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Abstract

The peculiar attributes of muscles that are stretched when active have been noted for nearly a century. Understandably, the focus of muscle

physiology has been primarily on shortening and isometric contractions, as eloquently revealed by A.V. Hill and subsequently by his students.

When the sliding filament theory was introduced by A.F. Huxley and H.E. Huxley, it was a relatively simple task to link Hill’s mechanical obser-

vations to the actions of the cross bridges during these shortening and isometric contractions. In contrast, lengthening or eccentric contractions

have remained somewhat enigmatic. Dismissed as necessarily causing muscle damage, eccentric contractions have been much more difficult to

fit into the cross-bridge theory. The relatively recent discovery of the giant elastic sarcomeric filament titin has thrust a previously missing ele-

ment into any discussion of muscle function, in particular during active stretch. Indeed, the unexpected contribution of giant elastic proteins to

muscle contractile function is highlighted by recent discoveries that twitchin�actin interactions are responsible for the “catch” property of inver-

tebrate muscle. In this review, we examine several current theories that have been proposed to account for the properties of muscle during eccen-

tric contraction. We ask how well each of these explains existing data and how an elastic filament can be incorporated into the sliding filament

model. Finally, we review the increasing body of evidence for the benefits of including eccentric contractions into a program of muscle rehabili-

tation and strengthening.

� 2018 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. A Brief history of lengthening muscle contractions

As animals move through their environments, muscles

must perform many functions to stabilize, propel, and decel-

erate their bodies. Muscles function not only as the source of

work necessary for propulsion, but they are equally important

in their function as brakes, converting kinetic energy of

motion by recovering potential energy, or dissipating it as

heat. For example, when moving downhill, gravity alone can

result in sufficient kinetic energy that muscles must function

as regulated brakes to decelerate the animal. Likewise, during

running, because footfall always occurs before the center of

mass moves over the foot, the first one-half of the stride nec-

essarily stretches the hip and knee extensors. If the energy

absorbed during this phase of the stride is recovered during
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the muscle shortening cycle, then work done by the muscle is

enhanced.

Lengthening (eccentric) muscle contractions are distin-

guished by several unique properties. In 1924, Fenn1 may

have been the first to observe that force production requires

much less energy if a muscle is stretched while active (and

more energy if shortening, the so-called Fenn effect). Decades

later, his mentor A.V. Hill remained sufficiently puzzled by

this observation to speculate that stretched muscle may func-

tion as an adenosine triphosphate generator (see Lindstedt2 for

a discussion). Perhaps the difference in energy requirement

between lengthening and shortening contractions was best

demonstrated by Abbott et al.3 using mechanically linked

back-to-back stationary bikes. They showed that far less

energy is required to resist than to propel the pedal move-

ment.4 Additionally, and linked to increased energy efficiency,

maximum muscle force is much greater during eccentric con-

traction than during shortening contraction.3
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2. Mechanisms of eccentric contraction

When active muscle is stretched, absorbing mechanical

energy, there are 2 fates of that energy: it can be lost as heat or

stored as elastic potential energy. This stored energy can

increase the work done during subsequent muscle shortening

while minimizing the energy cost. The stored energy is only

available for a short time, which likely sets stride frequency

during locomotion.5 There has been considerable speculation

as to how and where this energy is stored.6�10 However, ten-

dons outside the muscle and collagen within account for only

a small fraction (»4%) of energy storage.8,9 Thus the sarco-

mere itself must store most of the recoverable energy. There

are apparently only 2 candidates within the sarcomere that

could assume this function, the cross bridges and the giant

elastic titin filaments.11

Given that nearly a century has passed since the high-force

and low-energy cost of eccentric muscle contractions were first

described by Fenn,1 it is surprising that so little progress has

been made in identifying the biophysical and biochemical

basis for these muscle properties that play important roles in

the biomechanics and control of movement.12 Herein, we

review the alternative hypotheses, attempt to understand why

definitive answers have not been forthcoming, and suggest

potentially fruitful experiments that could help to rule out

alternative hypotheses. The history of the discovery of mecha-

nisms underlying the “catch” phenomenon in muscles of inver-

tebrates, which shares many features with eccentric

contraction in vertebrate muscles, suggests some potential

approaches.

3. Force enhancement during stretch of active muscle

Because the only active players in muscle sarcomeres were

long thought to be acto�myosin cross bridges, until recently

nearly all mechanistic theories of eccentric contraction attrib-

uted the increased force during and after stretch of active

muscles to cross-bridge properties.6,7,13,14 Reverse engineer-

ing—deducing the function of the cross bridges from the mac-

roscopic behavior of muscles—is a valuable scientific tool for

generating new hypotheses. Deductive reasoning, however, is

less useful for hypothesis testing because it is prone to hidden

and usually untested assumptions and can lead down a spuri-

ous path (e.g., Hill’s adenosine triphosphate generation) when

assumptions are false or important facts are missing. Although

the goal of muscle physiology should instead be to predict the

macroscopic behavior of muscle from an understanding of the

properties of its component parts,15 the practicality of a more

inductive approach is limited by the technical challenges of

measuring cross-bridge properties directly. Yet if we are nec-

essarily constrained to using a deductive approach, it is all the

more important to acknowledge its limitations.

Force enhancement in muscles during and after active

stretching is a classic example of deductive reasoning. The

standard and nearly universal approach has been to measure

the macroscopic properties of stretched muscle and infer the

properties of the cross bridges directly from these measure-

ments,6,7 explicitly or implicitly assuming that the cross
bridges alone are responsible for producing the macroscopic

properties. Despite the evident circularity of this reasoning, it

has become surprisingly difficult even to suggest that there is

room for alternative mechanisms.

Although there is no fundamental theoretical problem with

cross bridges storing energy during stretch, their small size,

short duration of attachment, and rapid detachment from

actin15 impose significant constraints on their ability to store

energy. To explain the lower energy cost of eccentric contrac-

tions, cross-bridge models require ad hoc assumptions. Untest-

able assumptions regarding cross-bridge properties, such as

stiffness, duty ratio, and energy states, are therefore required

for estimating the potential of cross bridges to store energy

during stretch. Early work assumed that all of the instanta-

neous elasticity of muscle resides in the cross bridges13 and

that the cross bridges alone account for all of the increased

force during stretch.6,7 Yet, by 2003, the estimated contribu-

tion of cross bridges to energy storage during active muscle

stretch was only 12%, with cross-bridge elasticity accounting

for a mere 2% of the energy.9 To understand this change in the

perceived contribution of cross bridges to active stretch, it is

instructive to examine this history in greater detail.

Assuming that “there is a virtually instantaneous elasticity

within each cross bridge”, Huxley and Simmons13 concluded

“we now believe that the instantaneous elasticity (or at least

the greater part of it) resides in the cross bridges themselves”.

Lombardi and Piazzesi6 made careful measurements showing

that the force during active lengthening of isolated frog muscle

fibers was nearly double the isometric force. On the basis of

these experiments, they concluded that “steady lengthening of

muscle fibers induces a cross-bridge cycle characterized by

fast detachment of cross bridges extended beyond a critical

level”. Their mathematical model suggested that

“reattachment of forcibly attached cross bridges is 200 times

faster than attachment of cross bridges which detach after

completion of the cycle”. This deductive model was developed

further by Piazzesi and Lombardi.7

Two different lines of evidence contributed to the changing

view of cross bridges between 1995 and 2003. The first was

the observation from molecular motors that the duty ratio of

myosin II in muscle sarcomeres must necessarily be low,

likely <20% and possibly much lower, because the distance

between successive binding sites on actin (»36 nm) is too far

to be traversed within a single cross-bridge cycle.16 The con-

clusion, now generally accepted,17 is that the number of cross

bridges attached at any given time (»20%) is only a small

fraction of the value (77%) typically assumed in previous stud-

ies6,7 and rationalized on the basis of X-ray diffraction and

other empirical observations. The debate is nicely captured in

Huxley’s letter to the editors and Howard’s reply.18

The second line of evidence was the observation that the

compliance of the thin19 and thick filaments20 also contributes

significantly (»70%) to muscle compliance, so that muscle

stiffness is not directly proportional to the number of attached

cross bridges.16,18 Recent studies have quantified the force-

dependent structural changes in thick and thin filaments that

occur on stretch of passive and active muscle,21�23
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demonstrating an intriguing correlation between these struc-

tural rearrangements and force during stretch. However, the

deduction that the cross bridges are responsible for the

observed structural rearrangements and that the rearrange-

ments per se allow more cross bridges to form require further

experiments to demonstrate causation.

Linari et al.9 concluded that the thick and thin filaments

contribute »4% and the cross bridges contribute only »12%

to energy stored during active stretch (with 2% attributed to

cross-bridge elasticity and 10% to redistribution of cross

bridges to different energy states). Although Linari et al.9 point

out that the assumptions made by Lombardi and Piazzesi6

were entirely reasonable at the time, the point we make here is

that until quantities such as cross-bridge duty ratio, stiffness,

and force can be measured directly, estimates of cross-bridge

contributions to force enhancement based on deductive reason-

ing should be regarded with due skepticism. Yet, despite sig-

nificant revisions to the cross-bridge theory in the late 1990s,

the following views are still widely held by most muscle phys-

iologists: (1) cross bridges not only can, but actually do,

account for all of the energy stored during stretch of active

muscle and (2) muscle stiffness is proportional to the number

of attached cross bridges. Until technological developments

enable direct measurements of cross-bridge properties, it

would be wise to insist on an explicit statement of assumptions

and to view conclusions based on deductive reasoning as

speculative.

In their detailed analysis of energy storage during stretch of

active muscle fibers, Linari et al.9 estimated that tendon

(»1.5%), thick and thin filaments (»4.0%), cross bridges

(»12%), and titin (»15.5%) together explained only »34% of

the total energy stored in muscle during active stretch. Their

estimates of the contribution of titin were based on a model in

which sarcomere inhomogeneity increases passive titin force

by stretching 4.5% of sarcomeres to an average sarcomere

length of 3.5 mm, and that the remaining 95.5% of sarcomeres

remain at the same length. The fact that »66% of the energy

stored in muscle during active stretch remained unexplained

makes it apparent that additional mechanisms remain to be

discovered.

4. Residual force enhancement after stretch of active

muscle

Numerous theories have been suggested to explain the

long-lasting increase in force that persists after stretching

active muscle, or residual force enhancement.11,24 The theories

basically fall into 3 categories: cross-bridge theories, sarco-

mere length inhomogeneity theories, and theories based on

engagement of passive elements, now thought to be titin.11

Minozzo and Lira11 suggested that none of these theories can

be conclusively ruled out and, furthermore, that all 3 mecha-

nisms could coexist and are therefore not mutually exclusive.

4.1. Increased force of cross bridges

In contrast with storage of energy during stretch, the rela-

tively fast cycling of the cross bridges on and off of the thin
filaments creates a fundamental theoretical problem for

explaining residual force enhancement. The main problem is

that cross bridges are too small (»5.5 nm with a working

stroke of 12�18 nm),9 remain attached to actin for only a short

time,15 and detach at too high a frequency to explain the resid-

ual force enhancement that persists after stretch over long dis-

tances of hundreds of nanometers and for seconds or even

minutes. Using a Huxley 2-state cross-bridge model, Harry et

al.25 could find no reasonable value of cross-bridge strain that

could account for residual force enhancement. Walcott and

Herzog26 also showed that standard cross-bridge models can-

not account for residual force enhancement without requiring

ad hoc assumptions.

Despite the fundamental difficulties associated with their

small strain and rapid cycling, a variety of cross-bridge mecha-

nisms has nevertheless been proposed to account for residual

force enhancement. These mechanisms include myosin light

chain phosphorylation,27 changes in myofilament lattice spac-

ing observed during stretch using X-ray diffraction,28 and

increased cross-bridge force.29 However, neither an increase

in the force per cross bridge nor an increase in the number of

attached cross bridges alone can account for the long duration

of residual force enhancement, which is difficult to reconcile

with the cross-bridge cycling that must necessarily dissipate

stored energy.
4.2. Sarcomere length nonuniformity

In fact, it was the inability of cross-bridge mechanisms to

account for residual force enhancement25 that led to the devel-

opment of the sarcomere length nonuniformity theory.30,31

This theory originally stated that “lengthening of muscle on

the descending limb (and probably plateau) of the length�ten-

sion curve takes place by extremely rapid, uncontrolled length-

ening of sarcomeres, or half-sarcomeres, in order from

weakest to strongest, with only very slow lengthening of the

others. The fast velocity necessarily arises from the fact that

the weakest sarcomeres will lengthen more rapidly than the

others and, in the process, become even weaker.”31

Notwithstanding numerous observations demonstrating that

sarcomere length does vary in muscle fibers and

myofibrils,32�34 the sarcomere length nonuniformity theory

makes several predictions that have been shown repeatedly to

be false: (1) that sarcomere length variability must be greater

after stretch than during isometric contraction—it is not; (2)

that force enhancement must be restricted to the plateau and

descending limb of the force�length relationship—it is not;

and (3) that force after stretch must not exceed the maximum

isometric force—which it does.35,36 When the length of every

sarcomere in a series was measured in single myofibrils, the

distribution of sarcomere lengths was more uniform in the

force-enhanced state after stretch than after isometric contrac-

tions at the stretched length.34 Force enhancement, although

small, occurs on the ascending limb of the force�length

relationship.35�37 Finally, the force after active stretch may

exceed the isometric force at the stretched length.35,36 Addi-

tionally, force enhancement has been observed in single
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sarcomeres and myofibrils in the absence of sarcomere length

nonuniformity, refuting the necessity of length nonuniformity

for the development of residual force enhancement.33,38

The length nonuniformities are also observed on active

stretch of a single half sarcomere.39,40 However, the mag-

nitude and duration of the observed increases in force

owing to half-sarcomere length nonuniformities are not

large enough to account for residual force enhance-

ment,35,41,42 in addition to suffering from many of the

same limitations as earlier versions of the theory.43 The

persistence of this theory despite the disproof of its central

hypotheses is a strong demonstration that the field is in

need of alternative hypotheses.
5. Titin, a giant elastic filament in muscle sarcomeres

There is increasing evidence that cross bridges, the

engines of muscles, must have an elastic partner to account

for the observed properties of eccentric contraction. Given

the apparent inability of cross bridges alone or sarcomere

length homogeneity to account for force enhancement, the

likelihood that titin plays a role in eccentric muscle con-

traction is a promising alternative hypothesis. Because the

cross bridges are small and their maximum extension is

short, they likely have an elastic partner that can store

energy when stretched over long distances.

Interestingly, the same year the sliding filament hypothesis

was presented, Huxley and Hanson44 speculated that myofi-

brils must possess an elastic element that is essential for main-

taining the position of thick and thin filaments within muscle

sarcomeres. They suggested that this undiscovered elastic fila-

ment should run from Z-disk to Z-disk, spanning the length of

the sarcomere. They even named this unseen but necessary fil-

ament the S filament for stretch45 (see reviews46,47). By the

time that this hypothetical superthin third filament was identi-

fied via electron microscopy,48 this idea too was met with

skepticism even by its original proponents.46,49 By then, it

seemed that all observed properties of muscle could be attrib-

uted to the cross bridges, and thus the third filament was

deemed irrelevant. For more details of this controversy, see

discussions by Rall46 and Lindstedt and Nishikawa.50

Electron microscopic evidence for a superthin sarcomeric

filament48,51 existed long before the protein, originally named

connectin, was identified.52 Three years later, Wang et al.53

described an enormous sarcomeric protein that, as the largest

known protein, was called titin. It was subsequently confirmed

that connectin and titin were the same protein; 54 but, contrary

to normal priority, the name titin remains more commonly

used. F€urst et al.55 were the first to demonstrate, using anti-titin

antibodies, that the giant titin molecule extends continuously

from the Z-disk to the M-line of striated muscle sarcomeres.

Since its discovery and description, titin has been recognized

as just one of a ubiquitous large family of giant sarcomeric

proteins, including twitchin and sallimus, that are similar

structurally and have been found recently to regulate aspects

of force generation and maintenance.56 These proteins include

similar ones found in virtually all metazoans except jellyfish.50
While the structure of titin was being deciphered, so too

were its functions. One of those was as a scaffold on which the

sarcomere was built.57 It was a long road of discovery before

the elastic nature of this giant protein was characterized by

Labeit and Kolmerer,58 who described the 2 key I-band

regions of this molecule, a tandem Ig domain closer to the

Z-disk and a PEVK region—named for its most common

amino acids, namely, proline (P), glutamate (E), valine (V),

and lysine (K)—closer to the thick filament, which differ

greatly in their elasticity. When titin is stretched passively, the

more compliant tandem Ig region extends with low force

whereas the stiff PEVK region requires much more force to

extend.59�62

6. Titin’s role in active muscle

Upon discovery of the titin protein, researchers naturally

sought a role for titin in active muscle contraction.63 Early

work by Horowits and colleagues64,65 demonstrated that titin

prevents axial misalignment of thick filaments during active

muscle contraction, which enables the development of high

isometric forces.66 It is also becoming increasingly accepted

that titin plays a role in length-dependent activation, not only

in the Frank�Starling mechanism of the heart,22 but also in

vertebrate skeletal muscle.67�69 Although the mechanism for

titin’s role in length-dependent activation was initially thought

to involve radial forces that moved the cross bridges closer to

the thin filaments, several studies have now demonstrated that

increasing activation depends on titin stiffness rather than lat-

tice spacing.22,67 It has been suggested that structural changes

in thick and thin filaments, mediated by titin, may contribute

indirectly to the length dependence of activation by modulat-

ing thin filament activation or cross-bridge kinetics.66

Although the purely passive stiffness of cardiac titin isoforms

may be sufficient to produce strain in the thick and thin fila-

ments, the passive stiffness of titin in skeletal muscle seems to

be insufficient to support a role in the axial alignment or rear-

rangement of the thick and thin filaments. For titin to play a

role in the axial alignment or structural rearrangement of the

relatively much stiffer thick and thin filaments in skeletal mus-

cle, an activation-dependent increase in titin stiffness is

required.

7. A role for titin in eccentric contraction

On observing that single muscle fibers shorten faster in the

force-enhanced state, Edman et al.70 were the first to suggest

that force enhancement might involve recruitment of visco-

elastic elements. Edman and Tsuchiya71 reached a similar con-

clusion using load�clamp and unloaded shortening tests.

Herzog and Leonard72 further demonstrated that, when the cat

soleus muscle was stretched, the enhanced force persisted for

several seconds after active stretch, even after deactivation of

the stretched muscle. The increased passive tension that per-

sists after deactivation accounts for some of the force enhance-

ment after active stretch, the simplest interpretation being that

a structural element, now thought to be titin, must contribute

to force enhancement.73 Likewise, when muscle fibers are



History and uncertainties of eccentric contractions 269
stretched, their static tension increases during the early stages

of muscle activation.74�77

Increasing evidence suggests that titin stiffness increases

with Ca2+ influx in muscle sarcomeres. Leonard and Herzog78

demonstrated that, if single myofibrils are activated by Ca2+ at

a sarcomere length of 2.4 mm and stretched to a length beyond

the thick and thin filament overlap (sarcomere length >3.8

mm), the force of myofibrils increases more rapidly with stretch

than it does in passive myofibrils.79 Furthermore, when sarco-

meres are stretched beyond overlap, it is impossible for cross

bridges per se to contribute directly to active force. Finally, no

decreased tension with stretch was observed when the myofi-

brils were stretched slowly to long sarcomere lengths, implying

little or no unfolding of Ig domains.11,80 These observations

taken together led Leonard and Herzog78 to speculate that titin

may bind to actin when Ca2+ is present, decreasing titin’s free

length and increasing its stiffness,81 in addition to relatively

small direct effects of Ca2+ on titin stiffness.73,82
8. Alternative hypotheses for titin’s role in eccentric

contraction

Early studies demonstrated that titin fragments decreased

the motility of actin filaments on myosin in a calcium-depen-

dent fashion,83 suggesting a potential role for titin�actin inter-

actions in active muscle contraction. The demonstration that

titin stiffness increases upon calcium activation of muscle78,79

also suggested several alternative hypotheses that N2A or

PEVK titin might bind to actin in active muscle, thereby short-

ening and stiffening the titin spring, which could account for

the greater forces and lesser energy costs of eccentric contrac-

tions.78,79,84�87 Rode et al.84 suggested that titin binds to actin

at the same sites as myosin, exposed during calcium activation

of the thin filaments, resulting in enhanced force during stretch

and competitive inhibition of force during shortening. Schap-

pacher-Tilp et al.87 developed a model based primarily on data

from Leonard and Herzog’s78 experiments in which PEVK

titin binds to actin only during active stretching and not during

isometric contraction, perhaps to suggest that binding sites on

titin are exposed only during stretching. The site of titin�actin

binding was a free variable, initially set to the most proximal

PEVK residue. Their model is similar to that from Nishikawa

et al.,85 who hypothesized that titin’s N2A region would be

ideal for modulating titin stiffness in active muscle owing to

its location at the border between Ig domains that elongate at

low stiffness and the much stiffer PEVK region. That N2A

titin might bind to actin is also suggested by deficits in titin

activation86 and force enhancement88 in muscles from myosi-

tis with muscular dystrophy (mdm) mice, which carry a dele-

tion in N2A titin.85

Despite the apparent usefulness of titin�actin interactions in

explaining muscle properties during eccentric contraction, a

number of cosedimentation and in vitro motility studies using

recombinant titin fragments have failed to find evidence for

interactions between titin and actin in skeletal muscle,89,90

whereas several studies have demonstrated that calcium

decreases the strength of interactions between PEVK titin and
actin in cardiac muscle.91,92 Yet, an absence of evidence is not

evidence of absence, especially in the case of a giant protein

composed of tens of thousands of amino acids. In fact, a careful

analysis shows that no previous investigations of titin�actin

interactions have included the N2A�PEVK border region

(amino acids 5508�5618 in human soleus titin X90569,58 which

includes 53 of the 83 amino acids deleted in mdm).93 Thus it

remains possible that the distal N2A region and the proximal

PEVK region interact with actin in active skeletal muscle.

In an analysis of Leonard and Herzog’s78 experiments onmyo-

fibrils, Granzier80 suggested that, although difficult technically,

stretching active and passive myofibrils labeled with fluorescent

titin antibodies could potentially be used to test the hypothesis

that interactions with actin decrease or prevent the elongation of

titin upon activation, compared with purely passive elongation. In

fact, DuVall et al.94 demonstrated recently, using an F146 anti-

body that binds to titin near the A-band, that elongation of titin

segments changes on activation in a manner consistent with a cal-

cium-dependent, but not an actin-dependent, increase in titin stiff-

ness. To definitively rule out a role for titin�actin interactions in

eccentric muscle contraction will require investigations of the

N2A�PEVK border region, as well as experiments using addi-

tional antibodies that bind to titin in the I-band.
9. Hypothesis testing, elastic filaments, and a lesson from

the mechanism of invertebrate catch

Known as early as 1885,95 the catch phenomenon in

muscles of invertebrates shares with eccentric contraction the

properties of resistance to stretch and maintenance of force at

low energetic cost.96 Catch is now generally accepted as

resulting from binding of dephosphorylated twitchin, a titin

ortholog,97 to actin. The history of hypothesis testing and

eventual elucidation of the catch mechanism95 provides a cau-

tionary tale for theories of eccentric contraction and may sug-

gest experimental approaches that could help to resolve the

mechanisms.

In molluscan catch, an elastic element develops upon mus-

cle activation, persists for long periods after deactivation, and

adjusts its stiffness during shortening to maintain its force at a

shorter length.98 Before the discovery and general acceptance

of the twitchin-based mechanism, many of the same cross-

bridge theories proposed to explain residual force enhance-

ment were also proposed as mechanisms of catch, including

cross-bridge mechanisms99 and phosphorylation of the myosin

light chain.100 A role for the giant twitchin protein was unex-

pected.95 Until Butler and Siegman101 observed that only the

phosphorylation state of twitchin was correlated with the catch

state, nobody had even suggested that twitchin might play a

role. Although no fewer than 26 proteins are phosphorylated

in the catch state, Yamada et al.56 demonstrated that catch

could be observed in an in vitro assay containing only myosin,

actin, and twitchin, and that catch depended only on the phos-

phorylation state of twitchin. Yet, despite this demonstration,

the idea that catch was due to cross bridges persisted.102,103

Later studies demonstrated that Ca2+ influx triggers dephos-

phorylation of twitchin and that binding of dephosphorylated
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twitchin to actin is sufficient to explain catch,104,105 although

the question remains as to whether twitchin binding to actin is

the only mechanism.95 By analogy, the history of investiga-

tions into the mechanism of catch suggests that a definitive

explanation of the mechanisms of force enhancement awaits

demonstration of the necessity of the critical elements in an

in vitro system, as well as biochemical and biophysical evi-

dence supporting the sufficiency of the mechanism to explain

the phenomenon of force enhancement. Even with these dem-

onstrations, additional mechanisms could contribute as well.

These arguments demonstrate that our understanding of the

mechanistic basis of eccentric contraction is surprisingly

incomplete after nearly 100 years of investigation. The history

of inquiry into the mechanisms demonstrates the vulnerability

of muscle physiology as a fundamentally deductive science to

underlying assumptions regarding cross-bridge properties and

also to the unexpected alternative hypothesis that giant pro-

teins likely play a role. The example of invertebrate catch

demonstrates that giant sarcomeric proteins are important

players in regulating the contractile state of animal muscles.

If, as is generally believed,66 titin is to play a role in stabilizing

the axial position of thick filaments in the sarcomere and in the

structural rearrangement of thick and thin filaments in length-

dependent activation, then titin stiffness must increase sub-

stantially upon muscle activation, as observed by Leonard and

Herzog78 and Powers et al.79 At this point in time, it seems

increasingly likely that titin plays a major role in eccentric

muscle contraction, although many of the molecular mecha-

nisms remain to be discovered. The way forward will be tech-

nically challenging, but it seems likely that experiments to

definitively rule out alternative hypotheses will be forthcom-

ing in the next decade or two.
10. Eccentric contractions, muscle damage, and exercise

interventions

Just as the mechanisms of eccentric contractions have

remained controversial, so too have the benefits of lengthening

contractions as a clinical tool.106 The parallel histories of the

basic understanding of eccentric contractions and their clinical

usefulness is sufficiently striking that we conclude this review

with a brief discussion of eccentric exercise interventions.

Lengthening, or eccentric, contractions have been strongly

associated with muscle soreness and impairment of muscle func-

tion. Not surprisingly, this correlation was interpreted as a causal

relationship. Thus, in 1984, Edwards and colleagues107 summa-

rized, “Recent physiological studies have shown that eccentric

contractions produce considerable muscle damage in normal

healthy subjects.” They even recommended that therapeutic

interventions intended for muscle strengthening “may need to be

altered to avoid eccentric contractions”. It was soon documented

that eccentric contractions were indeed associated with ultra-

structural damage to the sarcomeres,108 providing strength to this

apparent causal relationship. In addition, it was also conjectured

that eccentric damage resulted in muscle restructuring. Thus a

second correlative property was added to the list: an initial bout

of damaging, especially eccentric, exercise was a necessary
precursor to initiate muscle hypertrophy. Although there was no

evidence that either of these postulates is true, these apparently

invariant properties became entrenched dogma. In fact, eccentric

exercise need not cause any muscle damage nor is damage a nec-

essary precursor for muscle growth.109

Certainly, high eccentric forces in muscles na€ıve to eccentric

contractions, or in muscles accustomed only to low forces, can

produce damage. However, if the magnitude and duration of

the eccentric forces are increased gradually over time (1�3

weeks) in repeated bouts, an effect with unclear mechanisms,110

no damage, inflammation, or soreness occurs.109,111,112 Despite

this evidence, high levels of skepticism regarding the clinical

adoption of eccentric exercise in rehabilitation endured. More

evidence was needed to establish the overload principle,113 the

notion that inducing high eccentric forces is a suitable stimulus

for muscle growth and increasing strength. Several stud-

ies109,114,115 ultimately debunked the myth that damage after

eccentric muscle activity is obligatory, thus establishing the

potential for eccentric resistance exercise in rehabilitation. With

the possible exception of rehabilitation for chronic tendinopa-

thies, where a pain response to eccentric exercise is promoted

and required for efficacious treatment,116 eccentric dosing in

rehabilitation is founded on a no-injury response.

A key concept when applying nondamaging, eccentric activ-

ity into a rehabilitation exercise framework is that the loading

dosage must integrate the protective effect of repeated expo-

sures with progressively increasing loads over several ses-

sions.117,118 Judicious eccentric dosing that ultimately

capitalizes on high-force production at a low-cost requirement

can be applied to muscle training and enhance physical func-

tioning in frail or otherwise exercise-limited individuals who

may lack the energy to sufficiently load their muscles without

assistance. Attending to muscle weakness and atrophy (without

injury) in these patient populations is a critical objective in

rehabilitation. If not reversed, these muscle impairments precip-

itate a downward spiral of greater muscle wasting and weakness

and further exacerbate physical dysfunction. In some cases, it

can also increase the risk of a life-threatening fall.

The early studies with healthy subjects114,115 demonstrated

the rehabilitation potential of high-force, low-cost eccentric

resistance exercise; moderate metabolic loads achieved with

concentric exercise on an ergometer at 100 W could be repro-

duced with 400�500 W of eccentric exercise on a specialized

eccentric ergometer without undue soreness or damage. The

suite of clinical studies with patient populations that followed

helped to highlight that eccentric exercise as a safe, feasible,

and efficacious supplement to resistance exercise for rehabilita-

tion purposes. For example, older adults with minimal left ven-

tricular dysfunction and no exertional ischemia exercising

eccentrically produced 4-fold greater muscular stress and

improvements in the distance walked in 6 min without over-

stressing the cardiovascular system, that is, at cardiovascular

and metabolic levels similar to those observed during concentric

exercise.119,120 Similarly, those with severe chronic airway

obstruction (e.g., forced expiratory volume <50% of the pre-

dicted value) achieved nondamaging, high negative work levels

during eccentric ergometry exercise with tolerable levels of leg
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fatigue and dyspnea compared with concentric ergometry

exercise.121

Additional studies support the decreased metabolic strain of

eccentric exercise122 and the application of eccentric exercise

protocols in patients with cardiac conditions120,123�126

because improvements in muscle and physical functioning are

equivalent to outcomes after standard concentric modes of

exercise. The eccentric outcomes, however, can occur at a

lower metabolic cost.117 Furthermore, studies with diverse

patient populations—those living with chronic diseases (can-

cer,127 progressive neurologic conditions,128 or chronic

obstructive pulmonary disease121), or after anterior cruciate

ligament reconstruction,129,130 total knee arthroplasty,131 or a

knee surgical procedure resulting in atrophy, weakness,

fatigue, and mobility deficits—demonstrate a reversal of many

of these impairments over a course of 6�16 weeks of eccentric

exercise. Analogous eccentric outcomes in postmenopausal

women132 and adults with type 2 diabetes133 have also been

linked with positive insulin and glycemic control responses.

The early “doctrine” espousing eccentrics as dangerous and

having no clinical usefulness has now been replaced. The cur-

rent and collective data regarding eccentric resistance exercise

advocate for its use as evidenced by the fact that eccentrics are

now incorporated into clinical guidelines after anterior cruci-

ate ligament reconstruction134 and by editorial commentaries

advocating the use of eccentrics for mitigating muscle and

functional deficits in older adults.135 A hallmark clinical

study112 with older (mean age, 80 years), frail, female and

male patients helped to catalyze the rehabilitation potential of

eccentric exercise. It became clear that 10�20 min of eccen-

tric resistance exercise 3 times per week over 11 weeks can

occur without injury, even in a frail population, and that the

resultant muscle strength and size increases parallel a decrease

in fall risk. Despite the small sample size, these effects

occurred to a greater extent compared with those older frail

adults who performed traditional resistance exercises. Col-

lectively, these eccentric studies with patient populations

repeatedly demonstrate a tolerance of progressive eccentric

loading with increases in negative work from

2-fold to 10-fold. Moreover, the perceived exertion to per-

form these eccentric exercises never exceeds a somewhat

hard level. Thus adults and especially older adults seem to

be more willing to adhere (>90%) to the exercise. Finally,

a recent, large, clinical trial with older patients who have

fallen136 reinforced the notion that eccentric training can

be successfully implemented in fall prevention efforts. In

older adults (>75 years of age) with comorbid disease con-

ditions (>5) who experienced a fall within the past year, a

decrease in fall events occurred over a 9-month period

after eccentric training, although the comparable at-risk

older population experienced equivalent fall prevention

benefits from traditional resistance exercise.
11. Eccentric contraction and the science of discovery

Science is most rewarding when unifying principles

emerge. For that reason, scientists tend to cling to ideas,
perhaps inadvertently establishing doctrine based on marginal

evidence. Thus novel concepts, if at odds with the accepted

dogma, are initially rejected, even though the supporting evi-

dence may be far greater than the evidence that was required

initially to establish that dogma. Experimental evidence is

interpreted through the lens of the currently accepted para-

digm. Because science is conservative and innately resistant to

innovation, progress at times is unreasonably deliberate. The

more radical or transformative the departure from the accepted

scientific norm, the greater the resistance to its acceptance. A

wonderful example is Eldridge and Gould’s hypothesis137 that

evolution occurs via punctuated equilibria rather than the

established dogma of phyletic gradualism. In the accompa-

nying editorial introduction,137 Schopf writes, “Throughout

their essay, however, runs a larger and more important lesson:

a priori theorems often determine the results of ‘empirical’

studies, before a shred of evidence is collected. This idea, that

theory dictates what one sees, cannot be stated too strongly.”

There is sufficient scientific inertia that new ideas must over-

come an enormous activation energy that was virtually never

required of the evidence used to establish the paradigm. The

challenges of directly observing cross bridges provide ideal

conditions for attributing their properties, deduced from mus-

cle behavior, as accountable for eccentric contraction.
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