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Abstract

This work summarizes evidence for the role of RSC in processing fear-inducing context memories. 

Specifically, we discuss molecular, cellular, and network mechanisms by which RSC might 

contribute the processing of contextual fear memories. We focus on glutamatergic and cholinergic 

mechanisms underlying encoding, retrieval, and extinction of context-dependent fear. RSC 

mechanisms underlying retrieval of recently and remotely acquired memories are compared to 

memory mechanisms of anterior cortices. Due to the strong connectivity between hippocampus 

and RSC, we also compare the extent to which their mechanisms of encoding, retrieval, and 

extinction show overlap. At a theoretical level, we discuss the role of RSC in the framework of 

systems consolidation as well as retrieval-induced memory modulation. Lastly, we emphasize the 

implication of these findings for psychopathologies associated with neurological and psychiatric 

disorders.
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Hippocampus, Cortex, and Episodic memories

The most prevalent view of memory storage is framed by the systems consolidation theory, 

which suggests that recently acquired memories are dependent on the hippocampus, but in 

time become fully dependent on the cortex and independent of the hippocampus (Squire & 

Alvarez, 1995). This theory is largely based on studies demonstrating temporally graded 

retrograde amnesia following hippocampal lesions (Kim & Fanselow, 1992; Scoville & 

Milner, 1957; Squire, 1992) and disengagement of the hippocampus long after a memory 

formation in favor of medial prefrontal cortical (mPFC) regions including the anterior 

cingulate (Restivo, Vetere, Bontempi, & Ammassari-Teule, 2009), infralimbic (Vetere et al., 

2011), and orbitofrontal cortices (Lesburgueres et al., 2011). Several recent lines of evidence 

show that hippocampal-cortical interactions underlying memory may be more complex than 
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originally postulated, and several key questions remain. For example, hippocampal damage 

can impair detailed and vivid episodic memories regardless of memory age, causing flat 

retrograde amnesia. This phenomenon provides the basis for the multiple trace theory of 

memory (Nadel & Moscovitch, 1997), which proposes a time-unlimited role of the 

hippocampus in processing such memories. Similar findings were recently obtained with 

optogenetic aproaches (Goshen et al., 2011), but rather than emphasizing a role of memory 

detail/richness as the main determinant of hippocampal involvement, the authors focused on 

the duration of hippocampal inactivation, allowing or disallowing compensatory cortical 

mechanisms to take place. Although the causes of time-dependent and independent effects 

of hippocampal inactivation are not fully understood, it is possible that these differences 

rely, at least in part, on hippocampal-cortical mechanisms underlying memory processing.

The dorsal hippocampus, which is the main hippocampal subdivision involved in the 

formation of contextual memories (Fanselow & Dong, 2010; Strange, Witter, Lein, & Moser, 

2014), does not seem to be strongly connected to anterior cortices, and thus it is likely that 

hippocampal information is predominantly transferred to those areas indirectly, via posterior 

cortices, which are the main dorsohippocampal targets (Cenquizca & Swanson, 2007). 

Unlike anterior cortices, which show preferential involvement in processing remote 

memories, posterior cortices are required for both recently and remotely acquired memories 

and, thus, seem to play a role in processing recent memories that is non-redundant with the 

hippocampus (Burwell, Bucci, Sanborn, & Jutras, 2004; Burwell, Saddoris, Bucci, & Wiig, 

2004). Among posterior cortices, the entorhinal cortex has been the focus of the majority of 

experimental, theoretical and computational research on episodic memories (Gluck, Meeter, 

& Myers, 2003; Kesner & Rolls, 2015; Norman, Polyn, Detre, & Haxby, 2006), however, it 

is increasingly recognized that posterior cortices, in addition to providing sensory input, also 

subserve mnemonic processes (Todd & Bucci, 2015). Nevertheless, there is mounting 

evidence for significant contributions of posterior cortices, including RSC, to processing 

memories, in particular stress related, fear-inducing context memories acquired through 

classical fear conditioning (Burwell, Bucci, et al., 2004; Burwell, Saddoris, et al., 2004; 

Corcoran et al., 2011; Keene & Bucci, 2008c, 2009; Vann & Aggleton, 2002).

RSC and memory: Brief overview of animal experiments

Some of the first evidence of RSC’s role in associative learning comes from eyeblink 

conditioning and discrimination reversal learning in rabbits following RSC lesions (Berger, 

Weikart, Bassett, & Orr, 1986; Gabriel et al., 1983). Berger and Bassett (1986) were the first 

to identify, using electrophysiological approaches in vivo, a disynaptic DH-RSC pathway 

through the subiculum. Because of the exclusive distribution of subicular efferents to RSC, 

they suggested that only brain areas receiving efferents from RSC could be influenced by 

learning-dependent hippocampal activity. RSC was later shown to play a role in spatial 

processing and navigation (Cooper & Mizumori, 1999, 2001; Vann & Aggleton, 2002; 

Whishaw, Maaswinkel, Gonzalez, & Kolb, 2001), as well as instrumental and associative 

learning of negatively valenced stimuli (Keene & Bucci, 2008b; Lukoyanov & Lukoyanova, 

2006). Recent focus has been on contextual and trace fear conditioning, paradigms 

commonly used to study processing of stress-related episodic memories within 

hippocampal-cortical networks. These studies, which revealed important roles of RSC in 
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encoding, retrieval, and extinction of context-dependent fear (Corcoran et al., 2011; 

Corcoran, Leaderbrand, & Radulovic, 2013; Cowansage et al., 2014; Jovasevic et al., 2015; 

Keene & Bucci, 2008a; Kwapis, Jarome, Lee, & Helmstetter, 2015; Leaderbrand et al., 

2016), are discussed below in the framework of the overall cytoarchitecture of RSC and its 

major connections.

Cytoarchitecture and connectivity

RSC is composed of two major cytoarchitectural areas: granular and agranular (RSCg and 

RSCa, also known as A30, Fig. 3a), which represent the ventral and dorsal subdivisions, 

respectively. RSCg is further composed of areas A29 a–c along the rostro-caudal axis (Vogt 

& Miller, 1983). These areas differ in their connectivity to other brain regions (Shibata, 

1998; Van Groen & Wyss, 2003; Vogt & Miller, 1983) and their functional roles, as 

illustrated by the finding that lesions of RSCg but not RSCa impair spatial learning and 

memory (van Groen, Kadish, & Wyss, 2004). The RSCg layers have highly organized 

laminar and modular geometry, consisting of dendritic bundles (layer 1), small pyramidal 

neurons (layer 2/3), sparse layer 4, large pyramidal neurons (layer 5) and polymorphic layer 

6 (Vogt & Miller, 1983). A distinctive feature of the rodent RSCg is an accentuated layer 2 

consisting of closely packed small pyramidal neurons (Ichinohe et al., 2008; Sripanidkulchai 

& Wyss, 1987), which predominantly receive thalamic input. In addition to excitatory 

neurons, RSC contains GABAergic parvalbumin (PV)-positive neurons. Some are localized 

in layer 2/3 (Ichinohe & Rockland, 2002), and we also identified a large population of these 

interneurons in layer 5 (unpublished data).

Different RSCg layers receive distinct long-range projections that support its role in memory 

processing. The key projections originate from two regions in DH, the subiculum and the 

CA1. Subicular projections originate from pyramidal neurons that densely innervate RSCg 

layers 1 and 3 (Van Groen & Wyss, 2003; Wyss & Van Groen, 1992), whereas a long-range 

GABAergic projection into RSC layer 1 (Jinno, 2009; Miyashita & Rockland, 2007) 

originate from stratum lacunosum-moleculare interneurons. Another major projection 

implicated in memory function of RSCg originates from anterior thalamic nuclei, and 

particularly from the anteroventral (AV) and anterodorsal (AD) nuclei. Their projection 

terminates in layers 1 and 3, with AV more preferentially innervating layer 1 (Odagiri, 

Meguro, Asano, Tani, & Ichinohe, 2011; Wyss & Van Groen, 1992). In addition to these 

non-sensory afferents, sensory afferents from visual cortex have also been described, 

however they predominantly project to the agranular RSC (Vogt and Miller 1983).

In turn, RSC communicates back to thalamus and parahippocampal regions via projection 

neurons located in specific layers. For example, corticothalamic neurons in layer 6 project 

back to AV and AD (Mathiasen, Dillingham, Kinnavane, Powell, & Aggleton, 2017; 

Shibata, 2000; Sripanidkulchai & Wyss, 1987), closing the inter-areal recurrent loop. 

Projection neurons in layer 5 send their axons to pre- and post-subiculum (Van Groen & 

Wyss, 2003). RSCg also projects to layer 5 pyramidal neurons in entorhinal cortex 

(Czajkowski et al., 2013), although a laminar source of this projection is unclear. Other areas 

to which RSCg distributes information to other regions, via projections originating from 

neurons in layers 2, 3, 5, and 6, include contralateral/ipsilateral RSCg (Sripanidkulchai & 
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Wyss, 1987) and secondary motor cortex (Yamawaki, Radulovic, & Shepherd, 2016). 

Furthermore, a subset of pyramidal neurons in layer 5 send their long-range axons to the 

ventrolateral potion of the pontine nuclei (Yamawaki et al., 2016).

Molecular RSC mechanisms of memory

To investigate the role of RSC in memory processing, we have focused on memories learned 

through contextual fear conditioning using footshocks as unconditioned stimuli. Although in 

this task learning itself is seemingly simple – a neutral box is paired with a footshock so that 

subsequent exposure to that box will yield freezing responses that serve as indices of fear– 

the neural processes underlying this type of learning are quite complex. Memory for 

contextual fear conditioning requires the integration of information from multiple sensory 

modalities to form a representation of the context, along with emotional and mnemonic 

information. Because of its connectivity with the regions listed above, which mediate these 

types of information, RSC is poised to play a critical role in contextual memory processing.

Glutamate and downstream signaling pathways

In our initial experiments testing the role of RSC in memory, we observed that glutamatergic 

antagonism yielded profound retrieval deficits for both recent and remote memories 

(Corcoran et al., 2011), and the extent of these deficits was comparable to findings with 

hippocampal inactivation. Unexpectedly, the roles of NMDAR were completely reversed 

relative to their known roles in hippocampus with respect to memory formation versus 

retrieval. Namely hippocampal NR2A NMDAR are required for memory formation but not 

retrieval (Gao et al., 2010), whereas RSC NR2A NMDAR are required for retrieval without 

affecting memory formation. Furthermore, antagonism of RSC NMDAR impaired retrieval 

of both recent and remote memory, thus demonstrating that the role of RSC in memory 

retrieval is not time limited (Corcoran et al., 2011). Collectively, these data show that 

NMDARs in RSC are necessary for the retrieval of both remote and recent memories of fear-

evoking contexts.

In addition to retrieval, glutamatergic RSC mechanisms also contribute to fear extinction, 

induced by repeated exposures to the context without shock. Unlike the hippocampus, 

however, wherein extinction requires NR2A (Leaderbrand, Corcoran, & Radulovic, 2014), 

RSC mechanisms involved NR2B (Corcoran et al., 2013) and required NR2B-mediated 

downregulation of the cAMP-dependent protein kinase (PKA)/cAMP response element-

binding protein pathway. Consistent with this finding, remote extinction was enhanced by 

uncoupling of NR2B from receptor for activated C kinase 1 or PKA from A-kinase anchor 

proteins (Corcoran et al., 2015). Thus, targeting NR2B interactions with its scaffolds might 

be effective in modulation of remote memories.

RSC cholinergic signaling

Similar to glutamate, signaling through acetylcholine receptors (AChR) has long been 

understood to play a role in learning and memory processes. In the hippocampus, 

inactivation of AChR disrupts memory formation (Kremin et al., 2006; Newman, Gillet, 

Climer, & Hasselmo, 2013), whereas their role in memory retrieval is somewhat more 
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contentious (Huang et al., 2011; Souza, Bruning, Acker, Neto, & Nogueira, 2013). We used 

pharmacological inactivation and subunit-specific genetic knockdown of muscarinic AChR 

(mAChR) in both hippocampus and RSC to directly compare their roles in encoding and 

retrieval of memory for contextual fear conditioning (Leaderbrand et al., 2016). We found 

that M3 subunit-containing mAChR are similarly necessary for formation of context 

memory in both regions, although in RSC, this role requires the additional co-activation of 

M1 subunit-containing receptors. In contrast, retrieval mechanisms showed notable regional 

differences. Retrieval of recent memories was dependent on M2/M4 signaling in RSC, but 

on M1/M3 signaling in hippocampus. Interestingly, all M1–M4 subunits in RSC were 

involved in remote memory retrieval. The shift of RSC cholinergic mechanisms from 

M1/M3 to M1/M4 suggest that despite the time-independent role for RSC in retrieval of 

contextual memories, the mechanisms that underlie this role change as memories age.

RSC network mechanisms of memory

We recorded local field potentials (LFPs) from RSC, hippocampus, anterior dorsal thalamus, 

and anterior cingulate cortex to better understand how activity within this interconnected 

network of structures correlates with contextual learning and memory (Corcoran, Frick, 

Radulovic, & Kay, 2016). During both exposure to a novel context and retrieval of recently-

acquired memory for contextual fear conditioning, coherence of LFPs in the theta frequency 

range was increased between all structures, reflecting enhanced connectivity among these 

areas. We recently performed a more extensive analysis among multiple frequencies and 

replicated this phenomenon, suggesting that its underlying mechanisms are rather robust. 

Interestingly, although we found multiple changes of power (in delta, theta, beta, and gamma 

frequencies), coherence related to encoding and retrieval of context memories was 

consistently increased only in the theta range (Miller, Frick, Smith, Radulovic, & Corcoran, 

2017) (Figure 1).

In contrast to recent memories, RSC-hippocampal and RSC-thalamic theta coherence was 

decreased in mice that successfully retrieved, relative to mice that failed to retrieve, remote 

memory (Corcoran et al., 2016). This suggests not only that processing remote memories 

requires a different degree of interdependent activity between RSC and other memory 

processing areas as does processing of recent memories, but that a failure to decrease RSC-

hippocampal theta coherence in the long term might be linked to remote retrieval deficits. 

Thus, just as specific neurotransmitters are involved in different phases of memory 

processing, distinct patterns of activity among the connections between RSC and other 

cortical and subcortical regions seem to be associated with contextual fear memory 

encoding, retrieval, and extinction.

What is unique about the role of RSC in memory processing?

Given that RSC and entorhinal cortex are the main cortical targets of dorsohippocampal 

projections, it is not surprising that both cortices play important roles in the consolidation 

and retrieval of fear-inducing context memories. It is not yet clear, however, whether DH-

RSC and DH-entorhinal circuits interact or operate in parallel, and whether their roles in 

memory are redundant (completely or partially) or unique. Although many questions remain 
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open, existing evidence points to some interesting and unique features of RSC-mediated 

memory processes relevant for contextual fear inducing memories.

Although initial inactivation studies suggested a time-limited role of RSC in memory 

processing (Maviel, Durkin, Menzaghi, & Bontempi, 2004), accumulating evidence supports 

a time-unlimited role of RSC in the retrieval of fear-inducing context memory from earliest 

stages of memory consolidation to remote retrieval (Corcoran et al., 2011; Tayler, Tanaka, 

Reijmers, & Wiltgen, 2013; Todd, Mehlman, Keene, DeAngeli, & Bucci, 2016). In that 

respect, RSC’s role resembles those of the perirhinal and postrhinal cortices (Burwell, 

Bucci, et al., 2004). On the contrary, the DH-entorhinal circuit seems to be predominantly 

engaged in earlier stages of memory processing (Frankland & Bontempi, 2005; Kitamura et 

al., 2017), whereas anterior cortices (orbitofrontal, anterior cingulate, and medial prefrontal 

cortices) become involved at later stages (Frankland, Bontempi, Talton, Kaczmarek, & Silva, 

2004; Kitamura et al., 2017). Thus, the role of RSC appears to be less dynamic, possibly 

providing a more stable system for memory storage and retrieval. Given the still 

controversial issue on the temporal involvement of the hippocampus in memory, with 

evidence for both temporary (Kim & Fanselow, 1992; Winocur, Sekeres, Binns, & 

Moscovitch, 2013) and permanent ((Lehmann, Lacanilao, & Sutherland, 2007; Sparks, 

Spanswick, Lehmann, & Sutherland, 2013) involvement, it is worth exploring whether these 

discrepancies are due to differential utilization of DH-RSC and DH-entorhinal circuits 

across discrete paradigms, allowing permanent involvement through the DH-RSC and 

temporary involvement through the DH-entorhinal cortical pathway.

In addition to its cortical connections, RSC is densely connected to multiple anterior 

thalamic nuclei (Jankowski et al., 2013), which play a major role in maintaining episodic 

memories in humans (Nishio et al., 2014), as well as memories of fear-inducing contexts in 

rodents (Lopez, Gamache, Milo, & Nader, 2017; Marchand, Faugere, Coutureau, & Wolff, 

2014). The role of RSC interactions with individual thalamic nuclei may thus provide further 

detail on the mechanisms underlying sustained RSC involvement in memory processing.

At the molecular level, a similar stability is found with glutamatergic RSC mechanisms of 

memory retrieval, whereas hippocampal mechanisms seem to vary with time. For example, 

hippocampally-mediated retrieval of fear-inducing context memories relies on the time-

limited involvement of AMPA (Goshen et al., 2011; Kitamura et al., 2009) and beta-

adrenergic receptors (Ouyang & Thomas, 2005) whereas RSC-mediated retrieval relies on 

the time-independent involvement of NMDAR (Corcoran et al., 2011). Thus, the roles of 

RSC NMDAR and AMPAR in contextual fear conditioning appear to be dissociable, as it 

has been previously found with reward learning (Di Ciano, Cardinal, Cowell, Little, & 

Everitt, 2001; Di Ciano & Everitt, 2001), and reversed when compared to the hippocampus 

(Bast, da Silva, & Morris, 2005; Kim, DeCola, Landeira-Fernandez, & Fanselow, 1991). 

NMDAR are known for their important role in synaptic plasticity, reflected both at the level 

of physiological activity and gene expression (Platenik, Kuramoto, & Yoneda, 2000) of 

memory-processing neurons. This suggests that RSC could be an important site for retrieval-

induced plasticity, such as memory stabilization, update, or extinction (Alberini, Milekic, & 

Tronel, 2006). This is consistent with the demonstrated role of RSC in extinction of both 
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recently and remotely acquired contextual freezing (Corcoran et al., 2013), and needs to be 

further examined in other retrieval-mediated phenomena.

Implications of RSC in human brain disorders

The key role of RSC NMDAR in retrieval and extinction of fear-inducing context memories 

may have important implications for psychiatric disorders rooted in stress-related memories, 

such as post-traumatic stress disorder (PTSD). Abnormal regulation and function of 

NMDAR, which has been implicated in PTSD, could contribute to retrieval-mediated 

phenomena, such as flashbacks and re-experiencing of traumatic memories, as well as 

resistance to extinction, resulting in persistent fear and avoidance. Hyper- or hypoactivation 

of RSC is found in patients suffering from post-traumatic stress disorder (Liberzon et al., 

1999; Sartory et al., 2013), schizophrenia (Mitelman, Shihabuddin, Brickman, Hazlett, & 

Buchsbaum, 2005), and bipolar disorder (Nugent et al., 2006), suggesting that RSC 

dysfunction contributes to cognitive and affective pathologies associated with psychiatric 

illnesses. This could be due to deficits of RSC function in evaluating the emotional salience 

of information from the environment (Cato et al., 2004), in the retrieval of autobiographical 

memories (Piefke, Weiss, Zilles, Markowitsch, & Fink, 2003), or in reflection upon 

emotionally toned experiences (Oddo et al., 2010). RSC dysfunction is likely to impact 

neuroanatomically associated structures, such as the anterior cingulate cortex, which also 

shows abnormal activity in patients with PTSD and depression along with abnormal 

processing of emotionally valenced memories (Rauch, Shin, & Phelps, 2006) (Davey, 

Harrison, Yucel, & Allen, 2012).

RSC also shows abnormalities in the most common neurological disorders with memory 

deficits (Vann & Albasser, 2009). For example, early memory loss in patients with 

Alzheimer’s disease is associated with metabolic decline (Minoshima et al., 1997) and 

hypoactivity (Desgranges et al., 2002) in RSC. Retrosplenial pathology is sufficient to 

induce human amnesia (Valenstein et al., 1987) and retrosplenial hypoactivity is also seen in 

the amnesic Korsakoff’s syndrome (Joyce & Robbins, 1993; Reed et al., 2003). It has been 

proposed that this is due to the dense connections of RSC with thalamic nuclei, the 

hippocampus (Vann & Albasser, 2009), and the prefrontal cortex (Shibata, 1998; Shibata, 

Kondo, & Naito, 2004; Wyss & Van Groen, 1992). Consequently, RSC is seen as a key link 

for temporal-diencephalic, temporal-frontal, and thalamic-hippocampal interactions 

(Kobayashi & Amaral, 2007).

Understanding the molecular, cellular, and circuit mechanisms by which RSC and its circuits 

contribute to the processing of memories in general as well as stress-related episodic 

memories will facilitate our understanding of the role of memory in these 

neuropsychopathologies and reveal the potential of RSC manipulations to alleviate them.

Summary

Converging molecular, cellular, and network evidence suggests that RSC acts as a hub that 

integrates and coordinates the activity of distinct brain regions to mediate acquisition and 

time-independent retrieval of contextual memories. In humans, this role has been hinted at 
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by imaging studies that have identified RSC as a node of connectivity between regions of the 

default mode network. Activity within this network is associated with emotional regulation 

and autobiographical memory retrieval (Bressler & Menon, 2010), whereas dysfunction is 

seen in a number of mental disorders, including major depression (Hamilton et al., 2011) 

and anxiety (Carlson, Rubin, & Mujica-Parodi, 2017). Disruptions in RSC-dependent inter-

regional connectivity may yield susceptibility to extinction failure, which has been posited 

as a mechanism underlying the persistence of symptoms in post-traumatic stress disorder 

(Rothbaum & Davis, 2003), or to aging-related impairments in memory retrieval, as RSC is 

among the first areas of the brain to show metabolic decline (Minoshima et al., 1997), and 

functional connectivity with RSC is disrupted (Andrews-Hanna et al., 2007; Jones et al., 

2011), in both mild cognitive impairment and Alzheimer’s disease. Thus, RSC and RSC-

related networks may provide critical avenues for understanding and treating pathological 

memory states.
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Figure 1. 
Changes of RSC oscillatory activity related to memory processing. (a) Shift of LFP states in 

RSC, dorsal hippocampus and anterior cingulate cortex (left) during encoding and retrieval 

of context memory (right). Overall, encoding results in more pronounced changes of LFP 

power and coherent activity between RSC and other brain areas. (b) Decreased delta power 

and increased peak coherence in the theta frequency are the most consistent indicators of 

recent memory retrieval (purple arrow), whereas multiple changes are seen during encoding 

(orange arrow). Based on data presented in (Miller et al., 2017). AC, anterior cingulate 

cortwex, HIPP, hippocampus.
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