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The fungal peptide toxin Candidalysin activates the
NLRP3 inflammasome and causes cytolysis in
mononuclear phagocytes
Lydia Kasper 1, Annika König1, Paul-Albert Koenig 2, Mark S. Gresnigt 1, Johannes Westman 3,

Rebecca A. Drummond 4,5, Michail S. Lionakis4, Olaf Groß6, Jürgen Ruland 2,7,8,9, Julian R. Naglik10 &

Bernhard Hube 1,11

Clearance of invading microbes requires phagocytes of the innate immune system. However,

successful pathogens have evolved sophisticated strategies to evade immune killing. The

opportunistic human fungal pathogen Candida albicans is efficiently phagocytosed by mac-

rophages, but causes inflammasome activation, host cytolysis, and escapes after hypha

formation. Previous studies suggest that macrophage lysis by C. albicans results from early

inflammasome-dependent cell death (pyroptosis), late damage due to glucose depletion and

membrane piercing by growing hyphae. Here we show that Candidalysin, a cytolytic peptide

toxin encoded by the hypha-associated gene ECE1, is both a central trigger for NLRP3

inflammasome-dependent caspase-1 activation via potassium efflux and a key driver of

inflammasome-independent cytolysis of macrophages and dendritic cells upon infection with

C. albicans. This suggests that Candidalysin-induced cell damage is a third mechanism of C.

albicans-mediated mononuclear phagocyte cell death in addition to damage caused by pyr-

optosis and the growth of glucose-consuming hyphae.
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Candida albicans is an opportunistic human pathogenic
fungus that causes severe morbidity and mortality in
millions of individuals worldwide, with approximately

200,000 deaths attributed to invasive systemic infections each
year1,2. The ability to undergo a yeast-to-hypha transition is
considered one of the main virulence attributes of C. albicans3

and is accompanied by the expression of infection-associated
genes that facilitate adhesion, invasion, nutrient acquisition, host
cell damage, biofilm formation, and immune evasion. Conse-
quently, mutant strains locked in the yeast morphology have an
attenuated virulence potential to cause systemic infection3,4. C.
albicans filamentation impacts on fungal recognition by phago-
cytes (macrophages and dendritic cells (DCs)) of the host innate
immune system, activation of pro-inflammatory signalling for
host defence, and also on fungal survival and immune escape5–13.

After recognition of fungal pathogen-associated molecular
patterns (PAMPs; e.g., cell wall β-glucan) by phagocyte pattern
recognition receptors (PRRs), including Dectin-114, C. albicans
cells are efficiently phagocytosed by macrophages. Once phago-
cytosed and contained within a phagosome, C. albicans can still
form hyphae, which leads to stretching of phagocyte membranes
and host cell killing, thereby facilitating C. albicans' survival and
outgrowth15. This piercing of host cell membranes by physical
forces was thought to be the major pathway of C. albicans
immune escape and fungus-induced macrophage damage9.
However, recent discoveries have led to a paradigm shift in our
understanding of C. albicans-phagocyte interactions16. Murine-
based studies demonstrated that phagocytosed C. albicans induces
pyroptosis during early interaction with macrophages, while later
events leading to cell damage are mechanistically distinct from
pyroptosis, depend on hypha formation12,17 and are associated
with glucose consumption by growing hyphae18. Pyroptosis is
characterized as an inflammasome-mediated, caspase-1-
dependent cell death pathway resulting in IL-1β secretion
through pores in the cell membrane, subsequent cell swelling with
membrane rupture and, ultimately, cell death16,19. Collectively,
these data suggest that macrophage killing by C. albicans is a two-
stage process, with early pyroptosis-mediated inflammatory
damage, followed by physical damage by hyphal piercing16 and
competition for glucose18.

C. albicans-induced pyroptosis is dependent on NLRP3
(NACHT, LRR, and PYD domains-containing protein 3)
inflammasome signalling, a major pro-inflammatory pathway
that can integrate multiple cellular stress signals, including those
from fungal, bacterial, and viral pathogens or sterile insults8,20–22.
In general, NLRP3 inflammasome activation requires two
sequential events, a priming and an activation step23–25. The
priming signal (signal 1) is provided by microbial ligands such as
fungal β-glucans or bacterial lipopolysaccharide (LPS), leading to
the NF-κB-dependent IL1B (pro-IL-1β) and NLRP3 transcription.
A subsequent triggering signal (signal 2) activates the inflam-
masome resulting in the assembly of a multiprotein complex
consisting of the sensor protein NLRP3, the adapter protein ASC
(apoptosis-associated speck-like protein containing a C-terminal
CARD) and the pro-form of the inflammatory protease caspase-
124–26. This NLRP3 inflammasome complex serves as a platform
for pro-caspase-1 activation and thereby facilitates the processing
of its substrates, including pro-IL-1β, for the release of mature
bioactive IL-1β16,21. Signal 2 can be provided by multiple stimuli,
such as extracellular ATP, particulate matter, or viral RNA, but
also bacterial pore-forming toxins (PFTs) that activate NLRP3
through still poorly defined mechanisms25,27,28. C. albicans hypha
formation is known to promote, although not being essential for,
inflammasome activation and pyroptosis7,8,10–13,29. However, the
fungal molecular effectors providing signal 2 are unknown. Fur-
thermore, hypha formation is essential for fungal escape30 and is

required for macrophage lysis by mechanisms distinct from those
causing pyroptotic cell death12.

We recently identified the cytolytic peptide toxin Candidalysin
as the missing link between C. albicans hypha formation and host
cell damage31,32. Candidalysin is encoded by ECE1, one of the
core filamentation genes expressed under most hyphae inducing
conditions33, and is therefore exclusively released by C. albicans
hyphae, but not yeast cells. ECE1 codes for a polyprotein con-
sisting of eight distinct peptides. After proteolytic processing34,
these peptides, including Candidalysin, are secreted into the
extracellular space. Candidalysin is able to directly damage epi-
thelial membranes via membrane intercalation, permeabilisation,
and pore formation, causing the release of cytoplasmic
constituents31.

Given the functional similarities to bacterial PFTs27,28, in this
study we dissect the role of Candidalysin in the phagocyte
inflammatory and damage response to C. albicans hyphae using a
combination of human and murine macrophages and murine
DCs. We identify the fungal toxin Candidalysin as a trigger of
NLRP3 inflammasome activation and a critical factor required for
inflammasome-independent cytolysis.

Results
Candidalysin is required for IL-1β release in vivo. During
systemic candidaemia, C. albicans disseminates to vital organs.
Organ-specific fungal morphologies and innate immune
responses determine if and how C. albicans is cleared in different
organs35. Given that C. albicans hypha formation7,8 and bacterial
toxins28 can activate the inflammasome, we hypothesized that the
recently discovered hypha-associated cytolytic toxin, Candidaly-
sin31, can cause IL-1β production, as a key marker of inflam-
masome activation. Therefore, we investigated the potential of a
C. albicans mutant lacking Candidalysin to induce IL-1β pro-
duction as compared to wild-type (Wt) cells during systemic
infection. C. albicans Wt cells infecting kidneys grow pre-
dominantly in the hyphal form35 and high levels of IL-1β were
observed (Fig. 1a). In contrast, ece1Δ/Δ mutant cells deficient for
Candidalysin31 showed significantly lower levels of IL-1β
responses in the kidney (Fig. 1a). In the spleen, an organ where
predominantly yeast cells are observed35, no significant differ-
ences in IL-1β levels were observed between Wt and ece1Δ/Δ
infected mice (Fig. 1b). The observation that Candidalysin-
deficient ece1Δ/Δ mutants induce significantly lower IL-1β levels
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Fig. 1 Kidney and spleen IL-1β levels during systemic candidemia. a, b IL-1β
levels measured in a kidney and b spleen homogenates that were obtained
at 1 day post infection from C57/Bl6 mice infected intravenously with C.
albicans Wt or the ece1Δ/Δ mutant strain. Values are represented as
scatterplot and the median of two independent experiments. The mean of
the Wt control group was set at 100% to determine the percentage
reduction in IL-1β levels in the mice infected with the ece1Δ/Δ mutant. The
means of experimental groups were compared for statistical significance
using the Mann–Whitney U test. *p ≤ 0.05
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in an organ where predominantly hyphae are observed highlights
an important role for Candidalysin in IL-1β induction.

Candidalysin induces IL-1β release by human macrophages. To
test whether Candidalysin is a major driver of inflammasome
activation in macrophages, we first investigated ECE1 (coding for
Candidalysin) expression using a C. albicans reporter strain
expressing GFP under the control of the ECE1 promoter after

phagocytosis by primary human monocyte-derived macrophages
(hMDMs) (Fig. 2a). Phagocytosed yeast cells produced hyphae
within 3 h and hyphal cells showed a clear GFP fluorescence
signal after 3 and 5 h, but not at initial stages (1 h) before hyphal
formation was induced. Therefore, ECE1 is strongly induced in C.
albicans hyphae after phagocytosis by macrophages.

To study the influence of Candidalysin on inflammasome
activation, we measured IL-1β secretion by LPS-primed primary
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hMDMs after infection with Wt C. albicans and mutants lacking
the entire ECE1 gene (ece1Δ/Δ) or only the Candidalysin-
encoding sequence (ece1Δ/Δ+ ECE1Δ184–279). Both mutant
strains triggered significantly less IL-1β secretion from hMDMs
compared to the Wt or to an ECE1 re-integrant strain (ece1Δ/Δ
+ ECE1) (Fig. 2b). LPS-primed hMDMs stimulated with
synthetic Candidalysin also secreted IL-1β in a dose-dependent
manner (Fig. 2b). In contrast, secretion of inflammasome-
independent cytokines IL-6, IL-8, and TNF from non-primed
hMDMs was unaltered when stimulated with the Wt, ece1Δ/Δ or
ece1Δ/Δ+ ECE1Δ184–279 strains. Synthetic Candidalysin induced
only low levels of IL-8 and no IL-6, or TNF (Fig. 2c–e). Thus,
Candidalysin-deficient C. albicans strains exhibit specific defects
in IL-1β induction, although they are fully capable of inducing
inflammasome-independent pro-inflammatory cytokines in
hMDMs.

To understand why the ece1Δ/Δ and ece1Δ/Δ+ ECE1Δ184–279
mutant strains stimulated much less IL-1β secretion as compared
to the Wt, we quantified the influence of ECE1 deletion on the
phagocytosis rate, hyphal length inside macrophages, the rate of
hyphal outgrowth from macrophages, and fungal survival after
phagocytosis. Deletion of ECE1 did not influence any of these
parameters and no significant differences to the Wt control were
observed (Fig. 2f). Therefore, the decreased inflammasome
activation in the absence of ECE1 was not due to reduced uptake
of fungal cells or hyphal defects.

An EL4.NOB-1 cell-derived IL-1 bioassay36 verified that the
IL-1β released in the supernatant of human MDMs stimulated by
Wt C. albicans and the synthetic Candidalysin peptide is indeed
bioactive (Fig. 3a). Western blot analyses revealed mature IL-1β
in supernatants of LPS-primed phagocytes upon stimulation with
C. albicans or synthetic Candidalysin (Fig. 3b). Of note, IL-1β
secretion was absent in unprimed macrophages stimulated only
with Candidalysin (Figs. 3b and 5a, see below). Thus, the priming
step (signal 1) is indispensable for Candidalysin-mediated IL-1β
production, indicating that Candidalysin selectively provides
signal 2 for inflammasome activation. In addition to LPS, a
PAMP-derived from gram-negative bacteria, β-glucan-containing
molecules, such as Zymosan and Curdlan, were also sufficient as a
priming signal for significant IL-1β production (Fig. 3c), which is
consistent with the findings of Gross et al.21. Thus, while
dispensable for the priming step of inflammasome induction
(signal 1), Candidalysin is a potent trigger of inflammasome
activation (signal 2) upon priming with bacterial or fungal
PAMPs.

We conclude that Candidalysin is a major activator of the
inflammasome and IL-1β secretion in primed hMDMs.

Candidalysin induces IL-1β release by bone-marrow-derived
macrophage (mBMDMs) and bone-marrow-derived dendritic
cells (mBMDCs). To test for the specificity of inflammasome

activation in phagocytic cells of different origin, we extended our
analysis to primary murine mBMDMs and murine mBMDCs. In
contrast to hMDMs, the ece1Δ/Δ and ece1Δ/Δ+ ECE1Δ184–279
mutants induced Wt-like IL-1β secretion in mBMDMs
(Fig. 4a–c), and a moderate, but non-significant reduction in IL-
1β induction in mBMDCs (Fig. 4d). However, extracellularly
administered synthetic Candidalysin induced a robust, dose-
dependent IL-1β response in both mBMDMs and mBMDCs
(Fig. 4a–d), whereas secretion of inflammasome-independent
TNF in mBMDCs was not affected (Fig. 4e). Therefore, similar to
human phagocytes, Candidalysin is able to induce IL-1β secretion
from mBMDMs and mBMDCs.

Candidalysin thus acts as a potent inflammasome inducer in
both human and murine phagocytes. While Candidalysin alone is
sufficient for optimal inflammasome activation in human and
murine macrophages and murine DCs, other fungal factors
exhibit redundancy in stimulating IL-1β through inflammasome
activation in murine phagocytes.

Candidalysin-activates the NLRP3 inflammasome. Secretion of
IL-1β upon inflammasome activation requires proteolytic pro-
cessing by caspase-126,37. To investigate whether Candidalysin-
triggered processing of pro-IL-1β into mature IL-1β is mediated
by caspase-1, we inhibited caspase-1 with the irreversible inhi-
bitors Z-YVAD-FMK or Ac-YVAD-cmk.

Caspase-1 inhibition reduced IL-1β secretion in both C.
albicans-infected human and murine mononuclear cells after
exposure to Candidalysin (Fig. 5a). Yet, both inhibitors did not
globally reduce cytokine secretion, because IL-8 or TNF levels
were mainly unaltered by Z-YVAD-FMK or Ac-YVAD-cmk
treatment (Fig. 5b). Thus, Candidalysin-induced IL-1β secretion
is dependent on caspase-1 proteolytic activity. In line with these
findings, we observed caspase-1 activation in Candidalysin-
treated hMDMs using the fluorescent probe FAM-YVAD-FMK
(Fig. 5c). Using a Caspase-GLO assay we detected caspase-1
activity in Wt C. albicans stimulated mBMDCs, but significantly
reduced caspase-1 activity in mBMDCs exposed to the ece1Δ/Δ
and ece1Δ/Δ+ ECE1Δ184–279 mutants (Fig. 5d). By western
blotting, we observed cleaved caspase-1 in culture supernatants
of Candidalysin-treated hMDMs as well as mBMDMs and
mBMDCs (Fig. 5e). A direct comparison between unprimed
and LPS-primed phagocytes showed that the initial priming step
is indispensable for Candidalysin-mediated inflammasome acti-
vation not only in human macrophages (see above), but also in
murine mononuclear phagocytes (Figs. 5a–e and 4c, see above).

Inflammasomes are large protein complexes that include NLR
proteins, the adapter protein ASC and pro-caspase-1. Besides
NLRP3, which has been demonstrated to be crucial for C.
albicans-induced inflammasome activation21,22, several other
NLRs, including NLRC4 and NLRP1, trigger the formation of
inflammasomes. By using a genetic approach to test whether the

Fig. 2 Candidalysin induces IL-1β release by human macrophages. a Fluorescence imaging of hMDMs infected with C. albicans cells expressing GFP under
the control of the ECE1 promoter. At indicated time points, samples were stained with ConA (non-phagocytosed fungal cells or extracellular hyphae) and
Calcofluor White (CFW, phagocytosed and non-phagocytosed fungal cells). Single fluorescence channel images and a composite image of CFW, ConA,
GFP, and the bright field (BF) image of one representative experiment out of three are shown. Scale bar 10 µm. b IL-1β release measured by ELISA in culture
supernatants of LPS-primed hMDMs infected with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279)
(MOI 10) or co-incubated with synthetic Candidalysin for 5 h. c TNF, d IL-8, and e IL-6 release measured by ELISA in culture supernatants of unprimed
hMDMs infected with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279) (MOI 6) or co-incubated with
synthetic Candidalysin for 24 h. f Phagocytosis rate (1 h p.i.), hyphal length of intracellular hyphae (3 h p.i.), the rate of hyphae piercing the macrophage
membrane (10 h p.i.), and and the survival rate of C. albicans (3 h p.i., cfus) is shown for human MDMs exposed to C. albicans Wt, re-integrant (ece1Δ/Δ+
ECE1) or mutant strain (ece1Δ/Δ) (MOI 1). Values are represented as scatterplot and the median of at least three different donors in at least two
independent experiments. For statistical analysis, a one-way ANOVA with Dunnett’s multiple comparison test was used. ***p≤ 0.001, nd not detectable.
Significance compared to Wt
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NLRP3 inflammasome is activated by Candidalysin, we stimu-
lated LPS-primed mBMDCs from Nlrp3−/−, Pycard−/− or Casp1
−/− mice21. IL-1β secretion was dependent on NLRP3, ASC and
caspase-1 respectively (Fig. 5f). Secretion of the inflammasome-
independent cytokine TNF was indistinguishable among all tested
genotypes (Fig. 5g). These data demonstrate that caspase-1 is
fundamentally required for Candidalysin-induced IL-1β secretion
via classical NLRP3 inflammasome activation.

Actin-mediated events and filamentation induce inflammation.
Candidalysin is secreted by C. albicans hyphae31. Since phago-
cytes can be exposed to hyphae either pre-phagocytosis or post-
phagocytosis, immune cells may be exposed to Candidalysin
intracellularly or extracellularly. Therefore, we asked whether
internalization of Candidalysin is required for inflammasome
activation. hMDMs pre-treated with Cytochalasin D, a well-
characterized inhibitor of phagocytosis that impairs actin filament
assembly, showed significantly decreased Candidalysin-
dependent IL-1β, but not IL-8 secretion (Fig. 6a). In contrast,

IL-1β secretion induced by the potassium ionophore Nigericin
was unaffected (Fig. 6a). This suggests that cytoskeletal move-
ment and/or peptide internalization are required for inflamma-
some activation by Candidalysin and that the mechanism of
inflammasome activation by Candidalysin and Nigericin differs.

Candidalysin is necessary for optimal inflammasome activation
by C. albicans in human macrophages and murine phagocytes
(see above). However, deletion of ECE1 did not completely
abrogate IL-1β secretion, indicating that other fungal factors or
hypha formation per se (e.g., via physical forces) may be crucial
for inflammasome activation7,8,10–13. In agreement with this, the
C. albicans strain efg1Δ/Δ/cph1Δ/Δ, which is defective in hyphal
formation and the expression of hypha-associated factors4

induced even lower IL-1β secretion by hMDMs than the ece1Δ/
Δ mutant (Fig. 6b). However, the hgc1Δ/Δ mutant which is
defective in hyphal induction, but still can express Candidalysin
to some extent38, induced similar IL-1β levels as the ece1Δ/Δ
mutant that can form hyphae, but cannot produce Candidalysin
(Fig. 6b). Nonetheless, supplementation of synthetic Candidalysin
to efg1Δ/Δ/cph1Δ/Δ, hgc1Δ/Δ, or ece1Δ/Δ C. albicans cells
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restored IL-1β secretion to Wt levels (Fig. 6b). This demonstrates
that Candidalysin is necessary for inflammasome activation and
can compensate for the lack of other inflammasome-stimulating
attributes of C. albicans. Interestingly, this compensatory
mechanism requires fungal viability, as the rescue effect was
not observed with heat-killed C. albicans cells as compared to
untreated LPS-primed hMDMs.

Candidalysin activates the inflammasome via K+ efflux. Several
mechanisms, such as lysosomal destabilization followed by
the release of lysosomal cathepsins, production of reactive oxygen
species (ROS), or the permeation of cell membranes leading to
ion fluxes are discussed as upstream activators of the NLRP3
inflammasome during fungal infection39. To elucidate how
Candidalysin triggers inflammasome activation, we first inhibited
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potassium efflux, a common mechanism of inflammasome acti-
vation by bacterial toxins and C. albicans21,40. Inhibition of
potassium efflux was achieved by increasing the extracellular

potassium concentration or by blocking ATP-dependent potas-
sium channels with glibenclamide. Similar to the potassium
ionophore Nigericin, Candidalysin-dependent IL-1β secretion by
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human MDMs was inhibited by blocking potassium efflux, while
IL-8 secretion was not affected (Fig. 6c). In murine BMDMs and
BMDCs potassium efflux was similarly important for
Candidalysin-dependent IL-1β secretion, but not for TNF secre-
tion (Fig. 6d, e).

Next, we investigated the impact of ROS on Candidalysin-
triggered inflammasome activation by inhibiting the NADPH-
oxidase-dependent ROS system with (2R,4R)-4-aminopyrroli-
dine-2,4-dicarboxylate (PDTC). This inhibitor exhibited no effect
on Candidalysin-induced IL-1β secretion by hMDMs (Fig. 6f).
Consistently, the deletion of ECE1 or the Candidalysin-encoding
sequence alone did not reduce C. albicans-induced ROS
production in hMDMs, suggesting that Candidalysin does not
contribute to fungal ROS induction. Accordingly, ROS levels
induced in hMDMs by synthetic Candidalysin are low compared
to ROS levels induced by C. albicans cells (Fig. 6g, h).

Another mechanism of NLRP3 inflammasome activation
involves lysosomal destabilization and lysosomal content release
to the cytosol. Proteases such as cathepsins, which require
lysosomal acidification to become catalytically active, have been
suggested to mediate this effect39. Blocking lysosomal acidifica-
tion with the vacuolar H+ ATPase inhibitor Bafilomycin A1 did
not reduce Candidalysin-induced IL-1β secretion of hMDMs
(Fig. 7a), suggesting that phagosomal destabilization is also not
involved in Candidalysin-dependent inflammasome activation.
Similarly, co-localization of Wt, ece1Δ/Δ, or ece1Δ/Δ+
ECE1Δ184–279 cells with the late endo(lyso)somal marker LAMP1,
the late maturation markers Phosphatidylinositol 4-phosphate (PI
(4)P) and Rab741, as well as with the acidic organelle dye
LysoTracker, indicated that phagosome maturation is not affected
by Ece1 (Fig. 7a–g). Lastly, administration of synthetic Candida-
lysin did not lead to a loss of acidification of mature phagosomes
loaded with heat-killed C. albicans cells as monitored by
LysoTracker staining (Fig. 7d). Consistent with the fact that
most activators engaging the lysosomal pathway are particles like
alum or uric acid crystals, our data indicate that lysosomal
mechanisms are not involved in inflammasome activation by
Candidalysin. Together, we conclude that induced potassium
efflux operates as a main trigger of Candidalysin-induced NLRP3
inflammasome activation comparable to the role of potassium
efflux in NLRP3 activation by bacterial PFTs40.

Candidalysin is required for damage of hMDMs and
mBMDCs. Previous studies indicate that C. albicans causes
macrophage damage by two different mechanisms: programmed
caspase-1-dependent and inflammation-associated cell death
(pyroptosis) within the first hours of infection, .followed by

physical cell membrane rupture due to sustained hypha forma-
tion9,12,17 and glucose consumption18 at later time points. As
Candidalysin is essential for fungal-induced epithelial cell
damage31, but also activates caspase-1 (see above), we tested
whether Candidalysin contributes to C. albicans-induced cell
damage of mononuclear phagocytes at different time points of
infection. By measuring the release of cytoplasmic LDH into the
supernatants as a read-out for host cell damage we demonstrate
that externally administered synthetic Candidalysin dose-
dependently induces cell lysis of human and murine macro-
phages and murine DCs already at early time-points (Fig. 8a–d).
Using human macrophages infected with C. albicans for 24 h, we
demonstrate that loss of the ECE1 gene is associated with a loss of
the full damage potential of C. albicans (Fig. 8a). This coincided
with a reduction of metabolic activity of hMDMs (Fig. 8b). LDH
levels released from C. albicans-infected hMDMs at 5 h were
similar to those from an uninfected control. While early C.
albicans-induced mBMDM damage measured by LDH release did
not indicate an ECE1-dependency or Candidalysin-dependency
(Fig. 8c), damage to mBMDCs induced by C. albicans was again
partly ECE1- and Candidalysin-dependent (Fig. 8d).

To study the damage kinetics of primary hMDMs in more
detail, we used propidium iodide (PI) staining to monitor dead
immune cells as described in ref. 12. Similarly, we observed that
damage of hMDMs by C. albicans Wt (Fig. 8e) occurs in a
characteristic biphasic pattern12. The first 10–12 h are character-
ized by a slow increase in host cell damage, whereas in the second
phase between 12–24 h damage occurs more rapidly. When ECE1
or only the Candidalysin-encoding sequence was deleted, the
damage potential of C. albicans was reduced in both phases in
hMDMs (Fig. 8e) highlighting a significant contribution of
Candidalysin to C. albicans-induced cell damage in human
macrophages. Incubation of primary hMDMs with synthetic
Candidalysin showed direct, dose-dependent cytotoxicity, as
damage (PI-positive cells) occurred rapidly and was saturated
within 6 h (Fig. 8f).

In summary, Candidalysin is sufficient to cause rapid damage
to both human and murine mononuclear cells and is a major
contributor to fungal-mediated damage of hMDMs and
mBMDCs.

Candidalysin-induced cell death is caspase-1-independent. We
observed both Candidalysin-dependent inflammasome activation
and early damage of phagocytes. We, therefore, asked whether the
inflammatory response and host cell damage in response to
Candidalysin are connected and whether cell damage is associated
with pyroptosis.

Fig. 5 Candidalysin activates the NLRP3 inflammasome. a IL-1β and b IL8 (hMDMs) or TNF (mBMDMs, mBMDCs) release measured by ELISA in culture
supernatants of LPS-primed or unprimed (no LPS) hMDMs, mBMDMs, or mBMDCs that were infected with C. albicansWt (MOI 10, 6, or 5 respectively) or
co-incubated with synthetic Candidalysin for 5 h (hMDMs, mBMDMs) or 4 h (mBMDCs). The caspase-1-inhibitor Z-YVAD-FMK (88.9 µM, hMDMs and
mBMDMs) or Ac-YVAD-cmk (20 µM, mBMDCs) or the inhibitor solute control DMSO was added 1 h prior to infection. c Caspase-1 activation measured
by fluorescence intensity after staining with FAM-YVAD-FMK FLICA™ in LPS-primed hMDMs that were infected with Wt C. albicans (MOI 10), co-
incubated with synthetic Candidalysin for 5 h, or treated with ATP for 30min. d Caspase-1 activity measured by luminescence intensity (Caspase1-Glo
inflammasome assay) in cell culture supernatants of LPS-primed mBMDCs that were infected for 5 h with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or
mutant strains (ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279) (MOI 5). e Cleavage of caspase-1 into the active p20 form (arrow) assessed by western blotting in LPS-
primed or unprimed (no LPS) hMDMs, mBMDMs, or mBMDCs that were infected with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains
(ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279) (MOI 10 mBMDMs, hMDMs or 5 mBMDCs) or co-incubated with synthetic Candidalysin or Nigericin for 5 h
(mBMDMs, hMDMs) or 4 h (mBMDCs). Representative images of three independent experiments or donors are shown. f IL-1β and g TNF levels measured
by ELISA in culture supernatants of f LPS-primed or g unprimed Wt, Nlrp3−/−, Pycard−/− or Casp1−/− mBMDCs that were infected with C. albicansWt, re-
integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279) (MOI 5) or co-incubated with synthetic Candidalysin or Nigericin for 4 h.
Values are presented as scatterplots and the median of at least three different donors or replicates (n≥ 3). For KO mBMDCs, all technical replicates are
shown of the experiments that were performed in duplicates. For statistical analysis (a–c), a one-way ANOVA with Dunnett’s multiple comparison test was
used. ***p≤ 0.001, **p≤ 0.01, nd not detectable
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First, to exclude other forms of programmed cell death, we
determined whether Candidalysin can induce apoptosis or
necroptosis in primary hMDMs. C. albicans is able to trigger
apoptosis42 and many bacterial PFTs can induce a programmed
form of necrosis, necroptosis43–45. Annexin V staining suggested

minimal exposure of cell surface phosphatidylserine in
Candidalysin-treated hMDMs and hMDMs infected with Wt or
ece1Δ/Δ C. albicans strains (Fig. 9a). Since Annexin V does not
exclusively stain apoptotic but also necroptotic cells, we assayed
for the activation of the apoptotic caspases 3 and 7. Both caspases
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were weakly activated upon co-incubation with Candidalysin and
no differences were observed when comparing hMDMs stimu-
lated with Wt or ece1Δ/Δ C. albicans cells (Fig. 9b). Inhibition of
necroptosis with the RIP1-kinase inhibitor Necrostatin-1 also did
not diminish macrophage damage (Fig. 9c). Thus, Candidalysin
does not appear to trigger apoptosis or necroptosis in human
macrophages .

As pyroptosis is characterized by inflammasome activation and
subsequent caspase-1-dependent IL-1β secretion19,46, we mea-
sured early macrophage damage in human and murine mono-
nuclear cells after inflammasome priming and the addition of the
caspase-1 inhibitor Z-YVAD-FMK. While Caspase-1 inhibition
reduced Candidalysin-dependent IL-1β secretion (Fig. 5a, see
above), inhibitor treatment had no effect on Candidalysin-
induced host cell lysis in hMDMs or mBMDMs, and damage was
independent of LPS priming (Fig. 10a, b), though LPS priming
was required for cell death of mBMDCs (Fig. 10c). Although
previous reports demonstrated that pyroptosis contributes to C.
albicans-mediated damage of mBMDMs12,17, LDH levels released
by C. albicans-infected mBMDMs and mBMDCs were slightly
but non-significantly reduced after caspase-1-inhibition (Fig. 10b,
c). In line with this, blocking inflammasome activation by
inhibiting the host actin cytoskeleton or potassium efflux reduced
Candidalysin-induced inflammasome activation (IL-1β release),
but not Candidalysin-induced cell damage (Figs. 6a–e and 9d, e,
see above).

Damage by Candidalysin is, therefore, mainly independent of
inflammasome activation. To exclude that there are differences in
the dynamics of C. albicans and Candidalysin-induced cell death
and to verify our analysis using a different caspase-1 inhibitor,
MDMs were LPS-primed and exposed to the caspase-1 inhibitor
VX-765. Caspase-1 inhibition did not significantly influence the
dynamics of C. albicans (Fig. 10d) or Candidalysin (Fig. 10e)
induced cell death, although it was effective in reducing
inflammasome-dependent IL-1β secretion (Fig. 10f).

Finally, we applied a genetic approach to show that
Candidalysin-mediated damage is not pyroptotic. We exposed
mBMDCs deficient in the inflammasome components NLRP3,
ASC, or caspase-1 to synthetic Candidalysin. Similar to the other
immune cell types tested, Candidalysin-induced damage in
mBMDCs was independent of LPS-priming, caspase-1, ASC, or
NLRP3 (Fig. 10g). As expected, cell lysis induced by live Wt, but
also the ece1Δ/Δ mutant, C. albicans cells was at least partially
dependent on the inflammasome, as the overall damage was
reduced in Nlrp3−/−, Pycard−/−, or Casp1−/− as compared to Wt
mBMDCs (Fig. 10g). Thus, C. albicans lacking Candidalysin can
still induce inflammasome-dependent cell death (pyroptosis).
Importantly, the reduction in damage caused by the ece1Δ/Δ or

ece1Δ/Δ+ ECE1Δ184–279 mutant compared to the C. albicans Wt
was still present in DCs lacking Nlrp3, ASC, or caspase-1.

In summary, these data indicate that C. albicans-induced
pyroptosis in mononuclear phagocytes is independent of
Candidalysin. Moreover, while Candidalysin induces the NLRP3
inflammasome and caspase-1 activation, Candidalysin-induced
host cell lysis is independent of the inflammasome and caspase-1.

Discussion
Phagocytes of the host’s innate immune system, such as macro-
phages and DCs, are pivotally important for efficient clearance of
C. albicans infections and initiation of inflammatory responses47.
The cytolytic peptide toxin Candidalysin has recently been
identified as a critical virulence factor that intercalates into host
membranes and damages epithelial cells during mucosal C.
albicans infections31. Furthermore, Candidalysin drives protective
innate type 17 cell responses during oral candidiasis48, immu-
nopathology during vaginal infections49, and mediates translo-
cation through intestinal barriers38.

In this study, using human and mouse mononuclear phago-
cytes, we show that Candidalysin activates the NLRP3 inflam-
masome (signal 2 agent), resulting in the secretion of mature IL-
1β in a caspase-1-dependent manner. Intriguingly, however,
Candidalysin-induced cytolysis is independent of the inflamma-
some and pyroptosis. Our work identifies Candidalysin as the first
fungal toxin with such dual action on phagocytes of the innate
immune system.

Inflammasome activation is a two-step process, requiring an
initial priming step and a second, inflammasome-activating
step21,23,24. Our data show that Candidalysin selectively pro-
vides a stimulus for the second, inflammasome-activation step, as
the toxin alone was not able to induce inflammasome activation
without priming by LPS or β-glucan-containing molecules like
Zymosan or Curdlan, similar to other NLRP3-inflammasome
activators, such as Nigericin or ATP. Multiple stimuli for
inflammasome activation, such as mitochondrial damage, ROS
production, endo-lysosomal damage, and potassium efflux have
been identified50. Potassium efflux, in particular, seems to be a
central trigger for inflammasome activation for many bacterial
PFTs, but also for C. albicans21,40. We demonstrate that Candi-
dalysin triggers inflammasome activation via potassium efflux in
human macrophages, as well as murine BMDMs and BMDCs,
suggesting that Candidalysin functions similarly to bacterial
PFTs, most likely by inducing membrane permeabilisation and a
subsequent drop in cytosolic potassium levels40,51.

While ROS have previously been implicated in C. albicans-
dependent inflammasome activation in mBMDCs21, ROS inhi-
bition with PDTC had no effect on IL-1β secretion in primary

Fig. 6 Potassium-dependent and actin-dependent inflammasome activation. a IL-1β and IL-8 levels measured by ELISA in culture supernatants of LPS-
primed hMDMs treated with synthetic Candidalysin or Nigericin for 5 h. Selected samples were pre-treated with the actin cytoskeleton inhibitor
Cytochalasin D or the inhibitor solute control DMSO 1 h prior to administration of Candidalysin. b IL-1β release measured by ELISA in culture supernatants
of LPS-primed hMDMs that were infected with C. albicans Wt, ece1Δ/Δ, efg1Δ/Δ/cph1Δ/Δ, hgc1Δ/Δ mutant strains, or heat-killed Wt (MOI 10) in
presence or absence of synthetic Candidalysin for 5 h. c–f IL-1β and c IL-8 or d, e TNF levels measured by ELISA in culture supernatants of LPS-primed c, f
hMDMs dmBMDMs, and emBMDCs. Phagocytes were treated with synthetic Candidalysin or Nigericin for 5 or 4 h (BMDCs). Selected samples were pre-
treated with the following inhibitors 1 h prior to administration of Candidalysin: c–e the potassium channel inhibitor glibenclamide or inhibitor solute control
DMSO, KCl was added after LPS priming, f (2R,4 R)-4-aminopyrrolidine-2,4-dicarboxylate (PDTC). g Intracellular ROS production in hMDMs pre-loaded
with 20 μM H2DCF-DA for 30min and infected with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279)
(MOI 10) or treated with H2O2 (positive control) for 5 h. Fluorescence (Ex 485/Em 535) measured immediately after infection was subtracted from
fluorescence (Ex 485/Em 535) measured after 5 h. h Total ROS production in hMDMs subjected to synthetic Candidalysin or PMA (positive control) was
monitored by Luminol-enhanced chemiluminescence. Relative luminescence units (RLU) were recorded for 60min and the difference between maximum
and minimum luminescence values was calculated. Data are represented as scatterplot and median of at least three different donors (n≥ 3) or independent
experiments. For statistical analysis, a one-way ANOVA with Dunnett’s multiple comparison test was used. For analysis of the different C. albicansmutants,
a two-way ANOVA with Sidak’s multiple comparison test was applied. ***p≤ 0.001, *p≤ 0.05, n/a not applicable, nd not detectable
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Fig. 7 Ece1-independent phagosome maturation. a IL-1β levels measured by ELISA in culture supernatants of LPS-primed hMDMs. Cells were treated with
synthetic Candidalysin for 5 h. Selected samples were pre-treated with the vacuolar H+ ATPase inhibitor Bafilomycin A1 1 h prior to administration of
synthetic Candidalysin. b, c Human MDMs were infected with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+
ECE1Δ184–279) (MOI 5) and co-localization of C. albicans-containing phagosomes with b the phagosomal marker LAMP1 or c the lysosomal acidification
marker LysoTracker was quantified at indicated time points. d Human MDMs pre-stained with LysoTracker were infected with heat-killed C. albicans Wt
(MOI 5) for 3 h in presence or absence of Bafilomycin A1 (phagosomal acidification inhibitor) or synthetic Candidalysin. C. albicans-containing phagosomes
were quantified for the percentage of LysoTracker-positive phagosomes and LysoTracker intensity. e Murine RAW264.7 Dectin-1 macrophages were
infected with C. albicans Wt or ece1Δ/Δ mutant yeasts (MOI 2) and co-localization of C. albicans-containing phagosomes with the phago(lyso)somal
markers Lamp1, PI(4)P, and Rab7 was quantified at indicated time points. f, g Murine RAW264.7 Dectin-1 macrophages were infected with C. albicans Wt
or ece1Δ/Δmutant strain as described in e. Representative image of Lamp1 (f) or PI(4)P and Rab7 (g) acquisition 30min after phagocytosis. ConA staining
of non-phagocytosed C. albicans. Scale bar 8 μm. Values are represented as scatterplot with median of three independent donors or experiments (n≥ 3)
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Fig. 8 Candidalysin-dependent damage of hMDMs. a, c, d Macrophage lysis was quantified by measuring LDH release in a unprimed hMDMs or LPS-
primed c mBMDMs or d mBMDCs that were infected with C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+
ECE1Δ184–279) (MOI 6) for 5 or 24 h and in LPS-primed a hMDMs, c mBMDMs, or d mBMDCs that were incubated with synthetic Candidalysin for 5 h.
b Metabolic activity of LPS-primed or unprimed hMDMs treated with synthetic Candidalysin for 5 h was measured using XTT. 1% Triton X-100 was added
as a positive control. e, f Macrophage damage over time was assessed by quantifying propidium iodide (PI)-positive cells in LPS-primed hMDMs infected
with e C. albicans Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains (ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279) (MOI 6) or f incubated with synthetic
Candidalysin. a–d Values are represented as scatterplot with median of at least three different donors (n≥ 3). For statistical analysis, a one-way ANOVA
with Dunnett’s multiple comparison test was used. *p≤ 0.05, significance compared to Wt infection. e The results of three different donors are displayed
separately due to strong donor variability. Data are shown as mean+ SD of two independent positions in two wells. f Data are shown as mean+ SD of six
independent donors
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human macrophages. Phagosomal destabilization may also acti-
vate the inflammasome, a process thought to involve the release
of lysosomal enzymes including cathepsins52. However, we found
no evidence for phagosomal destabilization and resulting
inflammasome activation, which we had hypothesized as a
potential result of the intra-phagosomal onset of hypha trans-
formation and lytic activities of Candidalysin produced.

Of note, Candidalysin-dependent inflammasome activation
and cellular damage were strongly inhibited by the F-actin
polymerisation inhibitor Cytochalasin D. To our knowledge, this
is the first description of a pathogen-derived PFT whose

inflammasome activation properties depend on the host cell actin
cytoskeleton. In contrast, the ability of bacterial PFTs like
Nigericin to activate Nlrp3 is not affected by cytoskeleton inhi-
bitors (this study)53. These data suggest that inflammasome
activation by Candidalysin may depend on toxin internaliza-
tion40,52 or actin-mediated pore-assembly at the cell surface54.

Our experiments with synthetic Candidalysin peptide isolate
the Candidalysin-induced effects from other fungal factors and
show a clear role for Candidalysin in inflammasome activation
and induction of cell damage in human MDMs, murine BMDMs,
and BMDCs. Although analysis of C. albicans mutants lacking the
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Ece1- (Candidalysin-) encoding sequence, demonstrated that
Candidalysin drives both C. albicans-induced inflammasome
activation and cellular damage in human macrophages, deletion
mutant phenotypes were less prominent or absent in murine
BMDMs and BMDCs. This suggests that Candidalysin seems to
be more important for human cells as compared to murine cells,
but could also be interpreted by the fact that several fungal factors
exhibit redundancy in stimulating IL-1β and inducing cell death,
particularly in murine phagocytes. Similarly, distinct inflamma-
tory response patterns of murine and human macrophages have
been observed when challenged with Aspergillus fumigatus55.

One of such redundant triggers for both, inflammasome acti-
vation and damage is likely C. albicans filmentation6,9,56 (this
study). Besides, fungal aspartic proteases are known inflamma-
some inducers29, and fungal cell wall architecture, ergosterol
biosynthesis and phosphatidylinositol-4-kinase signalling play a
role in macrophage cytolysis10–12,17,57.

Importantly, when applying an in vivo systemic candidiasis
model, we observed reduced IL-1β levels in mice infected with the
ece1Δ/Δ mutant as compared to mice infected with wild-type
cells. Of note, these differences were only observed in the kidney,
an organ where the fungal morphology is dominated by hyphae35,
whereas no differences in the IL-1β release were observed in the
spleen, where infecting C. albicans cells are predominantly in the
yeast morphology. These data highlight that the strictly hyphal
associated ECE1 gene and thus Candidalysin is essential for full
IL-1β release during systemic murine infections with C. albicans.

The concept that phagocytosed C. albicans cells trigger mac-
rophage damage exclusively by mechanical means through sus-
tained filamentation, macrophage membrane stretching and,
eventually, host cell lysis, leading to fungal escape9 has been
challenged by a number of recent studies, suggesting a more
complex picture of C. albicans-macrophage interactions. In
murine macrophages, C. albicans infection triggers pyroptosis, a
regulated inflammatory form of cell death, by activating the
NLRP3 inflammasome12,17. Pyroptosis is characterized by host
cell damage mediated by caspase-1, subsequent pore formation,
cell swelling, and eventually membrane rupture19,46. Pyroptosis-
mediated macrophage damage may thus be an escape route for C.
albicans within the first six to eight hours of infection before
sustained hypha formation results in host cell damage12,16,17.
However, our data indicate that Candidalysin-induced macro-
phage lysis is independent of pyroptosis and inflammasome
activation, as neither caspase-1 inhibition nor inhibition of
potassium efflux nor genetic ablation of caspase-1, Nlrp3, or ASC
led to a significant reduction in toxin-induced phagocyte lysis at
early time points. In addition, LDH release by phagocytes
exposed to the ece1Δ/Δ mutant was reduced in inflammasome
knockout as compared to wild-type phagocytes. This indicates
that pyroptosis still plays a major role in C. albicans-induced cell

death by Candidalysin-deficient cells. The bi-phasic cell death
dynamics with live C. albicans similar to the study of Uwamahoro
et al.12 supports the view that pyroptosis plays a role in the C.
albicans cell induced cell death. The fact that the predominantly
pyroptotic first wave of death12 is clearly reduced in the ece1Δ/Δ
mutant, may suggest a minor role for Candidalysin in pyroptosis
or that Candidalysin contributes to non-pyroptotic processes in
this phase. However, our genetic approach with murine cells
lacking key components of the NLRP3 inflammasome clearly
demonstrates that Candidalysin induced cell death is pre-
dominantly pyroptosis-independent. We can, however, not
exclude that Candidalysin, in the setting of live C. albicans cells,
may facilitate the induction of pyroptosis by other fungal mole-
cules. We also found no evidence for Candidalysin triggering
other regulated cell death pathways such as apoptosis or
necroptosis. Thus, Candidalysin seems to cause cell death dif-
ferently from (regulated cell death-inducing) bacterial PFTs such
as Bacillus anthracis lethal toxin, Serratia marcescens hemolysin
ShlA, Clostridium perfringens β-toxin, or Staphylococcus aureus α-
hemolysin, while sharing the ability to activate the inflamma-
some27,28,43–45,58.

While most known NLRP3 activators including bacterial PFTs
kill myeloid cells in an NLRP3 and ASC-dependent manner, there
is precedence for NLRP3 activators killing these cells independent
of the inflammasome. Three prominent examples are insoluble
activators like monosodium urate crystals (MSU) or alum crys-
tals59, membrane damage by mixed-lineage kinase domain-like
protein (MLKL) during necroptosis60, and cytoplasmic LPS
activating Gasdermin D-dependent pyroptosis through caspase-
4/1161. Similar to Candidalysin, these activators all engage Nlrp3
via K+ efflux, suggesting that membrane perturbations that lead
to inflammasome-independent cell death can in parallel activate
Nlrp3 through the K+ efflux-mediated mechanism. Furthermore,
besides inducing regulated host cell death, Cullen et al.51 have
suggested that signal 2-inducing PFTs, such as streptolysin or
listeriolysin, can lead to non-selective permeabilisation of plasma
membranes and subsequent necrotic host cell death.

The evidence we have collected so far point to a direct inter-
action of Candidalysin with host cell membranes as the main
cause for toxin-induced necrotic damage.

This study demonstrates that Candidalysin has the ability to
damage mononuclear phagocytes and to activate the inflamma-
some and that these two observations are putatively independent
events. Inflammasome activation results in the production of the
pro-inflammatory cytokine IL-1β, which, when secreted, induces
the recruitment of other immune cells to the site of infection62,63.
Indeed, the NLRP3 inflammasome has been implicated with an
anti-Candida response21,22 and has been shown to induce a
protective antifungal Th1/Th17 response64. Toxin-dependent
inflammasome activation may thus be a disadvantage for the

Fig. 9 Neither apoptosis nor necroptosis is triggered by Candidalysin. a Phosphatidylserine exposure and cell viability of hMDMs infected with C. albicans
Wt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strain (ece1Δ/Δ) (MOI 10) or treated with synthetic Candidalysin for 5 h were quantified by staining with
FITC-Annexin V and PI, respectively. The number of single-stained or double-stained macrophages was evaluated by manual counting of at least 200
macrophages. b Caspase 3/7 activity was assessed by measuring luminescence of hMDMs 7 h post infection with C. albicansWt or ece1Δ/Δ mutant strain
(MOI 10) or co-incubation with Candidalysin. Staurosporine served as a positive control. Shown are relative luminescence values (RLU) after background
subtraction. c, d LPS-primed hMDMs were treated with synthetic Candidalysin or Nigericin for 5 h. Selected samples were pre-treated with c the
necroptosis inhibitor Necrostatin-1 (Nec-1) or d the actin cytoskeleton inhibitor Cytochalasin D or inhibitor solute control DMSO 1 h prior to administration
of synthetic Candidalysin or Nigericin. Macrophage lysis was quantified by measuring LDH release. e LPS-primed hMDMs, mBMDMs or mBMDCs were
treated with synthetic Candidalysin or Nigericin for 4–5 h. Selected samples were pre-treated with the potassium channel inhibitor glibenclamide or
inhibitor solute control DMSO 1 h prior to administration of synthetic Candidalysin or Nigericin. KCl was added after LPS priming. Macrophage lysis was
quantified by measuring LDH release. a Data are shown as mean+ SD of two different donors. b–e Values are represented as scatterplot with median of
three independent donors or experiments (n≥ 3). For statistical analysis, a one-way ANOVA with Dunnett’s multiple comparison test was used. ***p≤
0.001, significance compared to Candidalysin treatment

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06607-1

14 NATURE COMMUNICATIONS |  (2018) 9:4260 | DOI: 10.1038/s41467-018-06607-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


fungus. In contrast, phagocyte damage may be a benefit for the
fungus, by supporting immune evasion and escape from macro-
phage killing by host cell lysis16.

In light of the literature, we propose the following model for
the role of Candidalysin in C. albicans-macrophage/DC interac-
tion: The recognition of C. albicans PAMPs and/or bacterial
ligands of commensal microbes by immune cell PRRs leads to
fungal phagocytosis and inflammasome priming. Phagocytosed

fungal cells form hyphae, leading to rapid production of hypha-
associated factors such as Candidalysin and other inflammasome-
inducing fungal factors. Candidalysin intercalates into host
membranes, causing direct plasma membrane permeabilisation
leading to ion fluxes that cause a drop in cytosolic potassium.
This triggers NLRP3 inflammasome activation and caspase-1-
dependent IL-1β processing. Further membrane destabilization
ultimately leads to lytic host cell death, thereby contributing to
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the release of mature IL-1β. Concomitantly, caspase-1 activation
results in early pyroptotic damage of host cells—a multifactorial
process induced in the first hours of infection, which depends on
hyphal formation and certain cell wall components10–12,17,57,65,66,
but not Candidalysin. In later phases of infection, mechanical
destruction of phagocytes is initiated by hyphae that are formed
inside macrophages and pierce the host cell membrane9. Hyphal
membrane piercing and outgrowth is independent of Candida-
lysin as mutants lacking Candidalysin have the full potential to
escape from host cells.

Our data presented here, collectively with previously published
studies on Candidalysin, clearly point towards dual roles of
Candidalysin in C. albicans pathogenesis, with different outcome
depending on the type of infection. First, Candidalysin suits the
description of a classical virulence factor67 that damages host
cells. Second, the current study demonstrates that Candidalysin is
an immunomodulatory molecule. Such molecules which are
sensed by the host immune system to initiate a protective
response have been designated as avirulence factors68,69. The
outcome of the two effects, damage potential vs. protective
immune response, dictates the outcome of the infection. During
oral infections, epithelial cells recognize Candidalysin via the
danger response pathway (via p38 and c-Fos)31, causing cytokine
release and recruitment of phagocytes, in particular neutrophils.
This neutrophil recruitment is crucial for pathogenicity, but with
oppositional outcome in different tissues (and depending on the
immune status of the host). During oral infections, the attraction
of neutrophils is protective in immunocompetent mice48, while
neutrophil recruitment during vaginal infections is associated
with collateral damage and immunopathology34. We believe that
similar processes occur in C. albicans-infected organs during
systemic infections; with macrophages being key players
responsible for neutrophil attraction. This concept is, for exam-
ple, in agreement with the observation that organ-specific fungal
morphology and neutrophil attraction correlates with
pathogenesis35.

Methods
Ethics statement. Blood was obtained from healthy human volunteers with
written informed consent. The blood donation protocol and use of blood for this
study were approved by the Jena institutional ethics committee (Ethik-Kommission
des Universitätsklinikums Jena, Permission No 2207–01/08). Animal experiments
were performed in compliance with the German animal protection law or approved
by the Animal Care and Use Committee of the National Institute of Allergy and
Infectious Diseases, USA.

C. albicans strains and growth conditions. C. albicans strains included the wild-
type (Wt) strain SC531470, a derivate of SC5314, a parental strain of the mutant
strains used (BWP17-CIp30)71, an ECE1 deletion strain (ece1Δ/Δ), an ECE1-
complemented strain (ece1Δ/Δ+ ECE1), a strain lacking only the Candidalysin-
encoding region in Ece1 (ece1Δ/Δ+ ECE1Δ184–279), a ECE1-GFP reporter strain
(SC5314+ pECE1-GFP; ECE1 promoter-GFP)31, and the hypha deficient mutants
efg1Δ/Δ/cph1Δ/Δ30 and hgc1Δ/Δ72. Cells were routinely grown overnight in YPD
shaking cultures (1% yeast extract, 2% peptone, 2% glucose) at 30 °C and 180 rpm.
Prior to infection experiments, cultures were washed with PBS, counted and
adjusted to the desired concentration. C. albicans hyphae were prepared by

inoculating PBS-washed yeast cells into RPMI 1640 (Thermo Fisher Scientific) at
6.66 × 106 cells/mL and incubating for 2 h at 37 °C, 180 rpm. For preparation of
heat-killed cells, 500 µL yeast or hyphal cultures were incubated at 70 °C for 10
min.

Preparation of hMDMs. Human peripheral blood mononuclear cells (hPBMC)
were isolated by Histopaque-1077 (Sigma-Aldrich) density centrifugation from
buffy coats donated by healthy volunteers. CD14 positive monocytes were selected
by magnetic automated cell sorting (autoMACs; MiltenyiBiotec). To differentiate
monocytes into human MDMS (hMDMs), 1.7 × 107 cells were seeded into 175 cm2

cell culture flasks in RPMI 1640 media with 2 mM L-glutamine (Thermo Fisher
Scientific) containing 10% heat-inactivated fetal bovine serum (FBS; Bio&SELL)
(RPMI+ FBS) and 50 ng/mL recombinant human M-CSF (ImmunoTools) and
incubated for seven days at 37 °C and 5% CO2. Adherent hMDMs were detached
with 50 mM EDTA in PBS, seeded in 6, 24 or 96-well plates to a final concentration
of 1 × 106, 1–2 × 105 or 4 × 104 hMDMs/well, respectively in RPMI+ FBS and
incubated overnight. Macrophage infection experiments were performed in serum-
free RPMI medium.

For the differential staining of macrophage phagocytosis and hypha formation
after phagocytosis, hMDMs were differentiated by using an adherence method.
Briefly, hPBMCs isolated by Histopaque-1077 density centrifugation (see above)
were seeded into 100 mm Petri dishes (4 × 107 cells/dish) in RPMI 1640 media with
2 mM L-glutamine without FBS and incubated at 37 °C and 5% CO2 for 1–2 h.
Following, non-adherent cells were removed by washing twice with PBS. Adherent
cells were then differentiated for seven days in RPMI+ FBS medium with 50 ng/
mL M-CSF as described above.

Preparation of murine macrophages and DCs. Murine bone-marrow-derived
macrophages (mBMDMs) were generated by culturing bone marrow cells isolated
from the femur and tibia of 9 to 19 week old healthy female C57BL/6J mice. For
differentiation, 5 × 106 cells were seeded into a 175 cm2 cell culture flask in RPMI
+ FBS containing 1% Penicillin/Streptomycin (PAA Laboratories) and 40 ng/mL
recombinant murine M-CSF (ImmunoTools) and incubated for seven days at 37 °C
and 5% CO2. Adherent cells were detached by scraping in RPMI+ FBS, seeded in 6
or 24-well plates to a final number of 1.5 × 106 or 5 × 105 mBMDMs/well and
incubated overnight.

Murine bone-marrow-derived dendritic cells (mBMDCs) were generated by
culturing bone marrow cells from 6 to 20 week old C57BL/6J Wt or Nlrp3-/-, Pycard
−/− or Casp1−/−73-75 mice for seven days in mBMDC medium (GlutaMAX-
supplemented RPMI+ FBS containing 1% Penicillin/Streptomycin (Gibco), 50 µM
β-mercaptoethanol (Gibco) and 20 ng/mL recombinant murine GM-CSF
(ImmunoTools)). On day 7, the mBMDC culture was harvested. Adherent cells
were detached with 5 mM EDTA in PBS, mBMDCs were seeded in 96-well plates
in mBMDC medium to a final number of 1 × 105 mBMDCs/well. Macrophage and
DC infection experiments were carried out in serum-free medium.

Cultivation and transfection of RAW264.7-Dectin-1 cells. The RAW264.7-
Dectin-1-LPETG-3 × HA macrophage cell line (RAW Dectin-1)76 was grown in
RPMI 1640 (Wisent Bioproducts) supplemented with 10% heat-inactivated FBS at
37 °C and 5% CO2 and tested negative for mycoplasma contamination. For tran-
sient transfections with plasmids GFP-2xP4M-SidM and iRFP-FRB-Rab777, 80%
confluent monolayers of RAW264.7 Dectin-1 were collected by scraping and plated
onto 1.8 cm glass coverslips at a density of 5 × 104 cells/coverslip. Macrophages
were allowed to recover for 18 h prior to transfection with FuGENE HD (Promega)
according to the manufacturer’s instructions. Briefly, 1 µg of plasmid DNA and 3
µL of FugeneHD were mixed in 100 µL serum-free RPMI and incubated for 15 min
at room temperature. This mix was then distributed equally into four wells of a 12-
well plate (Corning Inc.) containing the RAW264.7 Dectin-1 in 1 mL RPMI+ FBS.
Cells were imaged 18–24 h after transfection.

Synthetic peptides. Candidalysin peptide31 was synthesized commercially (Pro-
teogenix or Caslo). The peptide was dissolved in water and added to phagocytes in
concentrations ranging from 1 to 80 µM.

Fig. 10 Candidalysin-induced damage is mainly caspase-1-independent. a–c Cell damage was quantified by measuring LDH release in LPS-primed or
unprimed (no LPS) a hMDMs, b mBMDMs, or c mBMDCs that were infected with C. albicans Wt (MOI 6 or 5) for 5 or 4 h respectively or synthetic
Candidalysin. The caspase-1-inhibitor Z-YVAD-FMK (88.9 µM, a, b), Ac-YVAD-cmk (20 µM, c) or the inhibitor solute control DMSO was added 1 h prior
to infection. d, e Macrophage damage over time was assessed by quantifying PI-positive cells in LPS-primed hMDMs that were infected with d C. albicans
Wt or e incubated with synthetic Candidalysin in the presence or absence of the caspase-1 inhibitor VX-765. f Nigericin (5 μm)-induced IL-1β release in
LPS-primed hMDMs the presence or absence of the caspase-1 inhibitor VX-765. g Cell damage was quantified by measuring LDH release in LPS-primed or
unprimed (no LPS) Wt, Nlrp3−/−, Pycard−/− or Casp1−/− mBMDCs that were infected with C. albicansWt, re-integrant (ece1Δ/Δ+ ECE1) or mutant strains
(ece1Δ/Δ, ece1Δ/Δ+ ECE1Δ184–279) (MOI 5) or incubated with synthetic Candidalysin for 4 h. a–c, g Values are represented as scatterplot with median of
three independent experiments or donors (n≥ 3). d The results of two different donors are displayed separately due to strong donor variability. Data
are shown as mean+ SD of four independent positions in at least 2 wells. e Data are shown as mean+ SD of six independent donors
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Infection of hMDMs, mBMDMs, and mBMDCs. For simultaneous measurement
of phagocyte damage and cytokine release 5 h post infection (p.i.), 2 × 105 hMDMs
or 5 × 105 mBMDMs/well were seeded into 24-well plates. Murine BMDCs were
seeded into 96-well plates to a density of 1 × 105 mBMDCs/well. For cytokine
release or phagocyte damage measurements 24 h p.i., 4 × 104 hMDMs or 1 × 105

mBMDCs/well were seeded into 96-well plates. If necessary, phagocytes were
primed prior to infection for 2 h (hMDMs, mBMDMs) or 3–4 h (mBMDCs) with
50 ng/mL LPS (Sigma Aldrich). Alternatively, heat-killed yeasts or hyphae (mul-
tiplicity of infection (MOI) 10), 100 µg/mL Zymosan (Sigma Aldrich), 100 µg/mL
Curdlan (Invivogen) or 100 µg/mL whole glucan particles (WGP dispersible;
Invivogen) were used as priming agents. For inhibitor studies, the following
compounds were added 1 h prior to infection: the caspase-1-inhibitor Z-YVAD-
FMK (88.9 µM; Merck) or Ac-YVAD-cmk (20 µM, Invivogen), the caspase-1-
inhibitor VX-765 (50 µg/mL, Invivogen) or vehicle control, the actin cytoskeleton
inhibitor Cytochalasin D (10 µM; Sigma Aldrich), the V-ATPase inhibitor Bafilo-
mycin A1 (50–500 nM; Sigma Aldrich), the ROS inhibitor 4-Aminopyrrolidine-
2,4-dicarboxylate (PDTC) (100, 500 µM; Enzo Life Sciences), the potassium
channel inhibitor glibenclamide (25 µM; Sigma Aldrich) or the RIP1-kinase inhi-
bitor Necrostatin-1 (12.5–50 µM; Biomol). Human MDMs and mBMDMs were
infected in 300 µL (24-well plate) or 100 µL (96-well plate) with C. albicans at MOI
1 (24 h infection mBMDMs), MOI 6 (24 h infection hMDMs), MOI 6 (5 h infection
mBMDMs) or MOI 10 (5 h infection hMDMs) or co-incubated with synthetic
Candidalysin. Murine BMDCs were infected in 300 µL in 96-well plates with C.
albicans at MOI 5 for 4 h or co-incubated with synthetic Candidalysin. Nigericin
(1, 5 µM for 4–5 h; Sigma Aldrich), LPS (1 µg/ml; Sigma Aldrich) or ATP (5 mM
for 30 min; Invivogen) were used as positive controls. After incubation at 37 °C, 5%
CO2 for 4, 5 or 24 h, plates were centrifuged at 250 × g for 10 min and supernatants
were harvested.

IL-1 bioassay. The murine cell line EL4.NOB-1, which was kindly provided by
Prof. L. Joosten (Radboudumc, Nijmegen, The Netherlands), has a high level of
surface IL-1 receptor expression, which can recognize both human and murine IL-
1. The cell line tested negative for mycoplasma contamination. Constitutively the
cells produce practically undetectable IL-2 levels, but in response to bioactive IL-1,
the cells produce high concentrations of IL-2. Furthermore, these cells are unre-
sponsive to other cytokines like tumour necrosis factor (TNF), colony stimulating
factors (CSFS), IL-3, IL-5, IL-6, and IFN-γ36. EL4.NOB-1 cells were seeded in 96
well flat-bottom plates at a final density of 1 × 106 cells/mL and grown in RPMI
1640 (Thermo Fisher Scientific) supplemented with 10% heat-inactivated FBS at
37 °C and 5% CO2 and were stimulated for 24 h using culture supernatants of
hMDMs or mBMDMs stimulated in presence or absence of various concentrations
of Candidalysin or C. albicans Wt, ece1Δ/Δ, ece1Δ/Δ+ ECE1 or ece1Δ/Δ+
ECE1Δ184–279 (as described above). As a control EL4.NOB-1 cells were stimulated
with recombinant human IL-1β (R&D systems) in concentrations ranging from
1000 pg/mL to 7.8 pg/mL. After 24 h of incubation at 37 °C, 5% CO2 the culture
supernatants were collected and IL-2 production was measured by ELISA
(eBioscience), and bioactive IL-1 levels were calculated based on the response to
recombinant IL-1β.

In vivo infections and IL-1β quantification. Eight week old female C57BL/6 mice
(Taconic) were maintained in individually ventilated cages under specific
pathogen-free conditions at the 14BS facility at the National Institutes of Health
(Bethesda, MD, USA). With 10 mice per group (two independent experiments with
five mice each) a power was estimated of 80% (β= 0.80) with a type I error below
5% (α= 0.05) for a variance of 15%. Animals were randomly infected intrave-
nously with 2 × 105 yeast cells of the indicated fungal strains and humanely
euthanized 24 h later for analysis of tissue IL-1β levels. Groups infected with Wt
and ece1Δ/Δ were unblended for researchers. Kidneys and spleens were aseptically
removed and homogenized in PBS supplemented with protease inhibitor cocktail
(Roche) and 0.05% Tween 20. Homogenized organs were centrifuged twice to
remove debris and resulting supernatants snap-frozen on dry ice and stored at −80
°C prior to analysis. IL-1β concentration in the tissue homogenates was determined
by ELISA (R&D Systems), following the manufacturers’ instructions.

LDH-based cell damage assay and cytokine quantification. Lysis of macro-
phages and DCs was assayed by measuring the concentration of the cytoplasmic
enzyme lactate dehydrogenase (LDH) in cell culture supernatants using the non-
radioactive Cytotoxicity Detection or CytoTox-ONE™ Kit (Roche, Promega).
Cytokines were quantified in cell culture supernatants by Enzyme-linked Immu-
nosorbent Assay according to the manufacturer’s instructions (Ready-SET-Go!
ELISA; Thermo Fisher Scientific).

Quantification of macrophage damage by time-lapse imaging. For analysis of
macrophage cell death kinetics, a method adapted from Uwamahoro et al.12 was
used. Briefly, 6 × 104 cells/well (hMDMs) were seeded in µ-Slide 8-well chambered
coverslips (ibidi) and primed for 2 h with 50 ng/mL LPS prior to infection. Mac-
rophages were then infected with C. albicans (MOI 6) or co-incubated with syn-
thetic Candidalysin. Non-phagocytosed yeasts were removed by washing after 1 h.
Propidium iodide (PI; 3.33 µg/ml; Sigma Aldrich) was added to stain non-viable

immune cells, chamber slides were transferred to the inverted Zeiss AXIO
Observer.Z1 microscope. At least two independent fields/well were imaged every
15 min at 10× magnification for a maximal time span of 24 h using a bright field
channel and a DsRed filter. Red channel images were processed using the Fiji
software (ImageJ78). After conversion to binary images, the number of PI-positive
cells was determined using the Particle Analyzer tool. The total number of mac-
rophages was determined manually by counting PI-negative macrophages in an
overlay picture of the last time point and adding the Fiji-calculated number of PI-
positive macrophages for the same time point.

XTT assay. To determine the metabolic activity of Candidalysin-treated macro-
phages, 4 × 104 hMDMs/well were co-incubated with synthetic Candidalysin in
triplicates in a 96-well plate for 5 h at 37 °C and 5% CO2 in 200 µL RPMI 1640
medium without phenol red (ThermoFisher Scientific). Subsequently, 50 µL of pre-
warmed 1 mg/mL XTT and 100 µg/mL coenzyme Q0 (Sigma Aldrich) diluted in
RPMI were added and samples were incubated for 2 h at 37 °C. The absorbance at
450 nm was measured with a Tecan Infinite microplate reader, with reference
readings at 570 and 690 nm.

Phagocytosis assay and staining of phagosomes. 1 × 105 hMDMs were allowed
to adhere to coverslips in a 24-well plate overnight. Acidification of the phago-
somes was assessed by adding the acidotropic dye LysoTracker Red DND-99
(Thermo Fisher Scientific; diluted 1:10,000 in RPMI) 1 h prior to infection and
during co-incubation with fungal cells. Where indicated, macrophages were pre-
treated with 100 nM Bafilomycin A1 (Sigma Aldrich) 1 h before infection. Mac-
rophages were infected with C. albicans (MOI 1 to 5) or treated with synthetic
Candidalysin. For synchronization of phagocytosis, plates were incubated on ice for
20 min after infection. Unbound yeast cells were removed by washing with RPMI,
and phagocytosis was initiated by incubating at 37 °C and 5% CO2. Cells were fixed
with 4% paraformaldehyde at the indicated time points. Non-internalized C.
albicans cells were stained with Alexa Fluor 647-conjugated Concanavalin A
(ConA; Thermo Fisher Scientific) for 45 min. For staining of non-internalized and
internalized fungal parts, macrophages were permeabilised with 0.5% Triton X-100
in PBS and stained with Calcofluor White (Sigma-Aldrich). For immuno-
fluorescence staining of LAMP1, samples were blocked with 5% BSA in PBS after
fixation, followed by incubation with a mouse anti-LAMP1 antibody (sc-20011;
1:100; Santa Cruz Biotechnology) for 2 h and with an Alexa Fluor 555-conjugated
anti-mouse IgG antibody (A-21424, 1:500; Thermo Fisher Scientific) for 1 h.
Coverslips were mounted and fluorescence images were recorded using the Zeiss
AXIO Observer.Z1 (Carl Zeiss Microscopy). Phagocytosis and outgrowth rates of
intracellular hyphae were calculated by manually counting a minimum of 50 yeast
cells/sample. Hyphal length of internalized C. albicans cells was measured for 20
cells/sample. The percentage of LAMP1 or LysoTracker-positive phagosomes was
evaluated by counting at least 20 or 50 yeast-containing phagosomes/sample,
respectively. For evaluation of LysoTracker fluorescence intensities of heat-killed
cell-containing phagosomes, the profile option of the Zeiss software ZEN was used.
Line-profiles were placed across at least 10 Candida cells/sample and intensity
peaks of DsRed channel images were recorded.

For analysing phagosomal maturation in murine macrophages, RAW264.7
Dectin-1 macrophages were infected with C. albicans Wt or ece1Δ/Δ mutant (MOI
2). Yeast cells were centrifuged onto macrophages at 300 × g for 1 min and
phagocytosis was allowed for 20 min at 37 °C and 5% CO2, before non-adherent
cells were removed. Remaining non-phagocytosed yeasts were outside-labelled with
Alexa Fluor 647-conjugated ConA for 10 min. All outside-labelled yeast cells were
excluded from the experiment. At given time points, macrophages were fixed in
ice-cold 100% methanol for 5 min at −20 °C, followed by extensive washing in PBS.
Phagolysosomes were detected using rat anti-Lamp1 hybridoma (1D4B, 1:20,
Developmental Studies Hybridoma Bank), and visualized using a donkey anti-rat
Alexa Fluor 488-coupled secondary antibody (712-545-150, 1:1000, Jackson
ImmunoResearch). For quantification of Phosphatidylinositol 4-phosphate (PI(4)
P) and Rab7 acquisition, RAW264.7 Dectin-1 macrophages were transiently co-
transfected with GFP-2xP4M (PI(4)P binding domain) and RFP-Rab7. At given
time points, micrographs were acquired using a spinning-disk confocal microscope
(Quorum Technologies), and at least 16 Lamp1-, PI(4)P- and Rab7-positive
phagosomes were quantified using Volocity 6.3 (Perkin Elmer Inc.), counting at
least 16 phagosomes/sample.

Survival assay. 4 × 104 hMDMs were seeded in 96-well plates in RPMI+ FBS
containing 100 U/mL IFN-γ (Immunotools), infected with C. albicans (MOI 1) and
incubated at 37 °C and 5% CO2. The assay was performed in triplicates. The
survival of yeast cells internalized by macrophages was assessed after 3 h by
removing non-hMDM-associated fungal cells by washing with RPMI, subsequent
lysis of hMDMs with 20 µL 0.5% Triton X-100 per well and plating lysates on YPD
plates to determine fungal burdens (colony forming units (cfus)). Lysate cfus were
normalized to cfu numbers of the respective inoculum.

Caspase-1 activation assay. Caspase-1 activation in hMDMs was assayed using
the FAM FLICA™ caspase-1 Kit (Bio-Rad). Briefly, 1 × 105 hMDMs/well were
seeded into 24-well plates containing glass coverslips and incubated overnight at
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37 °C and 5% CO2. Prior to infection, macrophages were primed for 2 h with 50 ng/
mL LPS. Cells were then infected with C. albicans (MOI 10) or subjected to
synthetic Candidalysin. Non-phagocytosed fungal cells were removed after 1 h by
washing. After 4 h, FAM-YVAD-FMK FLICA™ reagent was added to a final con-
centration of 1× and macrophages were incubated for an additional 1 h. Subse-
quently, nuclei were stained with Hoechst, samples were fixed according to the
manufacturer’s instructions and fluorescence images were recorded by a Leica
DM5500B microscope, using appropriate filters for the detection of FAM FLICA
(green channel) and Hoechst (DAPI channel) signals. Fluorescence intensity of
FAM FLICA in macrophages was quantified using the quantification tool for
region of interest (ROI) of the Leica LAS AF microscope software. ROIs were
placed around macrophages and mean grey values were recorded. Background
values (ROI placed in region without macrophages) were subtracted.

Caspase-1 activity in mBMDCs was determined using the CaspaseGlo 1
Inflammasome assay (Promega). 1 × 105 mBMDCs/well were seeded into 96-well
plates and primed with LPS for 3 h or left untreated for 3 h before infection with C.
albicans (MOI 5) for 5 h. For the CaspaseGlo 1 inflammasome assay, supernatant
were transferred to white 96-well plates and mixed with the supplemented
substrate mix in the presence or absence of the Caspase-1 inhibitor Ac-YVAD-
CHO, according to the manufacturer’s manual. The plotted values were detected
60 min after mixing samples and the supplemented substrate mixes. Blank values of
medium without cells were subtracted from sample values.

Annexin V-based cell death assay. Phosphatidylserine exposure on hMDMs was
quantified using FITC-Annexin V (Biolegend), according to the manufacturer’s
instructions. Briefly, 1 × 105 hMDMs/well were seeded into 24-well plates con-
taining glass coverslips and incubated overnight at 37 °C and 5% CO2. Cells were
infected with C. albicans (MOI 10) or treated with synthetic Candidalysin and
incubated for 3 or 7 h. Staurosporine (1 µM; Sigma Aldrich) was used as a positive
control. Cells were incubated with 5 µL FITC-Annexin V and 5 µg/mL PI (Sigma
Aldrich) in 200 µL annexin binding buffer for 15 min, mounted with DAPI and
imaged immediately using the Zeiss AXIO Observer.Z1 (Carl Zeiss Microscopy).
Images were evaluated manually for Annexin V- and PI-positive cells by counting
at least 200 macrophages.

Caspase-3/7 activation assay. Caspase-3/7 activity in hMDMs was determined
using the Caspase-Glo 3/7 Assay (Promega). 4 × 104 hMDMs/well were seeded into
white clear-bottom 96-well plates and incubated overnight at 37 °C and 5% CO2.
Macrophages were infected with C. albicans (MOI 10) or treated with synthetic
Candidalysin and incubated for 7 h. Staurosporine (1 µM; Sigma Aldrich) was used
as a positive control. Caspase-Glo substrate was added and cells were incubated at
room temperature for 60 min. Luminescence was recorded using a Tecan Infinite
microplate reader.

Luminol-based ROS detection. Total ROS production by hMDMs was quantified
by chemiluminescence. Briefly, 4 × 104 hMDMs/well were seeded into white clear-
bottom 96-well plates and incubated overnight at 37 °C and 5% CO2. All cells and
reagents were prepared in RPMI 1640 without phenol red. Cells were subjected to
synthetic Candidalysin or 100 nM PMA as a positive control. All samples were
prepared in triplicates. Fifty microliters of a mixture containing 200 mM luminol
and 16 U horseradish peroxidase were added immediately prior to quantification.
Luminescence was measured every 3 min over a 60 min incubation period at 37 °C
using a Tecan Infinite microplate reader. For each sample, minimum and max-
imum luminescence values were determined and the difference was calculated
(MAX–MIN).

Intracellular ROS measurement (H2DCF-DA). 4 × 104 hMDMs/well were seeded
into black clear-bottom 96-well plates and incubated overnight at 37 °C and 5%
CO2. Immediately before infection, cells were loaded with 20 μM H2DCF-DA
(Sigma Aldrich) in pre-warmed PBS for 30 min at 37 °C, 5% CO2 and washed with
pre-warmed PBS. Macrophages were then infected with C. albicans (MOI 10) or
treated with H2O2 (1 mM) or PMA (1 µM). Fluorescence (Ex 485/Em 535) was
recorded immediately after infection and after 5 h incubation at 37 °C and 5% CO2

using a Tecan Infinite microplate reader and fluorescence increase over time was
calculated Ex 485/Em 535 (5 h–0 h). Candidalysin treatment led to an unspecific
fluorescence signal and was therefore excluded from analysis. All samples were
prepared at least in duplicates.

Western blot analysis. LPS-primed (50 ng/ml, 2 h or 4 h) and unprimed (no LPS)
hMDMs, mBMDMs or mBMDCs were seeded at 1.5 × 106 hMDMs or mBMDMs/
well in 6-well (hMDMs, mBMDMs) or 1 × 105 mBMDCs/well in 96-well plates.
Cells were infected with C. albicans (MOI 6 or 5), treated with synthetic Candi-
dalysin, or 1 µM (hMDMs, mBMDMs)/5 µM (mBMDCs) Nigericin as a positive
control. Supernatants were collected 5 h p.i.

For hMDMs and mBMDMs, supernatant proteins were precipitated with
chloroform/methanol (1:4). The resulting protein pellets were resuspended in 1 ×
Laemmli buffer (31.25 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% SDS, 0.005%
Bromophenol blue). For SDS-PAGE, 10 µL of supernatant sample (heat-denatured,
with β-mercaptoethanol) were separated and transferred to a PVDF membrane.

Membranes were blocked with 5% bovine serum albumin (SERVA) in TBS-T (50
mM Tris, 0.15M NaCl, 0.05% Tween 20, pH 7.6) and incubated with primary
antibodies specific for IL-1β (AF-201-NA for human samples or AF-401-NA for
murine samples; 1:800, R&D Systems) or caspase-1 (AG-20B-0048 for human
samples or AG-20B-0042 for murine samples, 1:500, Adipogen) in TBS-T
overnight at 4 °C. After washing three times with TBS-T, the membrane was
incubated with horseradish peroxidase-conjugated anti-goat (HAF109, 1:2000,
R&D Systems) or anti-mouse (1:2000, HAF007, R&D Systems) antibodies in TBS-
T followed by three washing steps. Immunoreactivity was detected by enhanced
chemiluminescence (ECL Plus western blotting Substrate; Thermo Fisher Scientific,
Inc.). For mBMDCs, 15 µL of supernatant triplicate samples were pooled and
boiled in 1× Laemmli buffer containing β-mercaptoethanol. Fifteen microliters of
the pooled supernatant sample were separated by SDS-PAGE and transferred to a
nitrocellulose membrane. Membranes were blocked and washed as described above
and incubated with primary antibody specific for caspase-1 (AG-20B-0042, 1:1000,
Adipogen). The membrane was washed as described above and incubated with a
horseradish peroxidase-conjugated anti-mouse antibody (#7076, 1:2000, Cell
Signaling). Ponceau or Coomassie staining of membrane or gel was used to ensure
equal loading of supernatant samples to the gel. Full-size scans of western blots are
provided in Supplementary Fig. 1.

Statistical analysis. Experiments were performed at least in biological triplicates
(n ≥ 3) with at least three different donors (hMDMs) or three independent
experiments or mice (mBMDMs, mBMDCs, RAW264.7 Dectin-1), unless stated
differently. Experiments performed in Nlrp3−/−, Pycard−/− or Casp1−/−

mBMDCs were performed in biological duplicates. All experiments were per-
formed in an unblinded fashion. All data are reported as the scatterplot with
median or for line charts mean+ SD. No exclusion of data was performed except
for Candidalysin induced TNF release, which was confirmed to be false positive in
repeated experiments. Data were analysed using GraphPad Prism 7 (GraphPad
Software, Inc. La Jolla, USA) and a one-way ANOVA for inter-group comparisons
with a Dunnett’s multiple comparison test. For statistical analysis of grouped data,
a two-way ANOVA with Sidak’s multiple comparison was applied. Statistically
significant results are marked with a single asterisk meaning p ≤ 0.05, double
asterisks meaning p ≤ 0.01 or triple asterisks meaning p ≤ 0.001, nd—not detect-
able, n/a—not applicable.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files. All relevant data are available
by request from the authors, with the restriction of data that would compromise
the confidentiality of blood donors.
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