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The dimensionality of niche space allows bounded
and unbounded processes to jointly influence
diversification

Matthew J. Larcombe!, Gregory J. Jordan?, David Bryant3 & Steven I. Higgins'4

There are two prominent and competing hypotheses that disagree about the effect of
competition on diversification processes. The first, the bounded hypothesis, suggests that
species diversity is limited (bounded) by competition between species for finite ecological
niche space. The second, the unbounded hypothesis, proposes that innovations associated
with evolution render competition unimportant over macroevolutionary timescales. Here we
use phylogenetically structured niche modelling to show that processes consistent with both
of these diversification models drive species accumulation in conifers. In agreement with the
bounded hypothesis, niche competition constrained diversification, and in line with the
unbounded hypothesis, niche evolution and partitioning promoted diversification. We then
analyse niche traits to show that these diversification enhancing and inhibiting processes can
occur simultaneously on different niche dimensions. Together these results suggest a new
hypothesis for lineage diversification based on the multi-dimensional nature of ecological
niches that can accommodate both bounded and unbounded evolutionary processes.
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pecies diversity has increased dramatically over geological

time!. Reconstructions using the fossil record are ambig-

uous about the causes of, and constraints on, this increase?-%.
One important open question is whether the rate of species
accumulation slows as diversity increases, or is independent of
diversity*=®. The unbounded hypothesis implies that time, and
the rate of evolution within clades (monophyletic branches of
phylogenies), control diversification and that there is essentially
no limit on total diversity>. Alternatively, the bounded hypothesis
suggests that diversity-dependent processes limit species rich-
ness’. This limit may be a true carrying capacity, or if extinction
is not zero, it is simply the equilibrium between speciation rate
and extinction rate®. Several mechanisms may cause diversity-
dependent dynamics (see ref. ? for a review), and the most widely
recognised of these involves competition for limited ecological
niche space’. Resolving this debate is essential for understanding
limits to biodiversity, and why diversity is unevenly distributed in
space and time and between clades.

Previous attempts to discriminate between bounded and
unbounded diversification have focused on modelling species
accumulation as inferred from phylogenies'®!! and fossil
assemblages>®12, and to a lesser extent testing how ecological
niche evolution impacts diversification!>!4. The results to date
have been inconclusive and often contradictory?~41>16, indicat-
ing that a more nuanced explanation may be required®!¢. Here
we quantify the extent to which both bounded and unbounded
processes influence species accumulation in the conifers. Our
analysis exploits methodological advances that allow us to infer
multi-dimensional physiological niche properties for large suites
of species!”!18, We use these data to discriminate between the
distinctive niche characteristics predicted by the bounded and
unbounded hypotheses. Specifically we test support for the
bounded hypothesis’ prediction that diversification should slow as
niche overlap increases within clades>® and the unbounded
hypothesis’ prediction that niche evolution accommodates
increasing diversity by allowing the partitioning or expansion of
niche space®19:20,

Conifers are an ecologically important, globally distributed
order of plants (Fig. 1; Supplementary Fig. 1) that are ideal for
this analysis. This large, well-studied lineage has well-defined
clades, excellent distribution data®l, and is ancient enough (>300
myo??) to assess how species accumulate through time. We use
distribution data and a process-based species distribution model
(SDM) to infer physiological niche parameters for each of 455
living conifer species (75% of extant conifers). The niche para-
meters are combined with a robust fossil calibrated phylogeny??,
and interpreted statistically using a range of traditional approa-
ches including correlation analysis and rate through time plots, as

well as an a priori conceptual model of how niche and phylo-
genetic parameters relate to species richness. This conceptual
model postulates that species richness can be impacted both
directly and/or indirectly by clade age, multivariate niche evolu-
tion rate, and two novel metrics: clade niche size and the clade
competition index. Clade niche size is the projected potential
niche size (number of geographic grid cells occupied by all species
in the clade) corrected for clade species number (see Methods).
The clade competition index is the product of niche overlap and
geographic overlap between species within clades. The parameters
of the conceptual model were estimated using phylogenetically
constrained Bayesian path analysis. We conduct the analysis at
two phylogenetic levels, using 10 large clades and 42 smaller
clades. Our analysis shows that bounded and unbounded diver-
sification processes contribute more-or-less equally to diversifi-
cation in conifers, and indicates that niche dimensionality may be
the mechanism by which these opposing forces work together.

Results and discussion

Quantifying diversification processes. We produced diversifi-
cation rate through time plots for the full phylogeny and each of
the 10 large clades (Supplementary Fig. 2). This showed a range of
patterns including increases, slowdowns, long periods of stasis
and multiple rate changes, which is consistent with both bounded
and unbound processes influencing diversification in
conifers”?324, However, it has been shown that a number of
factors may confound patterns of diversification derived from
phylogenies in this way, and they are likely to be especially
problematic in old lineages with unobservable extinction>2324,
Therefore given that conifers are an ancient lineage (>300 million
years old) that are believed to have been strongly influenced by
Cenozoic extinctions?®, we pursued other forms of evidence to
identify diversification dynamics in this group.

To begin, we estimated the extent of correlations between
indices of diversification, species competition, species richness
and niche size. These analyses suggest that both bounded and
unbounded processes influenced diversification (Fig. 2). In line
with bounded diversification, the clade competition index was
negatively related to species richness, and, as predicted by the
unbounded hypothesis, niche evolution was positively correlated
with species richness (Fig. 2). There was no clear relationship
between clade niche size and species richness, suggesting that
niche partitioning is an important diversification process (Fig. 2).
That is, if speciation was largely occurring as a result of niche
expansion—where adaptation facilitates new species accessing
new ecological space—we would predict a positive relationship
between clade niche size and species richness because new species
expand the total clade niche size. Conversely, if speciation is
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Fig. 1 Conifer species richness. Global species richness patterns in 455 conifer species based on cleaned empirical distribution data used here to analyse
diversification processes. See Supplementary Fig. 1 for equivalent map of all 600 recognised living conifer species
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Fig. 2 Associations between species richness and diversification metrics. Scatter plots between clade species richness and selected clade metrics for two
divisions of the conifer phylogeny into a 10 large clades and b 42 smaller clades. Straight lines indicate significant linear effects detected using phylogenetic
generalized least squares (PGLS) regressions. The presence of multiple correlations made interpretation difficult; for this reason, we performed a path

analysis (Fig. 3)

occurring via specialization and the division of existing clade
niche space (i.e, niche partitioning) we would predict no
relationship between clade niche size and species richness because
adding new species does not expand total clade niche size. The
correlations further suggested a negative relationship between the
niche evolution rate and clade competition index. Unfortunately,
these simple correlation analyses cannot elucidate the relative
effects nor the role of indirect effects of the factors on clade
species richness. For these reasons we performed a phylogeneti-
cally constrained path analysis.

The path analyses revealed that diversification in conifers was
influenced in almost equal measure by bounded and unbounded
processes (Fig. 3). In line with the bounded hypothesis,
competition with relatives (clade competition index) had a strong
negative effect on species richness, which suggests that available
niche space can limit species accumulation. This effect was strong
in both the 10 (r=—0.85) and 42 (r=—0.96) clade analyses.
Support for the unbounded hypothesis was evidenced by our
finding that niche evolution rate contributed positively to species
richness, suggesting that higher niche evolution rates within
clades allow more species to accumulate. This effect was stronger
in the 10 clade analysis (r = 0.61) than in the 42 clade analysis (r
=0.35). Furthermore, we found that clade niche size had neutral
(42 clade analysis) or negative (10 clade analysis) influence on
species richness, again suggesting that niche partitioning
constitutes the main mode of niche evolution in conifers. The
negative effect of clade niche size (10 clade analysis) is somewhat
counter-intuitive since it suggests that clades with smaller niche
volumes accommodate more species. However, this pattern is
consistent with niche partitioning accompanied by allee effects
and/or competition®2¢ driving random extinction processes that
lead to a reduction in clade niche size as postulated in Fig. 4. In
fact the significant direct effects of competition (r=—0.52) and
niche evolution (r=—0.19) on clade niche size, and relatively
strong negative effect of clade age (r = —0.21) on species richness
(Fig. 3a), are consistent with such competition driven extinction

a  y0clade analysis (455 species)
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Clade
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Fig. 3 Path analysis of variation in conifer species richness. Bayesian path
analysis showing the relative effects of niche and phylogenetic parameters
on clade species richness for 455 conifer species in a 10 large clades and b
42 smaller clades. Total effect size is shown in bold, while direct effects and
their standard deviation are shown along the vertices. Solid lines indicate
significant effects (95% credible intervals not including zero)
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processes unfolding through time3. The lack of evidence for this
causal pathway in the 42 clade analysis probably reflects the much
younger average clade age (17 my compared with 112 my), and
smaller clade sizes, which mean that partitioning and extinction
processes (Fig. 4) will be less frequent and therefore more difficult
to detect. This interpretation is consistent with previous work
suggesting extinction played a pivotal role in the diversification of
conifer clades in the Cenozoic, while younger clades are primarily
shaped by recent speciation?’.

We note that our clade competition index under-estimates
competition because it may not capture all potential competitive
interactions. Our measure quantifies expected competition
between members of a clade based on overlap in geographic
space and niche space (see Methods). It is an underestimate
because, although competition is likely to be most intense
between close relatives (i.e., members of the same clade),
competitive interactions with more distantly related species are
also likely and not captured by our metric?’2°. Incorporating
competition with distantly related species, although possible,
would require additional data and necessitate additional assump-
tions. It is also possible that our clade competition index fails to
detect some forms of competition that might constrain
diversification rates. For example, it is possible that competition
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Fig. 4 Extinction driven reduction in clade niche size. Example of how niche
partitioning combined with extinction associated with allee effects and/or
competition, can result in a negative relationship between clade niche size
and species richness as found in Fig. 3a. Different coloured curves
represent species

between ecologically similar species may prevent them from
becoming sympatric as has been reported in some bird
lineages3%-31. Such processes could limit range expansion and
potentially reduce diversification rates if range expansion
increases the likelihood of diversification—for example by
increasing the probability of allopatric speciation®.

Although much previous work has favoured either
bounded>!1%1428 or unbounded33%33 processes driving diversifi-
cation, our results are consistent with observational!>!%,
theoretical'® and modelling®!2 work, which suggests that both
bounded and unbounded processes influence diversification. For
example, much of the empirical evidence is consistent with
diversification slowing, rather than reaching an asymptote!®1°.
This led Cornell'® to propose the “damped increase” hypothesis,
which in line with our results, suggests that competition induced
by niche filling reduces diversification rate, while specialisation or
new ecological opportunities counteract this effect!®. Others have
extended these ideas to show that the incongruity between strict
bounded and unbounded views could be overcome by allowing
diversity-accumulation-models to vary between periods of either
bounded or unbounded diversification*. These studies do not,
however, provide a population/species level mechanism that

could drive shifts in diversification processes®.

Niche dimensionality and diversification. To address this
mechanistic basis, we examined whether niche dimensionality can
drive variation in diversification processes34. We used a range of
statistical procedures to determine if variation exists in the evolu-
tionary flexibility of niche traits at three levels: (1) across the phy-
logeny; (2) within clades; and (3) between clades. Across the full
phylogeny we found variation in the level of conservatism (phylo-
genetic signal) between traits (with Pagel’s A values ranging from
<0.01 to 0.42; Table 1), suggesting variation in the evolutionary
flexibility of niche dimensions. This variation between traits was also
evident within clades, for example in Clade 7, Pinus (Table 2). In
fact, mixed effects modelling show that significant variation exists in
evolutionary rate between traits after accounting for random varia-
tion between clades (trait: Fig99 = 62.5, P=<0.0001), suggesting
that trait evolution rates do, on average, vary within clades.

We also found that the evolution rate of traits varies between
clades, for example, Fig. 5 summarises how the evolution rate of
traits varies across the clade-level phylogeny after accounting for
non-independence associated with phylogenetic relationships
(using phylogenetic independent contrasts®®). This analysis
indicates that trait evolution rate varies significantly across the
terminal nodes of the clade-tree (node: Fggo= 6.4, p <0.0001).

Table 1 Phylogenetic signal across the full phylogeny

Niche trait A P(1) K P(K)

Soil moist N uptake (3) 0.144 <0.001 0.019 0.001

Max temp growth (4) 0.000 1 0.016 0.039

Min temp growth (3) 0.092 <0.001 0.016 0.115

Soil moist N uptake (2) 0.444 <0.001 0.023 0.001

Mean temp growth (2) 0.205 <0.001 0.020 0.001

Soil moist growth (2) 0.362 <0.001 0.021 0.001

Radiation growth (2) 0.054 0.064 0.018 0.005

Min temp growth (2) 0.415 <0.001 0.024 0.001

N soil growth (1) 0.158 <0.001 0.019 0.004

N soil growth (2) 0.132 <0.001 0.017 0.012

Mean temp N uptake (2) 0.215 <0.001 0.021 0.001

Phylogenetic signal in the 11 key niche traits based on a conifer phylogeny covering 455 species and estimated using Pagel's 4 and Blomberg's K. The p-value (P) for 1 is estimated using the likelihood
ratio test. The p-value for K is estimated from a randomization test based on 1000 simulations of the data. The numbers in parentheses indicate the position of the specific trait in the growth or resource
acquisition function. For example Soil moist N uptake (3), is the point at which increasing soil moisture, starts to limit nitrogen (N) uptake, i.e. when water logging limits N uptake. See Results and
Discussion for details
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Table 2 Phylogenetic signal within Clade 7 (Pinus)

Niche trait A P(4) K P(K)
Soil moist N uptake (3) 0.569 0.003 0.080 0.005
Max temp growth (4) 0.000 1.000 0.076 0.0Mm
Min temp growth (3) 0.000 1.000 0.058 0.286
Soil moist N uptake (2) 0.623 0.026 0.097 0.001
Mean temp growth (2) 0.167 0.051 0.092 0.001
Soil moist growth (2) 0.609 0.033 0.079 0.003
Radiation growth (2) 0.000 1.000 0.079 0.005
Min temp growth (2) 0.104 0.208 0.072 0.015
N soil growth (1) 0.000 1.000 0.067 0.076
N soil growth (2) 0.000 1.000 0.062 0.159
Mean temp N uptake (2) 0.004 0.894 0.077 0.004
Phylogenetic signal in the phylogeny of 111 species of Pinus for 11 key niche traits, estimated using Pagel's 1 and Blomberg's K. The p-value (P) for 1 is estimated using the likelihood ratio test. The p-value
for K is estimated from a randomization test based on 1000 simulations of the data. The numbers in parentheses are as Table 1
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Fig. 5 Phylogenetic independent contrasts of niche evolution rate. Left: clade-level conifer phylogeny showing terminal nodes (4-9) in bold black, internal
nodes (1-3) in grey (not consider in the contrasts). Taxonomic information about the groups, as well as their clade number and species richness (Clade #,
n = species richness) are given at the tips. Right: Contrasts between the terminal nodes. The vertical bars correspond to the terminal nodes (labelled once
in bold to match those on the tree), and the coloured arcs show the difference in mean niche evolution rate between the nodes (calculated by subtracting
the mean of the top node from the mean of the bottom node). For example the red line joining nodes 5 and 4 indicates that the niche evolution rate at node
5is 1.3 lower than node 4. Significance is indicated by line thickness and type. The pattern that emerges is that the nodes which give rise to clades with high
species richness (e.g., nodes 4 and 9) have significantly higher niche evolution rates than nodes giving rise to clades with low species richness (with the

exception of node 6, see Results and Discussion). For further details on the contrasts see Supplementary Table 1

Looking at the terminal nodes is interesting because it provides
inference regarding the descendent clades, and Fig. 5 shows that
high rates of trait evolution are often associated with increases in
diversity, and vice versa. For example, nodes that give rise to
relatively high diversity clades (e.g., nodes 4, 7 and 9; Fig. 5) tend
to have have significantly higher trait evolution rates than nodes
that give rise to lower diversity clades (i.e., nodes 5 and 8; Fig. 5).
The only exception to this pattern is node 6, which is parent to
the high diversity Clade 1 (n =111), and has a relatively low trait
evolution rate (Fig. 5). Interestingly, Clade 1 also has the lowest
clade competition index of any clade in our analysis, possibly
suggesting that in the absence of strong competition, diversifica-
tion has advanced without a parallel increase in trait evolutionary
rates. Allopatric speciation in an ecologically specialised, and well
dispersed linage might explain this type of pattern. The most
diverse genus in Clade 1, Juniperus, is unusual among conifers in
its preference for relatively arid, warm climates and calcareous
soils, furthermore the evolution of “berry-like” fruits is thought

have driven extensive dispersal and allopatric speciation in the
genus. Together, the above results imply that trait evolutionary
rates vary within and between conifer clades, and in combination
with competitive interactions this variation can explain shifts in
clade-level diversity.

Such variation in the evolutionary flexibility of traits and
competition between species within clades may accommodate the
operation of both bounded and unbounded processes. This can be
seen more clearly by focussing attention on single clades. For
example, in Clade 7 (Pinus, Fig. 6), the effect of soil moisture on
growth (Fig. 6f) is highly conserved in the sub-clades highlighted
with solid ellipses, suggesting that interspecific competition is likely
to be high along this niche dimension in these sub-clades. However,
these same sub-clades are labile in terms of their temperature
requirements for growth (traits b and ¢, highlighted with dashed
ellipses in Fig. 6b, c), indicating that evolution and specialisation are
possible along these niche dimensions (Fig. 6). Analogous patterns
can be seen in the other Pinus sub-clades (Fig. 6) and the other
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clades (Supplementary Fig. 3). Population level studies investigating
how individual traits respond under direct interspecific competition
in actively diversifying linages are needed to help clarify how these
processes operate at the ecological level.

By considering the multi-dimensional nature of niche evolu-
tion, we have shown how bounded and unbounded diversification
processes may simultaneously control diversification rates. Niche
dimensionality has long been thought to promote diversity by
partitioning resources and facilitating coexistence’’, and there is
considerable empirical support for this hypothesis’*. Most
previous assessments of how niche characteristics impact
macro-diversification have used low dimensional proxies of the
niche such as body size'* or climatic range!3. In contrast, our
assessment of multiple, physiological niche traits, reveals that
both diversity-limiting competition, and diversity-promoting
evolution may operate concurrently. At the population level
these processes are likely to be separated in space and/or time—in
line with models by McPeek®® and Marshall and Quental?,
respectively. For example, populations along environmental
gradients could experience variation in the opportunity for
specialisation or niche expansion along some niche dimensions
but experience competition along other niche dimensions3®.
Similarly, changes in the environment could induce temporal
variation in selection pressure that affects the interplay between
conservative and labile niche traits*.

In summary, we have identified how processes that define the
niche geometry of conifer clades can jointly promote and
constrain diversification. Our results confirm that the contrasting
processes that underpin bounded and unbounded diversification
have both operated during the evolution of a major lineage. Our
study thereby provides an analysis framework for a new multi-
dimensional-niche hypothesis that unifies the bounded and
unbounded hypotheses®12:16:19,

Methods

Data acquisition and preparation. Geo-referenced collection data for all conifer
species were extracted from the Global Biodiversity Information Facility (www.gbif.
org). These data were supplemented by published species records not in GBIF
from3-44, Climate estimates were made for each point record, using Worldclim*°.
Data was cleaned manually by firstly eliminating duplicate records, then for con-
sistency with species distribution descriptions, and then by comparing World-
clim estimates of altitude, with the altitudes provided with each site record. Where
Worldclim altitudes were inconsistent with the altitude in species descriptions by
more than 300 m, we replaced these records with estimates from nearby sites with
altitudes consistent with the descriptions.

Estimating physiological niche traits. We estimated the physiological niche traits
of the study species using a physiologically-based approach to species distribution
modelling!”. This method uses the Thornley transport resistance (TTR) model of
plant growth?® to estimate the niche traits that match the observed distribution of
species. The TTR model“°, is an ordinary differential equation that models how

plant growth is influenced by carbon uptake, nitrogen uptake, and the allocation of
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carbon and nitrogen between roots and shoots. It explicitly separates the physio-
logical processes of resource uptake from biomass growth. The implementation by
Higgins et al.l” relates the uptake and growth processes to environmental forcing
variables. Specifically, the model considers how carbon uptake might be limited by
temperature, soil moisture, solar radiation and shoot nitrogen; nitrogen uptake
might be limited by temperature, soil moisture and soil nitrogen; and growth and
respiration loss might be influenced by temperature. The model runs on a monthly
time step, which allows it to explicitly consider how seasonal fluctuations in the
forcing variables interactively influence plant resource uptake and growth. Higgins
et al.!” provides a full description of the model and its assumptions.

We use the cleaned presence dataset described above to identify locations where
the species occur. A variety of methods for simulating absence points (often called
pseudoabsence points) are available, but the method adopted is regarded as a
relatively small source of error*”. Our method balances the number of presence and
absence points and stratifies the selection of absence points by environment type.
To define environment types we use a partitioning algorithm clara*® to classify the
TTR environmental forcing variables into 25 environmental zones. We further
restricted the selection of absence points to the zoological realm(s) where the
species occurs and to distances >0.25 degrees from the presence points. This
approach helps ensure that a representative range of environmental zones are
included in the absence samples and that they are selected within a dispersal zone
that is potentially reachable on an ecological time scale (i.e., the zoological realms).

The model predicts the potential biomass of an individual plant as a function of
the environmental forcing variables at a site. Following the work of Higgins et al.17,
we assume that p;, the probability of a species occurring at site i, is described by the
complementary loglog of the modelled plant biomass at site i and that the
likelihood of observing the presence-absence data (y;) at site i is described by the
Bernoulli distribution. To estimate the parameters, we used the differential
evolution optimization algorithm®’ to find the set of parameters that maximizes
this likelihood over all sites. The model fits were evaluated by examining the
confusion matrix (a matrix comparing the number of true positives, true negative,
false positives and false negatives), with particular weight given to the false negative
rate, i.e., instances where the model predicts the species to be absent, but it is
actually present (Supplementary Data 1).

Like most species distribution modelling techniques, our analysis predicts the
potential niche of a species. In most situations biotic interactions and dispersal
limitations will prevent species occupying the full extent of their potential niche.
With this in mind we restrict projection of potential species ranges to the subset of
environmental zones (see above) present in each species’ occurrence data; this
prevents predictions beyond the data domain used for estimating the model
parameters. We calculated the niche size of species in two ways: (1) projecting
species ranges for the world, and (2) using a resampled dataset that assumes that
the worlds environmental zones are equally common. This second method corrects
for any bias in projected range size introduced by variation in the extent of
different environmental zones, but maintains the covariance structure of the
environmental data>®. To create a dataset where each environmental zone is
equally common, we created a resampled dataset of the environmental data. We
again use clara to classify the global TTR input data into 50 environmental zones.
We then sampled a finite number (1000 in our case) of locations from each of 50
environmental zones, which produces an environmental dataset where each
environment zone is equally represented. We projected the range sizes of species in
this resampled environmental space. Analyses conducted using geographic
locations and resampled locations yielded very similar results. The analysis based
on resampled locations is presented in the main manuscript while the analysis
based on geographic locations is available in Supplementary Fig. 4.

Phylogenetic methods. We used the fossil calibrated conifer phylogeny of Leslie
et al.22, which is based on two chloroplast genes and two nuclear genes. We
pruned this 487 species tree to match the 455 species for which we had good
distributional data. Although a clade is any monophyletic group in a phylogeny,
the ability to detect effects in clade-wise analysis will be in part reliant on having
enough variation in clade size®!. Therefore we developed two clade classifica-
tions. The first inclusive division is based on tree topology at deeper well sup-
ported nodes, and it aimed to retain major taxonomic groups such as Pinus,
resulting in 10 clades (Supplementary Data 1). The second lower division is
based on a time-slice approach at Eocene/Oligocene boundary (33.9 ma). Using
the tree topology closer to the tips than this becomes more difficult. This second
approach produced 68 clades, 28 of which included a single species. These single
species were dropped from the analysis, leaving 42 clades and 429 species in the
second analysis (Supplementary Data 1). We recognize that removing single
species clades might bias rate estimates because these are the clades with the
lowest diversification. However, the dataset still covers a wide range of clade
species richness (2-45 species), and meaningful estimates for single species
cannot be calculated for most subsequent metrics used in our analysis (e.g., niche
evolution rate, clade niche overlap, clade geographic overlap etc.). Furthermore,
this potential bias only affects the 42 clade analysis and the general agreement
between the 10 and 42 clade analyses (see Results and Discussion) suggests that
any effect is inconsequential.

We produced diversification rate through time plots using BAMM (Bayesian
analysis of macroevolutionary mixtures). BAMM was run on the full tree of

455 species with following parameter settings: the sampling fraction was set at
0.762; the priors were estimated from the tree using setBAMMpriors in
BAMMTtools>? in R, the expected number of shifts was one, the lambda initial prior
was 12.414, the lambda shift prior was 0.003414, the mu initial prior was 12.414
and the lambda time variable prior was 1; MCMC was run for 2,000,000
generations, write frequency was 2000, print frequency was 100, and the acceptance
rate was 10; all other settings were set to the BAMM defaults. Clade-level BAMM
runs were done using clade-level phylogenies pruned from the full phylogeny,
sampling fractions adjust to reflect exact clade coverage, and priors were adjusted
using setBAMMpriors. Rate through time plots with confidence shading were
produced in BAMMTtools for the full tree and each of the 10 clades separately
(Supplementary Fig. 2).

Clade-level metrics. For each clade we calculate the following metrics: age;
niche size (number of geographic grid cells occupied by all species in the clade)
is the projected potential niche size; niche evolution rate; and clade competi-
tion index. The crown age of the clade was calculated directly from the tree
using the branching time function in APE34, When assessing niche size, we
needed to control for the number of species in the clade. In the 10 clade
analysis, the smallest clade contained 12 species. Instead of using the direct
niche size of each of a clade, we instead randomly subsampled subsets of

12 species from each clade, computing the niche size for each subsample, and
taking the mean of these values. The resampling was repeated 10,000 times. In
the 42 clade analysis we used the same procedure, except that subsamples of
size 2 were used.

The calculation of niche evolution rate involves using a multivariate model. The
TTR species distribution model estimates 24 parameters associated with plant
growth (see above). For this reason we first extracted the most informative of the 24
niche parameters for the analysis, specifically we used phylogenetically corrected
principal components analysis (PCA)>° to identify which model parameters had
the most influence on shaping niche space in our dataset. PC 1 to 8 explained over
94 percent of the variation in the dataset. The most influential parameters were
identified based on the eigenvector loadings >0.3, and vector plots were used to
exclude correlated parameters. This procedure identified 11 parameters (Figs 5, 6)
which were ranked in order of importance by summing the effect of each trait on
each PC weighted by the proportion of the variance explained by that PC. For the
10 clade analysis, these 11 parameters were fit together in a multivariate Brownian
motion (BM) model of evolution in OUCH®®. In the 42 clade analysis, because
some clades had only two species there were insufficient degrees of freedom to use
a multivariate model, and a univariate Brownian motion (BM) model of evolution
was fitted using the most important parameter (the effect of soil moisture on N
uptake3; see Figs 5, 6). Following13, the trait evolution model was used to calculate
the variance-covariance matrix for the traits in each clade. The diagonal elements
of this trait matrix represent the phylogenetic rate of character evolution which
were summed to provide a multivariate (or univariate) rate parameter for each
clade—the niche evolution rate!3.

The bounded hypothesis proposes that competition plays a key role in limiting
diversification. Competition is likely to be most intense between close relatives due
to similar physiological requirements (or niches) wherever species co-occur®. To
estimate competition, we produce a metric which summarises the degree of
expected niche overlap and observed geographic overlap between species within
clades. Schoener’s index®’ of niche overlap was estimated for each pair of species
from the projected species distributions (i.e., the potential niche of the species) in
SPAAZ8, and the subsequent matrix was rescaled so the values range between 0 and
1. For each pair of species we computed the the average distance between each geo-
referenced occurrence record for one species and each geo-referenced occurrence
record in the other. These values were also normalised over all pairs of species to
produce a matrix of values between 0 and 1. We subtracted each value from 1 to
give measures of species overlap. The competition index for two species is defined
to be the product of the niche overlap and the measure of geographic overlap. The
“clade competition index” for a clade is defined as the average of the competition
indices between all species in the clade.

This formulation of the clade competition index ensures that, if species are
randomly permuted, the expected value of the index for a clade is simply equal to
the mean competition index between all pairs of species (by the linearity of
expectation). Hence, the expected clade competition index is independent of clade
size. We further verified the lack of bias by simulation. We randomly shuffled the
species names at the tips of the phylogeny, to produce 10 clades of the same size as
those in our analysis, but with a random compliment of species. We then calculated
the clade competition index for each randomised clade as above and stored this
result. This process was repeated 10,000 times. The average clade competition score
(based on the 1000 replicates) was then plotted against species richness for
comparison with the empirical data (see Supplementary Fig. 5). We used least
squares regression to test the relationship between clade species richness and the
randomised clade competition index, with the expectation that any bias in the
metric would result in a significant deviation from zero.

Regression modelling. Correlations were investigated between species richness
(log-transformed) and the clade competition index, niche evolution rate and clade
niche size as well as between the niche evolution rate and clade competition index.
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Phylogenetic generalized least squares (PGLS) regression models were used to look
for significant correlations, with the clade competition index and niche evolution
rate square root transformed to meet the assumptions of normality.

We developed an a priori conceptual model (Fig. 3) to estimate the relative
effects of clade niche size, niche evolution rate, clade age and the clade competition
index on species richness. The unbounded model predicts that specific evolutionary
characteristics, controlled by phylogenetic niche conservatism, lead to clade-
specific diversification rates. This has two consequences: (1) when the effect of
diversification rate is factored out older clades will have more species than younger
clades; and (2) positive diversification will involve niche evolution that manifests as
either the expansion or partitioning of clade niche space as species accumulate. In
line with these predictions our model allows: (1) clade age to directly influence
species richness; and (2) niche evolution rate to influence species richness both
directly, and indirectly, via its effect on clade niche size, with the direct relationship
between clade niche size and species richness indicating the mode of niche
evolution (expansion or partitioning). Conversely, the bounded diversity model
predicts that competition for limited resources places a limit on species number. It
has long been recognised that competition is likely to be most intense between close
relatives, because the ecological requirements of relatives are likely to be similar due
to phylogenetic niche conservatism. Our clade competition index quantifies
competition between the species within a clade. Therefore we allow the clade
competition index to directly effect species richness, however, because the clade
competition index quantifies interactions between niches, it is also allowed to
indirectly influence species richness via its effect on the niche evolution rate, and
clade niche size.

We used Bayesian path analysis to calculate the effects in the path diagram
(Fig. 3), while accounting for non-independence associated with phylogenetic
relationships®®. The total effect of each model parameter on the response variable
(species richness) was calculated from the direct and indirect effects following
Schumacker and Lomax®0. All model parameters were normalised and centred to a
mean of zero and constant standard deviation. Following Rabosky et al.%!, we use
relative log-transformed species richness. For each analysis (10 and 42 clade), the
full phylogenetic tree was collapsed to the clade level, and the inverse of the
variance-covariance matrix from this clade-tree was used to explicitly correct for
the phylogenetic dependencies between clades. Modelling was undertaken using
JAGS®? running three chains for 15,000 iterations, after a burnin of 25,000, and
thinning the chains to every fifth sample. Normal uniformed priors we used for the
path effects. The package coda®® was used to produce trace plots for diagnosing
convergence.

Niche trait analysis. We used a phylogenetic trait analysis to quantify the evo-
lution of individual niche dimensions at the level of the full phylogeny and within
clades. This analysis focused on the 11 niche dimensions identified above. Phylo-
genetic signal across the full phylogeny and in detail for clade 7 (pinus), was
estimated using Pagel’s A%%, with significance assessed using likelihood ratio tests,
and Blomberg’s K, with simulations to assess significance, in PHYTOOLS%". The
PHYTOOLS function “contMap” was used to produce ancestral state reconstruc-
tions for each of the 11 most important niche traits. We also made clade-level
ancestral reconstructions of the 11 main niche dimensions for the 10 large clades to
visually assess variation in the conservation of niche dimensions within clades
(Fig. 6; Supplementary Fig. 3).

A second round of niche evolution modelling focused on estimating the
evolution rate of 11 primary niche dimensions independently for each clade in
the 10 clade analysis. This was done as above, except single variate BM models
were fitted in OUCH rather than multivariate models. These clade-level trait
evolution rates were used in two subsequent analyses. Firstly, in order to test for
clade-level variation in evolution rate between traits, we fitted linear mixed
models treating log-transformed evolution rate as the dependent variable, trait as
a fixed effect and clade as a random effect using the R package nlme®®. Secondly,
in order to account for non-independence associated with the phylogenetic
relationships, we rescaled the log-transformed evolution rate for each trait using
phylogenetic independent contrasts in the R package ape®*. This procedure
produced phylogenetic independent estimates of the mean trait evolution rate
for each node in the 10 clade phylogeny (Fig. 5). We used analysis of variance to
determine if PIC evolution rate varied between different nodes, and computed
contrasts between all terminal nodes using the Tukey honest significant
difference (Fig. 5; Supplementary Table 1).

Code availability. Computer code that supports the findings of this study are
available from the corresponding author upon request.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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