6 mmHg at trough and 3.7 mmHg at peak in patients with POAG or OHT after 52 

weeks of ripasudil monotherapy112. IOP reduction in the subgroup of patients with baseline 

IOP ≥ 21 mmHg was 3.8 mmHg at trough and 4.8 mmHg at peak.

The clinical trials demonstrated the dose-dependent and transient nature of conjunctival 

hyperemia associated with its use108–110. A study specifically designed to investigate the 

time-course of ripasudil-induced conjunctival hyperemia found peak intensity at 15 minutes 

after instillation and a gradual return to baseline at 120 minutes120. Another study found that 

retention was fair with 69% of subjects completing 12 months in the study. Conjunctival 

hyperemia (76%), blepharitis (21%), and allergic conjunctivitis (20%) were the most 

commonly reported adverse events attributed to ripasudil monotherapy. Most cases of 

allergic conjunctivitis had their onset after 12 weeks of therapy, explaining why this adverse 

reaction was not detected in the earlier clinical trials.

As ripasudil was primarily evaluated as an adjunctive agent for use in combination with 

commonly used first-line agents, the phase 3 trials were short-term (8-week), placebo-

controlled randomized clinical trials designed to evaluate the additive IOP-lowering efficacy 

of ripasudil 0.4% BID with either timolol 0.5% BID or latanoprost 0.005% QD in patients 

with POAG or OHT111. Treatment with ripasudil resulted in a lower mean IOP in the timolol 

group. The additive effect was 0.9 mmHg at trough and 1.6 mmHg at peak. In the 

latanoprost group, there was no significant difference compared to placebo at trough; at 

peak, ripasudil resulted in an additional 1.4 mmHg reduction. Conjunctival hyperemia 

occurred in 65% of subjects in the timolol-ripasudil group and 56% of patients in the 

latanoprost-ripasudil group whereas the incidence was only 6% and 9% in the respective 

placebo groups.
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Two retrospective studies36, 121 and one small, non-comparative prospective study with 

results reported after three37 and twelve38 months evaluated adjunctive treatment with 

ripasudil in Japanese patients already on maximum medical therapy. They demonstrated IOP 

reductions ranging from 2.6–3.1 mmHg or about 15–16% from baseline. In one of the 

retrospective studies, there was no significant additional IOP reduction in the subgroup of 

patients defined as having normal-tension glaucoma36. Two retrospective studies suggest it 

is safe to use ripasudil to lower IOP in eyes with ocular hypertensive eyes with 

uveitis122, 123. Study design limitations confound interpretation of the IOP-lowering efficacy 

results that were reported in these two studies.

Netarsudil (AR-13324)

Netarsudil (Rhopressa®), a Rho kinase inhibitor and norepinephrine transporter inhibitor, 

was developed by Aerie Pharmaceuticals as one of a class of amino-isoquinoline amide Rho 

kinase inhibitors. It was approved for use in the United States to treat glaucoma in late 2017. 

Netarsudil has a longer duration of action than AR-12286 67. It is different from other rho 

kinase inhibitors in that it not only lowers IOP in animals by lowering outflow 

resistance91, 124, but it has also been shown to decrease aqueous humor production in 

monkeys91, 124 and to decrease episcleral venous pressure in rabbits and humans125, 126. 

These latter mechanisms of IOP reduction have not been reported for other rho kinase 

inhibitors and may be related to the norepinephrine transporter inhibitory activity of 

netarsudil89.

A 28-day double-masked randomized clinical trial compared the ocular hypotensive efficacy 

of netarsudil 0.01% QD, netarsudil 0.02% QD and latanoprost 0.005% QD in patients with 

OHT or POAG with baseline IOP ≥24 mmHg and <36 mmHg after washout. Mean baseline 

IOP was about 25.5 mmHg113. IOP lowering observed on day 28 was similar to that on day 

14 and was found to be 5.5, 5.7 and 6.8 mmHg in the netarsudil 0.01%, netarsudil 0.02% 

and latanoprost 0.005% groups, respectively. Neither concentration of netarsudil was as 

effective as latanoprost nor did they meet the non-inferiority criteria vs. latanoprost (upper 

95% confidence interval for the difference in mean diurnal IOP within 1.5 mmHg). In the 

subgroup of patients with baseline IOP ≤ 26 mmHg, however, the ocular hypotensive 

efficacy of netarsudil 0.02% was statistically non-inferior to latanoprost. Netarsudil was 

therefore thought to be relatively more effective in patients with lower baseline IOP, possibly 

due to its ability to lower episcleral venous pressure. Conjunctival hyperemia, most 

commonly graded as mild, occurred in 52%, 57% and 15% of subjects in the netarsudil 

0.01%, netarsudil 0.02% and latanoprost 0.005% groups, respectively. Increased lacrimation 

(6%), subconjunctival hemorrhage (5%) were also reported in the two netarsudil groups.

Two double-masked, randomized, parallel-group 3-month clinical trials compared netarsudil 

ophthalmic solution 0.02% QD (ROCKET-1 and ROCKET-2) or BID (ROCKET-2) to 

timolol maleate ophthalmic solution 0.5% BID in patients with POAG or OHT with baseline 

IOP >20 mmHg and <27 mmHg after washout116. The focus on patients with lower baseline 

IOPs was driven by the earlier results in the phase 2 clinical trial that compared netarsudil to 

latanoprost. In ROCKET-1, a post-hoc analysis of the subgroup of patients with maximum 

baseline IOP < 25 mmHg was reported along with the per-protocol outcomes for the entire 
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study population. The pre-determined primary efficacy population in ROCKET-2 was the 

subgroup of patients with baseline IOP < 25 mmHg. Netarsudil was considered to be non-

inferior to timolol if the upper limit of the 2-sided confidence intervals of the difference 

between groups (netarsudil – timolol) was within 1.5 mmHg at all time points and within 1.0 

mmHg at the majority of time points. These non-inferiority criteria were met for netarsudil 

in both studies among the sub-group of subjects with maximum baseline IOP <25 mmHg. In 

the entire cohort in ROCKET-1, however, netarsudil did not meet the non-inferiority criteria.

Treatment with netarsudil resulted in discontinuation from the study due to adverse events in 

a substantial proportion of study subjects, 10–12% in the netarsudil QD group and 30% in 

the BID group and 1 – 2% in the timolol groups. Conjunctival hyperemia was reported in 

50–53% of patients for netarsudil QD and 59% for netarsudil BID, compared to only 8–10% 

for timolol. Hyperemia incidence and severity remained stable through the 3-month study 

period. Conjunctival hemorrhage was reported in 13.3–15%, 17%, and 0% of patients in the 

netarsudil QD, netarsudil BID and timolol groups, respectively. The conjunctival 

hemorrhages have been described as small, peri-limbal “microhemorrhages”116. Cornea 

verticillata, seen primarily in the netarsudil groups with an onset of 2–13 weeks were 

reported in 9% and 15% of patients in the netarsudil QD and netarsudil BID groups, 

respectively, and < 1% of timolol patients. Verticillata appeared to be similar that that seen 

with the use of some systemic medications, most notably amiodarone127. This could 

potentially be of significance in patients with glaucoma who have reduced contrast 

sensitivity as a result of their underlying optic neuropathy. Visual acuity was not impacted 

by any of these adverse events, and resolution occurred after cessation of netarsudil.

To evaluate netarsudil as an adjunctive agent in combination with latanoprost, a 28-day 

randomized, controlled clinical trial evaluated the fixed combination of netarsudil (at 

concentrations of 0.01% and 0.02%) and latanoprost 0.005% dosed once-daily. The mean 

diurnal efficacy of the fixed combination formulated with a concentration of netarsudil 

0.02% was statistically superior to each of its components alone by a margin of 2.6 mmHg 

vs. netarsudil and 1.9 mmHg vs. latanoprost (each agent was dosed once-daily)115. The fixed 

combination of 0.02% netarsudil and 0.005% latanoprost is known as Roclatan (PG324).

This formulation was subsequently evaluated in two large phase 3 clinical trials, the results 

of which have been released by Aerie Pharmaceuticals, Inc., but not published in the peer-

reviewed literature at the time of this writing128, 129. Patients were randomized to (i) a fixed 

combination of latanoprost 0.005% and netarsudil 0.02% QD, (ii) latanoprost 0.005% QD or 

(iii) netarsudil 0.02% QD. Mean diurnal IOP in the fixed combination group was 

significantly lower vs. latanoprost (1.6 mmHg) and netarsudil (2.3 mmHg) after 12 months 

of treatment. The incidence of discontinuation due to adverse events was about 6–7% in the 

fixed combination and netarsudil groups by month 3 and about 20% by month 12 compared 

to about 2% in the latanoprost group at both time points. The types of adverse events that 

occurred and their frequencies are similar to those observed in previous studies with 

netarsudil (see Table 2).
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Other clinical trials

Fasudil was examined in 4 eyes of 4 patients with POAG and no light perception in the study 

eyes. Baseline IOP was 53.5 ± 3.4 mm Hg and the IOP reductions at 2–4 hours was 8–9 

mmHg130. Clinical trials have been completed on AMA-0076 (NCT02136940), ATS-907 

(NCT01520116), and INS-117548 (NCT00767793); however, no results have been 

published as yet in peer-reviewed literature.

Summary of clinical trials

None of the rho kinase inhibitors tested in these clinical trials proved themselves superior to 

commonly used first-line agents for lowering IOP. Where these new agents are likely to have 

their greatest utility is as adjunctive agents since their mechanism of action is thought 

primarily to be one of lowering of aqueous humor outflow resistance, and thus should be 

somewhat additive to the actions of other agents in clinical use that act either on aqueous 

inflow or unconventional outflow. Ripasudil’s additional IOP-lowering efficacy when added 

to timolol is similar to the additive IOP-lowering observed with brimonidine or dorzolamide; 

however, the incidence of conjunctival hyperemia was substantially higher with ripasudil.
109, 131–133 Netarsudil lowers IOP approximately an additional 2 mmHg when added to a 

PGA. This is in the same range as has been observed with other agents that are commonly 

used adjunctively with PGAs; however, the incidence of adverse events is higher with 

netarsudil.33, 115

The fact that pre-clinical studies in animal models demonstrated greater IOP-lowering 

efficacy than was achieved in human clinical trials may relate to the higher concentration of 

drugs used in some of the animal studies134 compared to clinical trials113. It could also be a 

consequence of abnormalities in the outflow pathway in some patients with glaucoma or 

ocular hypertension that may not respond to Rho kinase inhibition.

Rho kinase inhibitors induce relaxation of vascular smooth muscle explaining the high 

incidence of conjunctival hyperemia and possibly subconjunctival hemorrhage in these 

studies. Punctate subconjunctival hemorrhages were previously reported in monkeys and 

rabbits treated with the rho kinase inhibitor, Y-3998388. The most frequently observed other 

adverse events included blepharitis, allergic conjunctivitis and cornea verticillata. It is 

notable that a large proportion of patients withdrew from clinical trials due to adverse events 

raising some questions about the ease with which these agents can be used in clinical 

practice. Despite that concern, there are no known a priori contraindications to the use of 

either ripasudil or netarsudil nor are there any known interactions with other medications.

V. Effects of rho kinase inhibitors on the retina

In some patients with glaucoma, worsening of the disease continues despite seemingly 

adequate IOP reduction suggesting IOP-independent mechanisms may play a major role in 

the disease process. For this reason, there is much interest in the development of 

neuroprotective strategies for glaucoma treatment. Rho kinase activity has been implicated 

in a variety of neurodegenerative disease processes and many studies have evaluated the 

possible neuroprotective activity of Rho kinase inhibitors135. There is also extensive 
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evidence that points to the importance of ocular blood flow in glaucoma136, particularly in 

the context of POAG in patients with lower baseline IOP137. Since Rho kinase inhibitors are 

known to increase blood flow58, it has been proposed that they might slow progression of 

glaucomatous optic neuropathy by acting directly to increase perfusion of the retina and 

optic disc47.

Neuroprotection of retinal ganglion cells

In POAG, it is widely thought that the initial site of neuronal injury is the retinal ganglion 

cell axon at the level of the lamina cribrosa1. Rho kinase signaling is critical in axonal 

development, maintenance and regeneration138. Its role is exerted in part through its 

regulation of many elements of the axonal cytoskeleton, including actin, microtubules and 

intermediate filaments as well as through regulation of inflammation mediated by activation 

of NF-κB139. Central nervous system axons are limited in their ability to regenerate when 

injured due in part to the presence of growth inhibitors in their extracellular milieu. Rho 

inhibits these extracellular growth inhibitors140. In vitro studies demonstrate that the 

Y-27632 stimulates neurite growth and central nervous system axonal regeneration141.

Since microglia use Rho kinase signaling to regulate axonogenesis138, it is not surprising 

that Rho kinase inhibition results in enhanced axonal regeneration. This may indeed be an 

important component of a neuroprotective or neuro-regenerative strategy for glaucoma 

therapy; however, what remains to be determined is whether inhibition of this signaling 

pathway interferes with axonal targeting to the appropriate secondary neuron.

Neuroprotective activity of Rho kinase inhibitors has been demonstrated in the eye. 

Treatment with the fasudil at the time of iatrogenic retinal detachment in a pig model was 

associated with reduced photoreceptor degeneration and relative preservation of the rod-

bipolar synapse142. Statins have been shown to have neuroprotective activity against 

glutamate-induced excitotoxicity, a property possibly linked to their inhibitory effect on Rho 

kinase143, 144. SNJ-1656 promotes regeneration of crushed axons of retinal ganglion cells 

into the optic nerve of adult cats145. Ripasudil has also been shown to have neuroprotective 

activity in rodent optic nerve crush injury models146, 147. In one of these studies, topical 

netarsudil enhanced retinal ganglion cell survival and axonal regeneration. Reduced 

phosphorylation of cofilin and LIM kinase, two downstream targets in the Rho kinase 

signaling pathway, was observed in retinal ganglion cells and optic nerve glial cells147.

Significantly elevated levels of RhoA have been found in the optic nerve head of 

glaucomatous eyes as compared with age-matched controls, supporting a possible role for 

Rho in glaucomatous neuropathy148. Further investigation, particularly human clinical trials, 

will be required to determine if these agents are therapeutically effective in neuroprotection 

in glaucoma beyond their IOP-lowering effect.

Ocular blood flow

Large, population-based studies suggest that lower ocular blood flow and perfusion pressure 

are associated with glaucoma prevalence and is a risk factor for the incident development of 

glaucoma and progression of the disease149, 150. Both the optic nerve head and retinal 

circulation are subject to autoregulation and some investigators have reported evidence of 
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abnormal autoregulation in patients with POAG, particularly those with lower baseline IOP 

levels137. Strategies to improve retinal and optic nerve blood flow may therefore be 

beneficial in the treatment of glaucoma and mounting evidence suggests that the Rho kinase 

signaling cascade may be a therapeutic target.

SNJ-1656 in rabbits significantly increased optic nerve head blood flow after topical 

administration151. Studies in rabbits also showed that vasoconstriction and reductions in 

optic head blood flow caused by NG-nitro-L-arginine methyl ester (L-NAME), endothelin-1 

(ET-1) or phenylephrine could be mitigated by topical application of fasudil (L-NAME, 

ET-1) or ripasudil (phenylephrine) with resultant reduction in optic disc cupping and retinal 

ganglion cell loss 151–153. Ohta et al153 also showed the effect of ripasudil did not 

correspond temporally to an observed reduction in IOP, suggesting the two processes are 

independent.

Ohta et al153 further demonstrated that ex vivo rabbit posterior ciliary artery fragments that 

were pre-contracted in a high-potassium medium relaxed with ripasudil treatment in a dose 

dependent manner. A similar study demonstrated the same phenomenon with the rho kinase 

inhibitors, Y-27632 and SNJ-1656154. Other studies in isolated human and bovine retinal 

arterioles suggest that adenosine-induced vasodilation is partially mediated by nitric oxide 

whereas rho kinase activation increases myogenic vascular tone and ET-1-induced 

vasoconstriction155.

As yet, no studies have reported on the effects of Rho kinase inhibitors on ocular blood flow 

in humans, and the results above suggest such studies may be warranted. Recent studies, 

however, have shown that extreme dips in nocturnal blood pressure are associated with the 

glaucoma,156, 157 and thus, even if Rho kinase inhibitors can effectively improve human 

ocular blood flow, it is unclear if this effect would be sufficient to overcome the deleterious 

effects of these extreme dips in blood pressure.

VI. Effects of Rho kinase inhibitors on conjunctival scarring after glaucoma 

surgery

Conventional glaucoma surgeries such as trabeculectomy and tube shunt surgery lower IOP 

by creating a direct pathway for aqueous humor between the anterior chamber and the 

subconjunctival space. The most common cause of surgical failure is formation of excessive 

subconjunctival fibrosis which prevents or limits the egress of aqueous humor158. TGF-β is 

an important cytokine involved in the regulation of post-surgical wound healing and scar 

formation in the setting of glaucoma surgery159.

In vitro studies of human Tenon’s fibroblasts demonstrated treatment with TGF-β resulted in 

rapid activation of a rho-mediated cascade that included cell contraction, cytoskeletal 

changes, the formation of focal cell adhesions and a subsequent but delayed myofibroblast 

trans-differentiation mediated by increased expression of α-smooth muscle actin (α-SMA). 

These responses were blocked by treatment with Y-27632160. In vitro studies with ripasudil 

showed similar results in human conjunctival fibroblasts with respect to inhibition of TGF-β 
mediated increased expression of α-SMA161. Subsequent studies in in vivo rabbit models of 
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trabeculectomy demonstrated that Y-27632162 and AMA0526163 improved surgical 

outcomes.

During the course of observation of patients after trabeculectomy surgery, clinicians can 

often detect a pattern of gradual fibrosis and contraction of the filtering bleb. Intervention 

with a rho kinsase inhibitor could potentially serve a dual purpose in such patients in that the 

drug could be used to lower IOP and to slow or prevent further scar formation.

VII. Conclusions

Most patients with glaucoma or OHT require life-long medical treatment. Many patients 

with severe damage or low baseline IOP levels require very low target pressures to 

adequately stabilize their disease process. Despite the many available ocular hypotensive 

agents, IOP cannot be sufficiently controlled even with multiple-medication regimens in 

substantial numbers of patients, frequently necessitating incisional surgery with its inherent 

risks. Furthermore, even with very low IOPs, a small minority of patients experience 

worsening of their disease and progressive vision loss. These challenges point to the need for 

additional therapeutic options to lower IOP and to provide neuroprotection of retinal 

ganglion cells beyond IOP lowering.

Because their primary mechanism of action is different from other ocular hypotensive 

medications, in that they act to normalize outflow resistance, Rho kinase inhibitors were 

developed with the hope that in addition to their use in monotherapy, they could provide 

additional IOP reduction when used with other ocular hypotensive agents. Although these 

agents have been shown to be effective in lowering IOP, both as monotherapy and 

adjunctively with beta-blockers and prostaglandin analogs, their side effect profile raises 

serious concerns about the likelihood of their acceptance by patients.

It is tantalizing that laboratory evidence suggests Rho kinase inhibitors may have 

neuroprotective activity and might improve ocular blood flow. It would be ideal to have a 

drug that not only lowers IOP but also protects retinal ganglion cells from IOP-independent 

factors that contribute to disease progression.

The first generation Rho kinase inhibitors, despite their limitations, are therapeutically 

effective. More importantly, with the advent of Rho kinase inhibitors, a new door to therapy 

has been opened. It would be beneficial to develop next generation Rho kinase inhibitors 

that are targeted to the cells of the outflow pathway or to the retina so that local adverse 

effects can be minimized while maximizing their therapeutic effects. That might also allow 

the use of higher drug concentrations with greater pressure lowering and possibly 

neuroprotective or vasoactive potential.
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Figure 1. 
Schematic of Rho kinase. Left: intramolecular interactions of the auto-inhibitory loop 

maintain the molecule in an inactive state; Right: Rho is activated when bound to GTP, 

thereby binding to the coil-coil region (RBD: Rho binding domain) and disrupting the 

negative regulatory interaction between the catalytic domain and the autoinhibitory C-

terminal region, resulting in activation of the enzyme. PH, pleckstrin-homology domain51.
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Figure 2. 
Schematic of inner wall endothelium of monkey eye perfused with colloidal gold. (A) shows 

a control eye with punctate distribution of colloidal gold; (B) shows an eye perfused with 

H-7 where the distribution of colloidal gold is much more uniform81.
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Figure 3. 
Y-27632 induces changes in the distribution of actin stress fibers in cultured Trabecular 

Meshwork (A) and Schlemm’s canal (B) cells. Magnification x40083.
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Figure 4. 
Distribution of F-actin (red) incubated with fasudil as compared to buffered saline (control) 

for 30 and 60 min. Fasudil caused loss of actin stress fibers and bundles. Recovery was 

observed 2 h after the removal of fasudil. Scale bar: 100 μm66.
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Table 2

Adverse events observed in the 12-month Mercury 1 phase 3 clinical trial of Roclatan and Rhopressa. Patients 

with known contraindications or hypersensitivity to latanoprost were excluded.124

Adverse Event (≥5.0% in any group) Netarsudil 0.02%/Latanoprost 
0.005% q.d. (n=243)

Netarsudil 0.02% q.d. 
(n=243)

Latanoprost 0.005% q.d. 
(n=237)

Conjunctival Hyperemia 150 (63.0%) 125 (51.4%) 52 (21.9%)

Conjunctival Hemorrhage 31 (13.0%) 44 (18.1%) 3 (1.3%)

Cornea Verticillata 42 (17.6%) 33 (13.6%) 0

Eye Pruritus 27 (11.3%) 22 (9.1%) 3 (1.3%)

Punctate Keratitis 12 (5.0%) 18 (7.4%) 10 (4.2%)

Increased Lacrimation 17 (7.1%) 20 (8.2%) 1 (0.4%)

Reduced Visual Acuity 13 (5.5%) 13 (5.3%) 6 (2.5%)

Blurred Vision 11 (4.6%) 15 (6.2%) 3 (1.3%)

Instillation Site Pain 55 (23.1%) 60 (24.7%) 18 (7.6%)
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