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Predicting the response and identifying additional targets that will improve the efficacy of

chemotherapy is a major goal in cancer research. Through large-scale in vivo and in vitro

CRISPR knockout screens in pancreatic ductal adenocarcinoma cells, we identified genes

whose genetic deletion or pharmacologic inhibition synergistically increase the cytotoxicity of

MEK signaling inhibitors. Furthermore, we show that CRISPR viability scores combined with

basal gene expression levels could model global cellular responses to the drug treatment. We

develop drug response evaluation by in vivo CRISPR screening (DREBIC) method and vali-

dated its efficacy using large-scale experimental data from independent experiments. Com-

parative analyses demonstrate that DREBIC predicts drug response in cancer cells from a

wide range of tissues with high accuracy and identifies therapeutic vulnerabilities of cancer-

causing mutations to MEK inhibitors in various cancer types.
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Pancreatic ductal adenocarcinoma (PDAC) is one of the
deadliest cancer types with a median survival time of
6–12 months1. Moreover, the statistics for PDAC have

remained nearly unchanged for 50 years2, and it is projected to be
the second leading cause of cancer death in the United States by
20303. At the genetic level, the major gene mutations and aber-
rant signaling pathways that drive PDAC are well established4,5.
Oncogenic KRAS mutations are observed in 93% of the patients4.
Additionally, mutations in CDKN2A, TP53, and SMAD4 tumor
suppressor genes are highly incident in PDAC. Oncogenic KRAS
mutations aberrantly activate multiple downstream signaling
pathways in PDAC5. Among these, the RAS–RAF–MEK–ERK
pathway is the major driver of tumor formation by providing
survival signals to the cancer cell. This knowledge led the
expectations that targeted inhibition of the MEK signaling
pathway is a promising therapeutic approach in PDAC and other
diseases with aberrant RAS–RAF–MEK signaling6. Promising
clinical results in melanoma, a disease where this signaling
pathway is aberrantly active due to BRAF mutations7, demon-
strated the therapeutic value of targeted inhibition of mitogen-
activated protein kinase-1/2 (MEK1/2). Unfortunately, MEK
inhibitors alone or combined with gemcitabine did not show
promising results in clinical trials for PDAC.

Identifying effective therapeutic combinations and tailoring
medical treatments according to the characteristics of an indivi-
dual is the ultimate goal of cancer research and precision medi-
cine8. However, predicting a patient’s cellular response to a drug
remains a formidable challenge9. This is largely because of our
limited understanding of the full spectrum of drug targets, their
relative importance for drug response, and their abundance in
cells and tumors.

Here, we use a large-scale CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats) genetic knockout (KO)
screening approach10–12 to identify genes whose depletion will
positively or negatively alter the survival of PDAC cells when
MEK signaling pathway is inhibited. We perform in vitro and
in vivo KO screening in a patient-derived xenograft cell line of
PDAC. We identify multiple therapeutically targetable genes
whose depletion synergistically increases cellular sensitivity to
MEK inhibition. We validate several of the top hits with targeted
genetic deletions as well as small molecule inhibitors. We also
develop a novel drug response prediction method that integrates
the combined actions of drug fitness genes from the CRISPR
screen with basal gene expression levels. To validate this DREBIC
(drug response evaluation by in vivo CRISPR screening)
approach, we utilize experimental drug response data from the
Cancer Cell Line Encyclopedia (CCLE)13,14 and the Cancer
Genome Project (CGP)15. Our results show that DREBIC models
cellular response to MEK inhibitors with high sensitivity and
specificity. Furthermore, mutation-specific DREBIC analysis
identifies known and novel genetic alterations that modulate
overall cellular fitness to MEK inhibitors. In conclusion, our
findings demonstrate that CRISPR screens can be utilized to
identify genetic targets of drugs and that the DREBIC-like
approaches enable precision medicine by modeling overall drug
responses and identifying drug-specific therapeutic vulnerabilities
of cancer-causing mutations.

Results
Performing large-scale CRISPR KO screening in in vivo. To
perform the CRISPR screening schematized in Fig. 1a, we used a
clinically relevant patient-derived xenograft (PDX) model of
PDAC16,17 in which a patient’s tumor is propagated in vivo
within the pancreas of athymic nude mice. Due to its efficient
vascularization and robust tumor formation capacity, this model

retains the biological properties of the original tumor while it
grows in the orthotopic microenvironment16. We used the
PDX366 model which is established from a poorly differentiated
metastatic tumor with low stromal content and mutant for KRAS,
P53, and SMAD4 but wild type (WT) for P16 genes18. In our
CRISPR screen, we used “nuclear” single-guide RNA (sgRNA)
library targeting ~4000 human genes enriched for epigenetic
regulators, transcription factors, and nuclear proteins11.

To maintain the sgRNA coverage, we infected ~150–200
million cells at ~0.3 multiplicity of infection (MOI). After a week
of drug selection, the surviving cells were randomly divided into 9
batches each containing ~8 million cells (~200× sgRNA cover-
age). Of these, one sample was harvested as day 0 and others were
maintained in culture for in vitro screening or for xenograft
injection into the pancreas of athymic nude mice (~8 million
cells/mouse, 6 mice total). At 1 week after injection, animals were
randomized to receive either vehicle control (n= 3) or trametinib
treatment (n= 3) for 4 weeks as described in the Methods. The
relative abundance of each sgRNA was assessed by targeted
amplification and deep sequencing of tumor genomic DNA. Data
analysis was performed using previously established analytic
tools19. In parallel, we also performed in vitro screening, in
which cultured cells were exposed to control dimethyl sulfoxide
(DMSO) or 20% inhibitory concentration (IC20) doses of
trametinib every 3 days for 4 weeks.

The sgRNA distribution analyses showed that ~94% of the
sgRNAs were detectable in control in vitro samples. In contrast,
on average, 64% of the sgRNAs were detectable in untreated
tumors, suggesting that ~70% of cells containing sgRNAs
contributed to in vivo tumor formation (Supplementary Figure 1,
Supplementary Table 1, Supplementary Data 1). Notably, a
comparative analysis of the overall in vitro and in vivo sgRNA
distributions shows that sgRNAs are globally depleted in in vivo
tumors, indicating that cellular engraftment is a major barrier for
proper representation of sgRNAs in in vivo screens (Supplemen-
tary Figure 2). Interestingly, the comparative gene-specific sgRNA
enrichment analysis further highlights the global depletion of
sgRNA in vivo, but it also shows that sgRNAs targeting certain
genes are depleted more profoundly in vivo (Supplementary
Figure 3a-b). Notably, genes that play a key role in cell adhesion
and migration such as IL820,21, cadherin coding FZR122, and
metastasis-related EGFL623 are among the most depleted genes
discovered in the in vivo screen (Supplementary Figure 3a).
Overall, CRISPR-mediated gene-based viability scores also
identified genes that are consistently depleted in both in vitro
and in vivo control samples. As expected, these genes are
enriched for known essential fitness functions24, confirming that
the sgRNA depletion in our screening is due to a functional
genetic knockout phenotype (Supplementary Figure 4). Despite
the in vivo and in vitro differences in overall sgRNA distributions,
gene ontology (GO) analysis on the top 100 enriched and
depleted genes indicates comparable GO terms and signaling
pathways (Supplementary Figure 5).

Finding conditionally lethal drug targets of MEK inhibition.
Notably, mitotic cell cycle and chromosome segregation were the
top GO terms for depleted sgRNAs (Supplementary Figure 5).
The sgRNA enrichment and depletion analysis across different
PDX tumors that were isolated from different mice indicated
consistent enrichment scores (Fig. 1b). Gene-based CRISPR via-
bility scores revealed multiple genes that positively or negatively
impact the overall cellular fitness to trametinib (Fig. 1c). The
enriched sgRNAs in trametinib-treated tumors suggest that KO of
their gene targets increased the overall fitness to drug treatment.
On the other hand, the depleted sgRNAs suggest that inhibition
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of their gene targets would make cells significantly more sensitive
to trametinib treatment, thus providing a novel target for an
effective combinatorial treatment. Notably, the top sgRNAs that
are consistently depleted across all tumors are targeting critical
mitotic cell cycle and kinetochore function such as CENPE,
NUF2, MIS12, and CENPI (Fig. 1c, d). Additionally, several other
potentially druggable genes that encode targetable enzymes such
as the catalytic subunit of ribonucleotide reductase RRM1 was
among the top hits in the screen. Panther gene ontology analysis
for the top 100 most consistently depleted genes show significant
enrichment of mitotic cell cycle and kinetochore-related gene
ontology terms. The enriched genes also indicate involvement in
general transcription and RNA metabolism, which are expected
terms since our sgRNA pool is targeting transcription factors and
nuclear proteins (Fig. 1e).

For validation experiments, we focused our efforts on CENPE
and RRM1 because of their biological significance in pancreatic
adenocarcinoma and the availability of validated small molecule
inhibitors. RRM1 encodes the catalytic subunit of ribonucleotide
reductase. Because of its critical role in cell cycle and DNA
synthesis, the enzyme presents itself as a potential therapeutic
target in PDAC and other cancers25. CENPE is a kinetochore-
associated protein that is required for chromosome congression
and also for a robust mitotic checkpoint signal transduction26–28.
Critically, the cancer genome atlas (TCGA) analysis shows that
higher expression of both genes is significantly associated with
poor prognosis in PDAC (Fig. 2a, b). The relative frequency
analysis of sgRNAs targeting CENPE or RRMI shows that they are

specifically depleted in trametinib-treated tumors only (Fig. 2c),
thus demonstrating that the depletion of these genes creates a
specific conditional lethality upon trametinib treatment. To
further confirm these findings, we genetically targeted and
depleted these CENPE and RRM1 in PDX366 and mPanc96 cells
using CRISPR/Cas9 system (Supplementary Figure 6). As shown
in Fig. 2d, cells with sgRNAs targeting CENPE and RRM1 are
significantly more sensitive to trametinib treatment compared to
control sgRNAs. To further corroborate the genetic depletion
results and understand the potential mechanism behind this
conditional lethality, we pharmacologically targeted these pro-
teins using specific small molecule inhibitors. To target CENPE,
we used GSK923295 allosteric inhibitor29 and to target RRM1 we
used COH29 small molecule that targets ligand-binding pocket of
RRM130 in multiple pancreatic cancer cell lines. Critically, we
observed strong synergy between MEK and CENPE inhibition as
well as MEK and RRM1 inhibition in three different pancreatic
cancer cells at several different drug concentrations by measuring
combination index (CI <1)31,32 (Fig. 2e, f).

Since multiple other kinetochore genes were among our top
hits, we set to test the hypothesis that impaired kinetochore
function creates conditional lethality with MEK inhibition.
During mitosis, cells are dependent upon a robust spindle
assembly checkpoint (SAC) to arrest anaphase onset until each
chromosome is aligned to the metaphase33. They are also
dependent upon an anti-apoptotic signal to prevent death during
the prolonged mitosis34. When the SAC is compromised, cells
undergo mitotic slippage when they exit mitosis before the
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chromosomes align35,36. When the anti-apopotic signal is
compromised, cells die during mitosis. Since CENPE depletion
results in unaligned chromosomes and a compromised
checkpoint37,38, we hypothesized that MEK inhibition either
further compromises the spindle checkpoint or generates cell
death during mitosis. To test this, we combined MEK inhibitors
with small molecule inhibitors of Aurora A/B and polo-like
kinase-1 (PLK1) kinases that are also required for robust SAC
signaling and kinetochore function39–42. Importantly, although
we observed positive synergy with inhibitors of Aurora A/B

(ZM447439), the strongest synergy was observed for PLK1
inhibitor (BI-2536) (CI= 0.1 vs 0.3) (Fig. 2g), suggesting that
MEK signaling and the PLK1 pathway play redundant roles in
spindle function. However, this experiment cannot distinguish
whether MEK inhibition compromises the SAC or whether MEK
is required to generate the anti-apoptotic signal in mitosis.

MEK is required for prolonged mitotic arrest. To directly test
the role of MEK in generating a robust SAC in CENPE-depleted
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cells, we utilized long-term live imaging approach to measure the
timing of cell death (Fig. 3a). Specifically, we treated cells with single
or combinatorial drugs and took >24 h movies to track mitotic
behaviors of individual cells under various treatment conditions.
Notably, control cells complete the mitotic process (from nuclear
membrane break down to anaphase) in ~45min and trametinib
treatment did not result in any behavioral alterations. As expected,
CENPE inhibition resulted in significant mitotic delay with
increased numbers of mitotic cells with unaligned chromosomes

(Fig. 3b). On average, it took CENPE inhibitor-treated cells 7–8 h to
complete mitosis. This delayed mitosis due to unaligned chromo-
somes is a known hallmark of CENPE depletion38,43. Critically,
when both CENPE and MEK are inhibited, we observed a slightly
reduced mitotic delay compared to CENPE inhibition alone, sug-
gesting that MEK has a minor role in generating a prolonged
mitotic arrest. More importantly, a large number of cells died
during mitosis, suggesting that MEK has a role in generating the
anti-apoptotic signal during prolonged mitotic arrest34 (Fig. 3b).
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To further investigate the fates of cells that completed mitosis,
we utilized flow cytometry to investigate any anomalies with
replication and chromosome segregation. Notably, combined
treatment for 48 h results in significant accumulation of diploid
(4n) and polyploid (>4n) cells (Fig. 3c, d). The cells with 4n
chromosomes are either G2/M phase cells or G1 cells that failed
cytokinesis and became binucleated. On the other hand, the cells
with >4n chromosomes most often arise because they first fail
cytokinesis and re-replicate their DNA. This process is usually
prevented in non-transformed cells where P53 function is
intact44–47. To better understand this, we used fluorescence
microscopy to differentially visualize microtubules and DNA
content. In line with flow cytometry analysis, we detected a
considerable number of bi- and multi-nucleated cells after the
combinatorial treatment (Fig. 3e, Supplementary Figure 7 a–b).
These results suggest that the cells that escaped mitotic cell death
under combined CENPE and MEK inhibition continue to
proliferate as polyploid cells.

Assessing drug synergy in vivo. To assess drug synergy in vivo,
we designed three separate in vivo experiments. Firstly, we aimed
to see if short-term combinatorial CENPE and MEK inhibition in
in vivo settings recapitulate our in vitro findings in terms of
mitotic phenotype. Secondly, we aimed to understand whether
combinatorial treatment blocks tumor formation and, finally,
whether this will also result in significant tumor volume reduc-
tion after the tumors have already formed. To understand the
potential mechanism of cell death in vivo, we orthotopically
implanted PDX366 tumors into the pancreas of male athymic
nude mice and allowed them to grow for weeks and begun
treatments of PDX tumors in vivo for 72 h and analyzed tumor
cell morphologies and mitotic index in tumor cells from hema-
toxylin and eosin (H&E) staining. Notably, consistent with
in vitro results, combined treatment with MEK and CENPE
inhibition resulted in a significant increase in mitotic cells (Fig. 3f,
g). To assess whether combinatorial treatment will synergistically
block tumor formation, the orthotopically implanted tumors were
allowed to grow for a week and mice were randomized into four
drug treatment groups: control, trametinib, CENPE inhibitor, and
trametinib plus CENPE inhibitor. Importantly, the volume of
tumors that were treated with a combination of CENPE and MEK
inhibitors were significantly smaller than any of the single
treatments and were barely detectable by magnetic resonance
imaging (MRI; Fig. 3h). We then wanted to know if combinatorial
treatment would result in synergistic reduction of tumor volumes
after the tumors reached to certain size. Thus, in an independent

cohort of mice, we allowed tumors to be formed for 4 weeks and
started single and combination drug treatment. Notably, in these
experiments, neither of the single drug treatments resulted in
significant tumor growth reduction; however, the combination of
MEK and CENPE inhibitors synergistically and significantly
reduced tumor volume (p < 0.01, t-test) after 4 weeks of treatment
in vivo (Fig. 3i).

Modeling drug sensitivity in cancer through CRISPR screen-
ing. Our small molecule inhibitor studies led us to hypothesize
that the endogenous expression levels of genes identified from a
CRISPR screening is a key determinant of overall cellular
response to MEK inhibitors. In other words, we postulated that
cells with low levels of CENPE or RRM1 would be significantly
more sensitive to trametinib treatment compared to cells with
higher levels of these proteins. To test this, we utilized the
CCLE13 and the CGP15 data sets where the responses of a large
collection of cell lines have been tested against a large collection
of drugs. The CGP tested 131 drugs on a panel of 624 cell lines,
while the CCLE project tested 24 drugs on 947 cancer cell lines.
Despite some minor inconsistencies48,49, together these data sets
provide an unprecedented resource by delivering detailed drug
sensitivity, gene expression, and mutational profiles of thousands
of cancer cell lines. Although trametinib was not tested in either
data set, four other MEK inhibitors (PD-0325901, AZD6244,
RDEA119, and CI-1040) were tested in the CGP on 429, 408, 429,
and 394 cell lines, respectively. In the CCLE, PD-0325901 and
AZD6244 were each tested in ~500 cancer cell lines. To study the
correlation between MEK inhibitor sensitivity and the expression
levels of the gene targets of top enriched and depleted sgRNAs,
we initially ranked all the cell lines according to the expression
levels of the top hits from our CRISPR screen. Then, we analyzed
the half-maximal inhibitory concentration (IC50) growth inhibi-
tion values for the MEK inhibitor in cells expressing the top and
bottom quartiles of each gene. In line with our expectation, we
found that cell lines that express lower levels of depleted genes,
such as CENPE, RRMI, ILF, POGZ, and PPAT, are significantly
more sensitive to MEK inhibitors (p < 0.0001,
Kolmogorov–Smirnov test) (Fig. 4a). In contrast, the cells that
express lower levels of genes that are enriched in the CRISPR
screen, such as PTTG1IP, RNF7, WWP2, STAT1, and NFKB1, are
significantly more resistant to MEK inhibitors (Fig. 4a).

These finding led us to investigate whether overall drug response
can be modeled by combined actions of gene-specific CRISPR
viability scores and basal expression levels. To test this hypothesis,
we devised the DREBIC approach which captures the relative

Fig. 3 Combinatorial MEK and CENPE inhibition results in synergistic cell death. a Each frame represents movie stills from time-lapse longer-term live-cell
imaging as cells undergo mitosis starting from nuclear envelope break down (NEBD) to exit from mitosis. b Each bar graph show total time duration of each
of the individually tracked cells spent in mitosis. The NEBD was taken as the beginning of mitosis. Individual cells (n= ~20/treatment group) were
manually tracked from lime-lapse movies until they exit mitosis (anaphase) or died in mitosis for each of the treatment groups. c Flow cytometry profiles of
DNA content in PDX366 PDAC cells treated with control, single-agent, or combinatorial MEK and CENPE inhibitors are shown. d Bar graphs represent
treatment-mediated percent changes in cells with 2n (G1), 4n (G2), and >4n (polyploidy) DNA. e Immunofluorescent images of PDX366 PDAC cells
treated with control and combinatorial (trametinib and CENPE inhibitors) are shown after DAPI and tubulin staining in the first two left columns
respectively. f Representative hematoxylin and eosin (H&E)-stained tumor sections are shown. Tumors were harvested from mice that had undergone 72 h
of treatment with 125mg/kg CENPE inhibitor alone or in combination with 0.3 mg/kg trametinib. Arrows indicate mitotic figures. g Dot-plot showing the
number of mitotic cells quantified from 10 different high-power imaging fields (HPFs) per tumor section. h Results show MRI-measured effects of single
and combination of drugs on tumor formation. At 1 week after orthotopic implant, mice received control, MEK inhibitor (trametinib), CENPE inhibitor
(GSK923295), or combined MEK and CENPE inhibitor. Results show MRI-measured tumor volumes after 4 weeks of treatment. i MRI-measured tumor
volumes are shown in mice where tumors were allowed forming for 4 weeks and the treatments (as in e) were started. Beginning of treatment is marked
with an arrow. Bounds of the box spans from 25 to 75% percentile, center line represents median, and whiskers visualize 5 and 95% of the data points.
Individual data points are marked with circles or dots. Error bars represent the standard error of the mean value of at least three independent
experiments. Symbols * and *** denote P < 0.05 and P < 0.001, respectively
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essentiality of drug targets (CRISPR screening viability score) and
their relative abundance through their messenger RNA expression
levels for a given cell type. DREBIC assigns a relative sensitivity
score for each sample by simple algebraic multiplication of the
gene-specific CRISPR viability score with the sample-specific gene
expression level (Fig. 4b, Supplementary Figure 8, Supplementary

Software 1, Supplementary Data 2–3). Therefore, once the screening
is performed for a given drug, the DREBIC approach can be used to
calculate cell-type-specific drug sensitivity scores as long as the gene
expression profile is available.

We initially constructed cell-type-specific DREBIC scores
based on CRISPR viability scores of all genes in the screen. To
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investigate the accuracy of DREBIC modeling of drug sensitivity,
we compared it to the experimental drug response of cell lines in
the CGP15 and CCLE datasets13. To be able to assess the power of
DREBIC prediction, we stratified cells as responders (the top
quartile) and non-responders (bottom quartile) based on the
experimental drug IC50 response. We performed this stratification
for each of the drug separately (Supplementary Figure 9).
Notably, the DREBIC scores of the responders and non-
responders were significantly different from each other (p <
0.001, t-test) (Fig. 4c). To better quantify the accuracy of the
DREBIC prediction, we utilized receiver operating characteristic
(ROC) analysis50 and used the area under the ROC curve (AUC)
as an assessment of the prediction accuracy. Interestingly,
DREBIC predicted drug sensitivity much better than random
when it was constructed based on the CRISPR score of all of the
genes (~4000) (Supplementary Figure 10). Additionally, we found
that the combined actions of the 175 most depleted and 225 most
enriched genes captures the drug response and results in the
highest predictive power, further optimizing the scoring system
(Fig. 4d, Supplementary Figure 11). We also performed a 10,000-
permutation analysis by randomly taking the same number of
enriched and depleted genes from the sgRNA-targeting gene pool.
As expected, the mean AUC of random models was 0.5 with a
standard deviation of 0.1, while the optimized DREBIC scored
0.73 (Fig. 4d, Supplementary Figure 12). These results indicate
that DREBIC prediction power is not only better than random
but is also significantly higher than the prediction power of
permutated scores of DREBIC when it is constructed from the
same number of randomly picked genes in the screen (p < 0.0001,
Wilcoxon rank test). Interestingly, we noted that DREBIC has a
higher prediction power when it is constructed from the in vivo
screening data (AUC of 0.73 vs 0.68) (Supplementary Figure 13).

Next, we evaluated whether DREBIC could identify cancer-
type-specific vulnerabilities to MEK inhibitors. We segregated
CGP cancer cell lines by tissue of origin and then ranked each
type by their average DREBIC scores (Fig. 4e). The analyses
indicate a wide range of differences in DREBIC-based drug
response of cancer types, which is in line with the known biology
of these cancers. For example, pancreatic cancers and melanoma
cell lines, which have aberrantly active MEK signaling due to
oncogenic KRAS and BRAF mutations, were modeled and are
predicted to be the most responsive. On the other hand,
hematopoietic and sarcoma cell lines had the lowest DREBIC
scores and thus are predicted to be the least responsive to MEK
inhibitors. To further verify that DREBIC prediction rates are in
line with the experimental data, we compared cancer-type-
specific average DREBIC scores with the experimental log IC50

growth inhibition rates for the MEK inhibitors. We observed a
strong trend in the consistency between the DREBIC score-based
ranking and the actual experimental data, suggesting that
DREBIC captures the inherent biological response of various
cancer cell lines (Fig. 4e). Comparable results were obtained for
other MEK inhibitors in the CGP data set. For example, as shown
in the detailed dose–response curves of multiple cell lines in
Fig. 4f, the hematopoietic cancer lines (HEME) are substantially
more resistant to PD-0325901 compared to the melanoma
(SKIN) cancer cell lines. Interestingly, our results from DREBIC
analysis and from the experimental drug treatment data indicate
that thyroid cancer is substantially sensitive to MEK inhibitors
(even more than PDAC and melanoma). Notably, the aberrantly
active RAF–RAF–MEK signaling pathway is well appreciated in
thyroid cancers51–53 which may present an exploitable avenue for
targeted treatments in this cancer.

To investigate the premise of DREBIC approach for other
drugs, we analyzed previously published CRISPR screening data.
Wang et al.11 performed CRISPR screens to identify genes
implicated in cell survival under the selective pressure of a DNA
topoisomerase II (TOP2A) inhibitor, etoposide. Notably, when
we performed comparable analysis to Fig. 4d, we observed that
etoposide-mediated CRISPR viability scores modeled the cellular
response of a large compendium of cancer cells (CGP)15 to other
topoisomerase inhibitors with high accuracy (Fig. 4g). This
analysis suggests that once a CRISPR screen is performed for a
given drug, the DREBIC approach can be utilized to model drug-
specific cellular responses and identify relatively good responder
cell types from poorly responding cancer cell lines.

DREBIC identifies mutations that alter cellular fitness. Inter-
and intra-tumor heterogeneity is a major challenge in predicting
the tumor response to a given drug. We therefore tested to see if
DREBIC could differentially score responder and non-responder
cell lines within the same cancer type. To do this, we applied
trametinib-based DREBIC to lung cancer cell lines. Notably, the
cell lines that respond to MEK inhibition have significantly higher
overall DREBIC scores compared to non-responder cell types
(Fig. 5a). Furthermore, we observed a strong inverse correlation
between DREBIC scores and log IC50 experimental growth
inhibition data (Fig. 5b, p= 0.0014, Pearson's correlation), sug-
gesting that DREBIC analysis can stratify heterogeneous drug
response within the same cancer type. Notably, when we further
stratified lung cancer cell lines into small and non-small cell lung
cancer, we still observed a comparable correlation, but particu-
larly enhanced negative correlation in small cell lung cancer
(Supplementary Figure 14). To investigate potential reasons for

Fig. 4 Drug response evaluation by in vivo CRISPR Screening (DREBIC) approach. a The 450 CGP cancer cell lines15 were ranked according to the
expression levels of the indicated genes. Box plots depict the distribution of log IC50 growth inhibition values of MEK inhibitor PD-0325901 in the high- (top
quartile) and low-expressing cell lines (bottom quartile). Statistical significance was calculated by Kolmogorov–Smirnov test. Comparable results were
obtained for other MEK inhibitors. b DREBIC integrates gene-specific CRISPR viability scores with basal expression levels to model drug response
phenotype. c Box plot showing a significant (p < 0.0001, Kolmogorov–Smirnov test) growth inhibition (IC50) difference in response to PD-0325901 MEK
inhibitor in ~450 cancer cell lines scoring high (top quartile) or low (bottom quartile) in DREBIC score analysis. d Receiver operation characteristics curves
demonstrating true vs. false discovery rate of DREBIC prediction of cellular responses to three separate MEK inhibitors (PD-0325901 red, AZD6244 blue,
and RDEA119 green). The random DREBIC score distribution was generated by 10,000 permutations of the same number of genes (Supplementary
Figure 12). The average ROC curve of permutation analysis is shown in purple (AUC= 0.5) and the area corresponding to one standard deviation of
prediction is marked in gray. e The box plots in the top panel are showing the distribution of tissue-specific DREBIC scores of CGP cell lines as ordered by
ascending median DREBIC score. The lower panel box plots are showing log IC50 growth inhibition values of AZD6244 MEK inhibitor drug for the same
cancer types. f The PD-0325901 MEK inhibitor drug response curves are shown for hematopoietic (Heme, red) and melanoma cancer cell lines (Skin, blue)
from the CCLE data set13. g The ROC curve shows the accuracy rate of etoposide-based DREBIC analysis of cellular response to three independent
topoisomerase inhibitors from CPG data set. The CRISPR-gene viability scores for etoposide were obtained from a previously published in vitro CRISPR
screening by Wang et al.11. In the box plots, bounds of the box spans from 25 to 75% percentile, center line represents median, and whiskers visualize 5
and 95% of the data points. Symbol **** denotes P < 0.0001
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the differential MEK inhibitor sensitivity in lung cancer, we
segregated the cells according to mutational status of major
cancer-driving mutations. Importantly, we found that the cells
with the lowest DREBIC score have RB1 mutations. In contrast,
the MEK inhibitor-sensitive lung cancer cell lines are enriched
with KRAS mutations (Fig. 5b), suggesting that DREBIC analysis
is capturing the inherent biology of these cells as oncogenic KRAS
mutant cells dependent on aberrant MEK signaling pathway.
Importantly, the inverse correlation between the response of cells
with KRAS and RB1 mutations to MEK inhibitors was even more
strongly evident when all CGP cell lines were segregated based on
their mutational status and comparatively analyzed for the
median DREBIC score and the median log IC50 growth inhibition
(Fig. 5c, d).

These findings led us to test whether DREBIC analysis can
identify differential vulnerabilities of other genetic mutations to
MEK inhibitors. To do this, we stratified the CGP cell lines
according to their mutational status and calculated the difference

of the median DREBIC score (ΔDREBIC) and the difference of
the median log IC50 growth inhibition (Δlog IC50) for cell lines
harboring various genetic mutations. Notably, the analysis
indicates that cells with NF2, BRAF, CDKN2A, and KRAS
mutations are significantly more sensitive to MEK inhibitors,
whereas RB1 mutations significantly increase the cellular
resistance to MEK inhibitors (Fig. 5e–g). Notably, DREBIC
predicted that six of the genetic mutations would be associated
with significant sensitivity to MEK inhibitors (KRAS, CDKN2A,
SMAD4, NF2, BRAF, and STK11), and the actual experimental
data (MEK inhibitor-mediated IC50 growth inhibition) recapitu-
lated the prediction; all 6 of them were positively associated with
drug sensitivity (four of them significantly, p < 0.05) (Fig. 5e, g).
For example, DREBIC experimental data showed that BRAF,
KRAS and CDKN2A mutant cells were significantly more
sensitive to MEK inhibitors, whereas RB1 mutant cells were
significantly more resistant to MEK inhibitors. Interestingly,
although not significant for experimental data (p > 0.05) likely
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Fig. 5 DREBIC reveals genotype-specific MEK inhibitor sensitivity. a Box plot showing DREBIC scores for the responder and non-responder lung cancer cell
lines to MEK inhibitor (PD-0325901). b Scatter plot showing a correlation between DREBIC score and log IC50 growth inhibition values of PD-0325901
MEK inhibitor. Cell lines with KRASmutations are displayed as green dots and cells with RB1 mutations are displayed as magenta dots. c Box plots show the
DREBIC score and log IC50 growth inhibition due to PD-0325901 treatment in KRAS WT (gray) and KRAS mutant (green) CGP cancer cell lines. The
difference in drug response and DREBIC scores between these two groups has been defined as a difference between medians (ΔDREBIC and Δlog IC50).
d The same analysis as performed in (c) has been carried out for RB1WT and RB1mutant cells. e Bar plot shows the difference in DREBIC score (ΔDREBIC)
between WT cell lines and mutant cell lines with indicated genes. The significance of the difference was calculated by double-sided t-test and p values are
shown with dots on the right side of the panel. Bars with statistically significant differences are marked with magenta and green. f Bar plot shows the
difference in median log IC50 scores of PD-0325901 MEK inhibitor drug response (ΔLog IC50) in WT cell lines and cells with mutations in the indicated
genes. The significance of the difference has been calculated as in (e) and p values are shown with dots on the right side of the panel. Bars with statistically
significant differences are marked with magenta for positive difference and green for the negative difference. g Box plots showing the DREBIC score and log
IC50 growth inhibition due to PD-0325901 treatment in BRAFWT (gray) and mutant (green) CGP cell lines. Significance assessed by Kolmogorov–Smirnov
test for all panels except (b). In the box plots, bounds of the box spans from 25 to 75% percentile, center line represents median, and whiskers visualize 5
and 95% of the data points. Significance is defined as: **p < 0.01, ***p < 0.001
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due to limited cell numbers (n= 12), the general trend in
DREBIC and experimental drug response data indicate that NF2
mutations result in increased sensitivity to MEK inhibitors. In
line with this, recent reports indicate that NF2 loss-of-function
mutations promote RAS signaling and sensitize cancer cells to
MEK inhibitors54. These results suggest that in addition to
confirming known genetic vulnerabilities to MEK inhibitors such
as those of BRAF and KRAS mutations7,55,56, DREBIC-type
analysis may also be useful in predicting whether an unknown
genetic mutation will positively or negatively affect overall cellular
response to a given drug.

Discussion
The CRISPR-mediated pooled loss-of-function screen can
robustly identify conditional or context-dependent essential
genes24. Here, we utilized this tool in a clinically relevant PDX
model of PDAC to identify genetic targets whose deletion will
positively or negatively increase overall fitness to trametinib. The
framework identified multiple genes whose depletion created a
conditional lethality with MEK inhibition. Our findings suggest
an interesting inter-dependency of proper kinetochore function
and mitogen-activated protein kinase (MAPK) signaling. The role
of MAPK signaling in G1-S transition in the cell cycle is well
established, but its role in G2-M transition and mitosis is rela-
tively understudied. Interestingly, MEK1/2 and extracellular
signal-related kinase-1/2 (ERK1/2) have been observed to localize
to spindle poles and to the midbody during cytokinesis57. Fur-
thermore, an independent study mapped CENPE as a candidate
mitotic substrate for MAPK58. More recently, Mayes et al.59 used
a small-scale shRNA screening against a prioritized set of genes to
identify effective CENPE inhibitor drug combinations and iden-
tified MEK/ERK pathway as a major target. Our results are in line
with these findings and further expand the candidate MEK
inhibitor drug combinations to other kinetochore function pro-
teins. More critically, our long-term movies suggest potential
mechanism of lethality between the two seemingly unrelated
pathways. Our findings show that inhibition of both MEK and
CENPE results in significant cell death during mitosis, indicating
that MEK signaling is required to overcome apoptotic signals
during mitotic delay.

In addition to identifying synergistic drug targets, we show that
results from CRISPR screenings can be exploited to predict drug
response in cancer cells, which remains a formidable challenge for
precision medicine. There are three major contributors to this
challenge. First, not all the primary and secondary targets of small
molecule drugs are known. Second, the relative importance, i.e.,
the level of survival fitness provided by each drug target, is hard
to estimate. While gene expression changes, due to a drug
treatment, can inform potential signaling pathways and gene
targets of the drug, it is still difficult to know which of the dif-
ferentially regulated genes are the key determinants of drug
response. The final major contributor to the challenge of drug
response prediction is inter- and intra-tumor heterogeneity at the
level of drug targets. Basal gene expression profiles have been
heavily interrogated through sophisticated machine learning and
statistical computational models in an attempt to predict drug
responses13,15,60–62. The models are typically trained on the
datasets where the gene expression and drug response of a
large compendium of cell lines are known and tested on a
comparable data set where the basal gene expression is known but
the response is unknown61.

The DREBIC approach we present here is a fundamentally
different concept of drug response prediction. Firstly, the gene
sets that contribute to the DREBIC score are based on an
unbiased functional genomics data. The gene-specific CRISPR

viability scores directly inform about the relative importance of
each gene in contributing to the cellular fitness to the drug
treatment. DREBIC-type approaches are likely to improve our
ability to overcome the top two aforementioned challenges in
predicting drug response. Secondly, DREBIC requires smaller set
of input data. Previous methods require experimental and tran-
scriptome data from large cohort of patient and cell lines to train
the model and then used the same cohort or additional inde-
pendent data to test the prediction accuracy of the trained
model61,62. The prediction accuracy of such approaches is par-
ticularly limited when a novel drug or new drug combination is to
be tested. In contrast, DREBIC does not require a large com-
pendium of experimental drug response data. Once constructed
from a screen under a drug selection, DREBIC can be applied to
any cell type as long as the basal gene expression is known.

The DREBIC analysis we performed here is based on the
in vivo screening of ~4000 genes. Performing more complex
screenings in vivo is challenging because only limited number of
cells can be injected into pancreas. However, it is reasonable to
expect that whole-genome level CRISPR KO screenings may
further improve the prediction power of DREBIC-type approa-
ches. Furthermore, since the DREBIC score is an absolute but
ordinal measure of drug sensitivity relative to other samples, one
can expect higher prediction accuracy as the number of samples
increase. We also envisage the power of DREBIC-like approaches
to increase as more drug-screening data accumulate in various
cells. Once the gene essentiality scores are known through
screening of multiple drugs, DREBIC analysis is expected to help
the precision medicine research by matching the patient’s gene
expression profile with the most suitable drug or drug
combinations.

Methods
Cell culture and drug treatments. Patient-derived tumor cells, PDX366, were
maintained in RPMI-1640 medium containing 10% fetal bovine serum (FBS) and
cultured in a humidified (37 °C, 5% CO2) incubator. This line is established from a
poorly differentiated metastatic tumor with low stromal content and mutant for
KRAS, P53, and SMAD4 but WT for P16 genes, and it was authenticated by the
University of Virginia Biomedical Research Facility in 2010 as previously descri-
bed16. PDAC cancer MPANC-96 and BxPC3 cells (ATCC, Manassas, VA) were
cultured in RPMI-1640 medium supplemented with 10% FBS and %1 penicillin/
streptomycin in a humidified (37 °C, 5% CO2) incubator. Trametinib (EuroAsia
TransContinental, Mumbai, India), GSK923295 (ChemieTek, Indianapolis, IN,
USA), Aurora A/B inhibitor (ZM447439, Selleckchem, cat. no. S1103), and PLK1
inhibitor (BI-2536, MedChemExpress, cat. no. HY-50698) were dissolved in sterile
DMSO to make 5 mM stock solutions. Aliquots of the stock solutions were stored
at −20 °C.

MTT cell viability and cytotoxicity assay. PDX366, mPANC-96, and BxPC3 cells
were seeded in a clear, flat-bottom 96-well plate (Corning) in triplicate at a density
of 5 × 103 cells per well. The following day, cells were treated with trametinib,
GSK923295, ZM447439, and BI-2536 alone or a combination with trametinib for
72 h prior to MTT (3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide) to
determine effects of drugs on cell viability and proliferation. Culture media were
replaced with fresh RPMI (phenol free) which has 10% FBS and 10% MTT (5 mg/
ml) and incubated for 4 h in a humidified (37 °C, 5% CO2) incubator. Then, 100 µl
MTT solvent (10% SDS in 0.01 M HCL) was added to each well and cells were
incubated overnight. The absorbance was read at 595 nm. By using similar
approach, IC20 value of trametinib was calculated in the range of 10–15 nM for
in vitro screening of PDX366 cells.

Time-lapse imaging. PDX366 cells were seeded in four-chamber slides at 1 × 105

cells per well. The following day, cells were treated with CENPE inhibitor, tra-
metinib, or a combination of CENPE inhibitor and trametinib for 24 h. The long-
term time-lapse imaging was performed using Zeiss Observer Z1 wide-field
microscope in a humidified environmental control chamber in the presence of 5%
CO2 at 37 °C with continuous drug exposure for 24 h. To visualize chromosomes in
live-cell imaging, 200 nM SiR-DNA (Cytoskeleton Inc.) was added to the cells 2 h
before the start of time-lapse imaging. Image sequences were viewed and analyzed
using ZEN lite software. For each group, cell behavior during mitosis were traced
and quantified manually in an unbiased way. Movie stills were generated using
Velocity software (PerkinElmer).
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Validation of KO efficiency by western Blot. After in vivo and in vitro screening,
two best gRNAs were chosen for each gene for further validation. BsmBI cutting
site was replaced into Gecko library one plasmid system to allow us to insert our
target gRNA sequence. Following gRNA sequences have been used in the validation
experiment. CENPE-sg1: GCTGATAGGATGGCGGAGGA, CENPE-sg2:
GAAACCATTGTAGCCTTGTA, RRM1-sg1: GTAATCCAAGGCTTGTACAG
RRM1-sg2: GTCAGGGTGCTTAGTAGTCA. PDX366 cells were virally infected to
express Cas9 and gRNA to produce stable cell lines. After 4 days of puromycin
selection (0.5 µg/ml), lysates were prepared in RIPA buffer and equal amounts of
lysates were loaded in NuPAGE 4–12% Bis-Tris gradient gel (Invitrogen cat. no.
NP0335). While i-blot PVDF membrane (cat. no. IB401001) was used to transfer
the RRM-1 protein, semi-dry transfer apparatus was chosen for CENPE due to its
large molecular size (~300 kDa). RRM-1 (ab137114), CENPE (sc-22790), and actin
(Sigma-A1978) antibodies were used in the western blot. Same stable cell lines were
also used in the MTT cell viability assay.

Calculation of drug synergism. The CI values were calculated with the
Chou–Talalay method31 using Compusyn software according to constant ratio
design between drug combinations. The fraction affected (Fa) was calculated from
the single and combinational drug treatments. CI values of <1, 1, and >1 indicate
synergy, additive, and antagonism between drugs, respectively.

Generation of CRISPR-sgRNA library pool and viral infection. The lentiviral-
expressing WT Cas9 plasmid under the promoter of EF1a was driven from a
human gecko library plasmid after removal of the gRNA sequence. PDX366 cell
lines were cultured in vitro as a heterogeneous population to keep the initial
diversity of the tumor and virally infected with virus only expressing WT Cas9
were for 1 day. Next day, fresh media were added to the PDX366 cells and 0.5 µg/
ml puromycin selection started for 4 days. The sgRNA libraries were kind gifts
from Dr. Sabatini (MIT) and the sgRNA pool is produced according to a previously
published protocol (http://www.addgene.org/static/data/08/61/acb3ad96–8db6–11
e3–8f62–000c298a5150.pdf). The “nuclear” sub genomic library pool from Wang
et al.11 has been used in this study (Addgene catalog no. 51047). This sgRNA pool
is originally designed to target 3733 transcription factors, epigenetic regulators, and
other nuclear function genes where each gene is targeted by ~10 different sgRNAs.
In our sequencing, we identified, in total, 47,234 sgRNAs, some of which were
represented by low number of reads and targeted additional genes outside the
nuclear pool. Stable Cas9-expressing PDX366 cells were selected for 4 days with
5 µg/ml blasticidine with serial dilutions of a virus to find the MOI of ~0.3. Cells
were harvested from 12 × 15 cm plates and combined prior to orthotopic injection
into mice or in vitro screening.

In vivo CRISPR screening. WT Cas9-expressing and sgRNA-infected PDX366
cells were injected into the pancreas of 6–7-week-old athymic nude mice (Envigo,
Indianapolis, IN). Briefly, mice were anesthetized, and their left flank opened to
exteriorize the pancreas. Cell lines had been harvested and resuspended for each
mouse to receive 8 × 106 cells in 150 µl Matrigel®Growth Factor Reduced Basement
Membrane Matrix (Corning, Corning, NY). Cells were injected directly into the
pancreas and the abdomen was closed in two layers. Mice that were randomized to
receive trametinib (0.3 mg/kg orally, once daily; EuroAsia TransContinental) began
treatment 4 days post injection. Tumors were imaged at the conclusion of the
experiment using MRI (University of Virginia Molecular Imaging Core, Charlot-
tesville, VA). After 4 weeks of growth, tumors were harvested and weighed, and
samples collected for further analysis. All in vivo experiments were conducted in
conjunction with University of Virginia Comparative Medicine with the approval
of the Institutional Animal Care and Use Committee. Tumors were formalin fixed
and submitted to the University of Virginia Research Histology Core Lab for
processing and H&E staining. A board-certified pathologist who specializes in
gastrointestinal cancers scored tumor sections for mitotic bodies under high
magnification. For in vivo drug treatments, tumor pieces (~10 mm3) were ortho-
topically implanted onto the pancreas of 6- to 8-week-old male athymic nude mice.
Tumors were allowed to grow for 4 weeks and the mice were randomized into four
drug treatment groups: control, MEK inhibitor, CENPE inhibitor, and MEK
inhibitor plus CENPE inhibitor. To detect potential synergistic activity, low doses
of trametinib MEK inhibitor and GSK923295 CENPE inhibitor were used. Mice
received single or combinatorial trametinib (0.3 mg/kg oral daily for 4 weeks) and
GSK923295 (62.5 mg/kg intraperitoneal injection, 3 days on 4 days off for 2 weeks).
Serial volumetric MRI was used to assess the treatment responses. This study was
carried out in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health.
The animal protocol was approved by the Animal Care and Use Committee of the
University of Virginia (PHS Assurance #A3245–01).

CRISPR-sgRNA library sequencing. Tumors were harvested from control and
trametinib-treated mice after 4 weeks of treatment and snap frozen. Entire tumors
were used to obtain genomic DNA with the following brief protocol. First, tumor
samples were minced into small pieces and lysed with 8 ml SDS lysis buffer
(100 mM NaCl, 50 mM Tris-Cl pH 8.1, 5 mM EDTA and 1% wt/vol SDS).
Then, 100 µl proteinase K (20 mg/ml) was added to the solution followed by 55 oC

overnight incubation. After 2500 × g 10 min centrifugation, 1 ml aliquot was used
for Et-OH precipitation. Pellets were resuspended in RNase-containing water. For
each tumor sample, 70 µg genomic DNA was used together with outer primers for
the first PCR in a total 700 µl PCR (7 × 100 µl reaction in PCR tubes). Phusion high
fidelity DNA polymerase (NEB-M0530) was used for 20× cycle PCR reaction. After
combining all first PCR reactions into a single tube, 10 µl of this mixture was used
for the second PCR (15× cycle) with inner primer pairs in which the forward
primer has a 6-bp adaptor sequence. All primer sequences are listed in Supple-
mental Table 2. Second PCR was run on 2% gel and the bands around 270 bp were
cut and cleaned with the Qiagen gel extraction kit. Equimolar amounts of each
PCR fragment were mixed and used for subsequent high-throughput sequencing
with customized sequencing and indexing primers. Library was sequenced on
Illumina Miseq platform to get average 5 million reads for each sample.

CRISPR-Cas9 screening data analysis. Sequencing reads from CRISPR/
Cas9 screenings were first de-multiplexed with cutadapt (v. 1.8.3). Total length
56 nt (sequencing barcode and sample barcode) were supplied to the program
with the requirements that at least 36 nt of this barcode had to be present in the
read so that it can be assigned to an individual tumor isolated from the PDX model.
More than 99% of reads were assigned to one of the seven in vivo samples: three
trametinib-treated models (further refer to as treatment), three control models
(further refer to as control) and cells from the day of injection (further refer to as
day 0), and three in vitro samples: day 0, treatment and control giving about
5 million reads in each sample. After de-multiplexing and removing sequencing
and sample barcodes, the abundance of each sgRNA was assessed and normalized
among samples with the use of MAGeCK v. 0.5.2. About 87% of reads contained
correct sgRNA sequences.

Downstream data analysis was performed in RStudio v. 0.99.484 with R v. 3.3.0
following previous publications11 with slight modifications. We performed the
following analysis to identify genes whose depletion positively or negatively altered
the overall cellular fitness. The first step of this analysis was to calculate the relative
abundance of each sgRNA by comparing normalized counts for each sgRNA
between corresponding experiments. For example, treatment to control or
treatment to day 0 sample. In case of in vivo tumors, as a control we took average
of three control experiments. Resulting numbers were log-transformed giving log-
fold change (LFC) of abundance for each sgRNA in each of comparisons. The
second step of the analysis was to assign to each gene a CRISPR viability score,
which is defined as a median of z-scored transformed LFC of the relative
abundance of sgRNAs targeting this gene. For in vivo screen we log-transformed a
median calculated for three experiments (each treatment related to average of
control experiments). The significance of enrichment or depletion was calculated
for each gene by Kolmogorov–Smirnov test between z-scores of sgRNAs targeting
this gene and control sgRNA. To extract genes that are most probably drivers of
resistance or sensitivity to MEK inhibition, we sought genes that present consistent
enrichment or depletion of sgRNAs targeting the gene across all samples. First, we
assess whether each individual sgRNA is changed in each sample by comparing its
LFC with 25–75% percentile of LFC of control sgRNA. Next, we checked whether
each sgRNA is consistently enriched or depleted across replicates. The sgRNAs that
consistently enriched/depleted across all samples were classified as truly enriched/
depleted sgRNA. Finally, we filtered the genes based on the highest number and the
median LFC of the gene targeting truly enriched/depleted sgRNAs.

Drug response stratification. We classified cancer cell lines from the CGP and
CCLE data sets into three groups: responder, non-responder, and ambiguous based
on their experimental drug responses (IC50) as depicted in Supplementary Figure 7.
For each drug, the lowest quartile (25%) was stratified as responders, the highest
25% quartile was classified as non-responders. Since most drugs were tested on
~500 different cell lines, approximately 125 cell lines contributed to the responder
and the same number contributed to non-responder groups for each of tested
drugs.

Construction of DREBIC approach. The DREBIC score has been constructed
according to the following schematics (Supplementary Figure 6). Let gene
expression data be organized into an expression matrix G where each column
corresponds to a sample S to be scored and each row corresponds to a basal gene
expression of N genes. The rows of matrix G are sorted by the gene-based CRISPR
viability score in descending order. First, expression values are log transformed
with respect to mean expression of each gene separately. Contribution to the total
score from each gene is calculated by multiplying CRISPR viability score by LFC of
gene expression and enriched genes are multiplied by negative 1 (−1) value.
Finally, DREBIC score for each sample is calculated as a sum of contributions from
each gene.

DREBICS ¼
XND

i¼1

CiGS;i �
XNE

i¼1

CN�iGS;N�i; ð1Þ

where S is a sample index, NE and ND are parameters of the model, namely
number of enriched and depleted genes incorporated into the model (see section
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below), and C is a vector of the genes’ CRISPR viability scores ordered in
descending order (same as rows of matrix G). At the end values are linearly
transformed to range from –1 to +1. Above algorithm was coded in R
(Supplementary Software 1, and illustrative data in: Supplementary Data 2 and 3).
To measure model’s prediction accuracy, we use the AUC. ROC curves were
calculated by ROCR package63 (v.1.0-7) in RStudio.

To further optimize DREBIC prediction accuracy and find a minimal set of
genes required to obtain satisfactory prediction accuracy (measured as AUC) of
DREBIC, we optimized two parameters of our model (see description above). First,
we separated two parts of the model and optimized them separately obtaining an
optimal number of depleted genes and an optimal number of enriched genes. We
performed this analysis by calculating a series of AUCs with several enriched and
depleted genes ranging from 5 to 600. Results for the PD-0325901 MEK inhibitor
from the CGP data set are shown in Supplementary Figure 9. For the part of the
model composed of enriched genes only, the optimal number of genes is 225, while
for the other part composed of depleted genes only the number is 175 genes.
Obtained numbers of genes are consistent among all four MEK inhibitors.

To assess the significance of CRISPR viability scores’ contribution to prediction
power, we performed permutation validation. Specifically, we picked two random
sets of 175 genes and 225 genes to calculate random DREBIC score and repeated
these 10,000 times. Each time AUC was calculated as a measure of the accuracy of
prediction. Results are plotted as cumulative distribution functions in
Supplementary Figure 10. The p values have been calculated as a fraction of cases
that gave more extreme AUC than our model.

We calculate the average ROC curve as follows. First, for each individual curve
at each point on the x-axis, we took the maximal value of y. The average of those
maximal values was taken as the average ROC curve y value at each x. The standard
deviation of an average ROC curve was calculated as standard deviation of those
maximal y values. Average values of random AUC are 0.5 and standard deviations
are around 0.1.

Antibodies. The antibodies (Abs) used in this study were used at the following
dilutions. First Ab: CENPE (rabbit) 1:500 in 3% milk; RRM-1 (rabbit) 1:1000 in 3%
milk; actin (mouse) 1:2000 in 3% milk. Second Ab: anti-mouse 1:10,000 in 3% milk;
anti-rabbit 1:10,000 in 3% milk.

Drug response due to genetic mutations. To perform genotypic study presented
on Fig. 5e, first we picked genes that are mutated in at least 12 cell lines. Next, for
each of the gene from the list we calculated median DREBIC score and median IC50

(as shown on the box plots in Fig. 5c) for mutants and wild type. Finally, we
presented data on bar plots. Significance has been assessed with
Kolmogorov–Smirnov test by comparing WT and mutant DREBIC scores and IC50

respectively.

Data availability
Data set generated within this study is attached as Supplementary Data 1. Data sets from
Cancer Genome Project can be retrieved at: drug sensitivity data are Supplementary
Data 1 in Garnet at al. paper (https://media.nature.com/original/nature-assets/nature/
journal/v483/n7391/extref/nature11005-s2.zip), and expression data are deposited on
ArrayExpress under the accession number E-MTAB-783. Data sets from Cancer Cell
Line Encyclopedia can be obtained at CCLE project portal (https://portals.broadinstitute.
org/ccle) after free registration. Data set from Wang et al. was published as Supple-
mentary Table 2 (http://science.sciencemag.org/highwire/filestream/594960/
field_highwire_adjunct_files/1/1246981s2.xlsx). Sequencing data are available from
(SRA) under Project ID SUB4477193; bioproject PRJNA488636 (https://submit.ncbi.nlm.
nih.gov/subs/biosample/SUB4477193/). The individual accession codes are as follows:
SAMN09938197: ControlTumor1, SAMN09938198: ControlTumor2, SAMN09938199:
ControlTumor3, SAMN09938200: TreatedTumor1, SAMN09938201: TreatedTumor2,
SAMN09938202: TreatedTumor3, SAMN09938203: Day 0, SAMN09938204: DMSO,
SAMN09938205: Treated.
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