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Plate tectonics, involving a globally linked system
of lateral motion of rigid surface plates, is a
characteristic feature of our planet, but estimates
of how long it has been the modus operandi of
lithospheric formation and interactions range from
the Hadean to the Neoproterozoic. In this paper,
we review sedimentary, igneous and metamorphic
proxies along with palaeomagnetic data to infer
both the development of rigid lithospheric plates
and their independent relative motion, and conclude
that significant changes in Earth behaviour occurred
in the mid- to late Archaean, between 3.2 Ga
and 2.5 Ga. These data include: sedimentary rock
associations inferred to have accumulated in passive
continental margin settings, marking the onset of sea-
floor spreading; the oldest foreland basin deposits
associated with lithospheric convergence; a change
from thin, new continental crust of mafic composition
to thicker crust of intermediate composition, increased
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crustal reworking and the emplacement of potassic and peraluminous granites, indicating
stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone
terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement
of temporally paired systems of intermediate and high dT/dP gradients, with the former
interpreted to represent subduction to collisional settings and the latter representing possible
hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the
Kaapvaal and Pilbara cratons for the interval 2780–2710 Ma and from the Superior, Kaapvaal
and Kola-Karelia cratons for 2700–2440 Ma suggest significant relative movements. We
consider these changes in the behaviour and character of the lithosphere to be consistent with
a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to
the onset of sustained plate tectonics.

This article is part of a discussion meeting issue ‘Earth dynamics and the development of
plate tectonics’.

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck
(paraphrase of statement by James Riley (1849–1916))

1. Introduction
Plate tectonics is a key feature of our planet. The generation of lithospheric plates and their
interactions with mantle, atmosphere and oceans have produced the environment and resources
that support the biosphere. Plate tectonics and associated feedbacks are a response to secular
cooling of the Earth’s interior. But heat loss also occurs through episodic processes such as
the emplacement of mantle-derived magma in large igneous provinces (LIP). The relative
contribution of, and the control exerted by, continuous and episodic mechanisms of heat loss may
have varied through time, perhaps in response to decreasing heat flow (e.g. [1]). This uncertainty
has led to debate as to how long plate tectonics has been the modus operandi of lithospheric
formation and interaction with suggestions ranging from the Hadean (greater than 4 Ga) to the
Neoproterozoic (less than 1 Ga) [2–5]. In significant part, these reflect differences in what might be
regarded as the onset of plate tectonics, and how best to recognize plate tectonics in the geological
record. A variety of non-plate tectonic modes related to evolving tectonothermal environments
have been observed or proposed for other bodies in the solar system and for the early Earth ([6]
and references therein). Those advocating a pre-plate tectonic regime for the early Earth generally
invoke a fixed or episodically mobile lithosphere, often referred to as a stagnant-lid, but perhaps
more appropriately as a single-lid. This is thought to have involved a convecting mantle egressing
heat through a combination of conduction, mantle plume-focused igneous activity, and periodic
catastrophic overturn of the lithosphere back to the mantle with consequent resurfacing of the
solid Earth [7–10].

Uncertainty into the nature and presence of pre-plate tectonic regimes and the timing of
any change in tectonic regimes relates to the incompleteness of the rock archive in deep time,
differences in the criteria used to infer the existence of plate tectonic and pre-plate tectonic
regimes on the early Earth (ca greater than 2.5 Ga), and disagreements in the significance and
interpretation of available data. It is increasingly accepted, for example, that as subduction
may be localized and even transient, evidence for subduction should not necessarily be taken
as evidence for sustainable plate tectonics. In this paper, we therefore discuss evidence for
the development of rigid lithosphere and for relative lithospheric plate motion derived from
proxy data including sedimentary rock associations ascribed to divergent and convergent basin
environments, granitoid associations indicative of thickening and stabilization of the lithosphere,
structural features indicating a change from vertical to horizontal tectonics, P and T regimes
derived from metamorphic rock associations and their tectonic settings, as well as palaeomagnetic
data for substantial lateral motion of continental lithosphere blocks. We conclude that significant
changes in Earth behaviour occurred in the Meso- to Neoarchaean, around 3.2–2.5 Ga, and that
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these changes are consistent with the transition from a pre-plate tectonic, stagnant-lid setting, in
which any subduction was transient, to a regime of sustained plate tectonics, involving a linked
system of convergent, divergent and strike-slip plate boundaries.

2. Plate tectonics: characteristics
On a plate tectonic Earth, the rigid outer layer, the lithosphere, is broken into tessellated fragments
that are in independent horizontal motion about axes of rotation (Euler poles) at a set rate and
direction (angular motion). This results in a linked system involving the divergent, convergent
and strike-slip relative surface motion of rigid plates (figure 1), with deformation focused at
boundary zones. The plates are made up of continental and oceanic lithospheres with contrasting
chemical–physical properties [12]. Oceanic lithosphere is thin, dense with low mean elevation
(largely submarine), and with new crust of largely mafic composition, whereas continental
lithosphere is thicker, less dense, has higher mean elevation, and has a crustal component of more
intermediate composition. The area ratio of oceanic to continental lithosphere is approximately
60 : 40 [13], with some 75% of the latter presently exposed above sea level (figure 2). Oceanic
lithosphere forms at divergent plate boundaries through adiabatic decompression melting of
the asthenosphere, and due to its greater overall density than the underlying asthenosphere, at
least for all but the youngest lithosphere, is recycled back into the mantle at convergent plate
boundaries [14,15]. The resultant slab pull is the major, on-going driving force of plate tectonics,
estimated to contribute some 80% of the overall force, resulting in all oceanic lithosphere younger
than 200 Ma. Fluid flux from the subducting oceanic lithosphere results in melting of the overlying
mantle wedge and generation of a magmatic arc in the upper plate [16–18]. In contrast with
oceanic lithosphere, continental lithosphere is buoyant with respect to the asthenosphere, resists
recycling, is as old as 4 Ga, and is the archive of Earth history [19]. The bulk composition of the
continental crust is similar to calc-alkaline andesite [20,21]. On the modern Earth, andesite is the
characteristic rock type formed in the upper plate of convergent plate margins and constitutes
the inferred major site for its formation in the past. Plate boundaries form a global, kinematically
linked and dynamic system (figure 1) in which the total area of lithosphere generated at plate
boundaries over medium- to long-term timescales is compensated by recycling back into the
mantle, maintaining a constant-radius Earth.

The geological and geophysical manifestations of plate tectonics on the modern Earth are
relatively well-studied and understood (for example, mid-ocean ridges and transform faults, rift
zones, passive margins, Benioff zones, magmatic arc— trench systems, back arc basins, foreland
basins, mountain ranges). However, extrapolating these established proxies of plate tectonics
to the geological past is hindered by the lack of information from the oceans, increasing gaps
in the geological record with increasing age, the lack of large-scale geometric constraints, and
potential changes in the nature of the geological environment on the hotter early Earth, leading
to uncertainty in the contribution of plate tectonics and/or non-plate tectonic processes to the
long-term geological record (e.g. [5,9] and references therein). Plate tectonics is an ongoing, self-
sustaining system of moving, interacting plates, and it is not always clear how to establish such a
long-lived sustainable process from that preserved in the rock record.

3. Evidence for rigid lithosphere
Rigid lithosphere is taken to be a necessary pre-condition for plate tectonics. Higher mantle
temperatures on the early Earth lead to models of lithosphere that is impregnated with magma
and has reduced viscosity and rigidity, relative to the present day. Hence it is a poor medium
for stress transmission [22–24]. Geologic evidence for the existence of significant areas of rigid
lithosphere on the early Earth is provided by the stabilization of cratons, the accumulation
of large sedimentary basins on subsiding stable substrates, and evidence for brittle fracturing
and emplacement into the cratons by rectilinear dyke swarms [25–28]. These geological features
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extensional strike-slip convergent - subduction convergent - collision

Figure 1. Present-day Earth global relief showing distribution of spreading, subduction, collisional and strike-slip boundaries.
Global relief model based on National Oceanic and Atmospheric Administration (NOAA) ETOPO1 1 Arc-Minute Global Relief
Model [11].
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Figure 2. Histogram and hypsographic curve of land and ocean areas derived from ETOPO1 global relief model of Amante &
Eakins [11].

extend back to the Mesoarchean, become more prevalent in the Neoarchean and are widespread
in the Proterozoic (figure 3).

Extensive sedimentary basin successions overlying stable cratons include the ca 2640–2055 Ma
Transvaal Supergroup on the Kaapvaal craton [29,30] and the 2775–2210 Ma Mount Bruce
Supergroup on the Pilbara craton [31,32]. Older and geographically smaller basin accumulations
on the Kaapvaal craton extend back to ca 3.2–3.0 Ga [33–38] and from ca 3.2 to 3.0 Ga
for fluvial quartz arenites on the Dharwar craton [39]. Younger, predominantly Proterozoic
examples include the ca 2610–2120 Ma Minas Supergroup, San Francisco craton [40], 2480–
2220 Ma Huronian Supergroup on the southern Superior craton [41], ca 2450–1900 Ga Karelian
Supergroup, Baltic craton [42] and late Palaeoproterozoic to Mesoproterozoic basins of India [43].



5

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170405

........................................................

Superior Karelian

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

granitoids
compressional
deformation

syn to post
stabilization
sedimentation

dykesvertical deformation
dome and basin

Bi and 2 mica

hybrid

sanukitoids

TTG

Dhawar N. China Pilbara Yilgarn Zimbabwe Kaapvaal

Figure 3. Time-space plot for the Superior, Karelian, Dhawar, North China, Pilbara, Yilgarn, Zimbabwe and Kaapvaal cratons for
the period 3.2–2.4 Ga, showing the time of major pluton, mafic dyke emplacement and deformational events.

Fracturing and dyke emplacement events within cratons extend back to 3.5 Ga for the North
Atlantic craton in Greenland [44] but only become widespread both within a craton as well
as globally after ca 3.0 Ga. The Ameralik dykes of West Greenland and the equivalent Saglek
dykes in Labrador are the oldest extensive mafic intrusions cutting stable continental crust
[45]. U-Pb zircon dating of the Ameralik dykes indicate they do not represent a single event
but yield ages of 3.5 Ga and 3.25 Ga [44]. Younger, post-craton stabilization events include
the ca 3.0 Ga volcanic rocks at the base of the Pongola supergroup, Kaapvaal craton [46], the
2770 Ma Black range dykes and Mount Roe Basalt, Pilbara craton [31,47,48], the 2575 Ma Great
dyke, Zimbabwe craton [49,50], the ca 2510 Ma and 2475 Ma dykes in the Zimbabwe, Superior
and Kola-Karelia cratons [50], the 2420–2410 Ma dykes in the Yilgarn, Zimbabwe, Superior
and Kola-Karelia cratons [50–52] and the 2370 Ma dykes, Dharwar craton [53] (figure 3). It
is very striking that dyke swarms older than these are rare, which highlights the different
nature of the continental lithosphere before 3 Ga. The synchronicity of late Archean and early
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Palaeoproterozoic (ca 2.5–2.4 Ga) dyke emplacement events in the Zimbabwe, Kola-Karelia,
Yilgarn and Superior cratons further suggests their spatial proximity within the inferred Superia
supercontinent/supercraton [50,54].

Integrated geologic and seismologic studies of Archaean cratons indicate that they obtained
their crustal and lithospheric thicknesses by the late Archaean with some intra- and intercratonic
variability in thicknesses related to subsequent collision between blocks [12,55–58]. Furthermore,
the secular evolution of granitoid composition from tonalite, trondhjemite and granodiorite
(TTG) to K-rich metaluminous and peraluminous granites during the late Archean (3.0–2.5 Ga)
as recorded in most cratons (figure 3, [59–61]) is further evidence for crustal thickening and
reworking, and requires a rigid continental lithosphere by this time.

4. Geological evidence for plate margin interaction
Proxy data for interaction between moving lithospheric plates, whether divergent or convergent,
are preserved in orogenic belts and results in distinctive patterns of geological features, which
have variable long-term preservation potential. Interpretations of the Precambrian rock record
must be modulated not only by an understanding of potential preservation bias, as in the
skewing of sedimentary deposits towards epeiric intracontinental rather than craton margin
deposits [62,63], but also by differences in parameters for the generation of rock associations.
For example, the lack of vegetation resulted in braided channel environments across a range of
basin depositional systems (fluvial, deltaic, tidal), carbonate accumulation mediated by changing
biological controls (evolution), and the impact of secular cooling on the degree of mantle
partial melting and crustal thermal regimes [62,64,65]. Even within such constraints, patterns
of sedimentary, igneous, and metamorphic rock associations, and structural and metamorphic
features associated with plate tectonic settings on the Phanerozoic Earth, are recognizable on the
early Earth suggesting formation by similar tectonic controls.

(a) Divergent plate boundary record
The oceanic lithosphere record of plate divergence only extends back some 200 Ma, corresponding
to a little over 4% of Earth’s 4.56 Ga history. However, the record for continental lithospheric
extension leading to break-up and sea-floor spreading extends back to the Archaean. Continental
margin successions formed though lithospheric extension are divisible into rift (divergent
plate) and thermal subsidence (intraplate) related basinal deposits (e.g. [66]). Rift-related
facies associations consist of clastic, often terrestrial to lacustrine sedimentary units, including
evaporites, with interstratified mafic and bimodal igneous rocks, and display rapid along and
across strike changes in facies [67–70]. They unconformably overlie a now stabilized, pre-
deformed and metamorphosed continental crust assemblage. Passive margin rock associations
are composed of siliciclastic or platformal carbonates, in part reflecting palaeolatitude, with lateral
continuity of facies types and constant stratigraphic thickness reflecting broad scale thermal
subsidence of the rifted continental margin. The transition between rift and passive margin phases
corresponds with the onset of sea-floor spreading and is marked by the break-up unconformity
(figure 4a). Thus, the development of the earliest passive margin successions in the geological
record provides a minimum age for bimodality of lithosphere into rigid continental and oceanic
domains.

The oldest ages for the rift to drift transition are preserved in the North China, Zimbabwe,
Pilbara and Kaapvaal cratons and give ages in the range ca 2750–2500 Ma [71–76]. For example,
the ca 2.7 Ga Fortescue Group of volcanic and sedimentary rocks can be traced for some 500 km
in an east-west direction along the southern margin of the Pilbara craton, unconformably
overlying basement, and inferred to record crustal extension and subsequent break-up of the
craton [71,77,78]. Furthermore, the long-term temporal distribution of ancient passive margin
successions is episodic and are abundant at 2100–1850 Ma and 650–500 Ma, corresponding to the
assembly phases of the Nuna and Gondwana supercontinents, but are scarce during Rodinia
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Figure 4. Schematic cross sections of (a) passive continental margin showing transition from rift to thermal subsidence phases
marked by break-up unconformity and the onset of sea-floor spreading, and (b) continental collision resulting in loading and
subsidence of lower plate and development of foreland basin succession.

assembly and are absent prior to 3 Ga (figure 5a; [67]). The purported oldest passive margin
succession is in the Steep Rock carbonate platform, which unconformably overlies the tonalite
basement of the Superior craton, but sediment accumulation is only poorly constrained between
3.0 and 2.8 Ga [67,85]. The temporal distribution of passive margins is in part mimicked by that
of carbonates, which are generally associated with extensional tectonic settings, and are largely
younger than 2800 Ma [86]. We consider the episodic temporal distribution pattern of passive
margins to reflect selective preservation during the supercontinent cycle [19,87,88].

(b) Convergent plate boundary record
Divergent lithospheric motion must be compensated by lithospheric recycling at convergence
margins on a constant-radius earth. Convergent plate boundaries include subduction zones in
which oceanic lithosphere is recycled back into the mantle beneath an upper plate of either
oceanic (e.g. West Pacific) or continental (e.g. Andes or Japan) lithosphere, and collision zones
in which opposing plates of buoyant continental lithosphere resist and ultimately terminate
subduction (e.g. Alpine-Himalayan belt, figure 1). These contrasting convergent boundary
types are preserved in accretionary and collisional orogens; the former generated at sites of
ongoing subduction and the latter at the termination of subduction [89,90]. Each orogen type
is characterized by distinctive lithotectonic assemblages, which are aligned in long linear belts
parallel to the inferred plate boundary (figure 1).

(c) Foreland basins
Foreland basins form in convergent plate settings due to lithospheric loading driven subsidence
(figure 4b; [66,91,92]). Basin fill includes detritus from the thickened crustal pile of the overriding
plate. The oldest inferred examples occur at around 3.0 Ga and include the Witwatersrand Basin,
South Africa, the Cheshire Formation of the Belingwe Greenstone Belt, Zimbabwe and the Pontiac
Basin, Canada. They are characterized by siliciclastic-dominated sedimentary succession, with
lateral facies and thickness variations reflecting syn-sedimentary tectonic instability including
disruption of the basin succession by thrust faults and/or tectonothermal events in adjoining
blocks with the developing orogenic belt then acting as a sediment source. The late Mesoarchaean
(3.0–2.8 Ga) Witwatersrand Basin formed during amalgamation and stabilization of the Kaapvaal
craton in southern Africa, and it contains detritus derived from the bounding exhumed cratonic
blocks and accreted granite-greenstone terranes (e.g. Barberton and Kimberley [26,34,38]). Facies
and stratigraphic relations for the 2.65 Ga Cheshire Formation of the Belingwe Greenstone Belt are
interpreted to indicate a lower carbonate succession, representing passive margin sedimentation
on an older continental rift succession, and an upper siliciclastic succession that accumulated in
an asymmetric basin [73]. The basin was deformed soon after sediment accumulation by north-
directed thrusts and is interpreted as a foreland basin formed ahead of a northwest advancing
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Figure 5. (a) Histogram of the ages of ancient and modern passive margins [67]. (b) Metamorphic thermal gradient (T/P) for
456 localities grouped as high dT/dP in red, intermediate dT/dP in green and low dT/dP in blue, and plotted against age [64].
(c) Crustal growth model based on Hf isotope ratios in zircons [79] and a shift in the composition of juvenile crust from mafic
to more intermediate compositions accompanied by an inferred increase in crustal thickness [80]. (d) Moving average of δ18O
analyses of zircon versus U-Pb ages distilled from compilation of approximately 3300 [81] and normalized seawater 87Sr/86Sr
curve [82], incorporating data of Satkoski et al. [83,84]. Grey bar highlights age range 3.2–2.5 Ga.

thrust stack [93]. Foreland basins settings have also been proposed for Neoarchaean sedimentary
successions (ca 2.7 Ga) in the Superior Province of Canada, and are unconformably overlain by
molasse basin deposits marking stabilization of the craton [94,95]. Proterozoic foreland basins
have been described from Africa, Australia, India and Canada [26,63,96].
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(d) Metamorphic assemblages
Metamorphic mineral assemblages provide a record of heat flow within the crust at the time
of their formation, which in turn is a function of tectonic environment. A compilation by
Brown & Johnson [64] of temperature, pressure, thermal gradients and age of metamorphism
for mineral assemblage from some 450 localities ranging in age from Eoarchaean (less than
3800 Ma) to Cenozoic (less than 65 Ma) is divisible into three groups based on their thermal
gradients (figure 5b): high dT/dP with thermal gradients of greater than 775°C GPa−1 resulting
in upper amphibolite and granulite facies, and ultrahigh temperature (UHT) metamorphic rocks;
intermediate dT/dP with thermal gradients of 375–775°C GPa−1 and producing eclogite, high
pressure granulite and high pressure amphibolite facies rocks; and low dT/dP with thermal
gradients of less than 375°C GPa−1 associated with blueschists, low temperature eclogites, and
coesite and diamond facies ultrahigh-pressure (UHP) metamorphic rocks. The latter assemblages
are largely restricted to Cryogenian (less than 850 Ma) and younger aged rocks [97], except
for three Palaeoproterozoic (ca 1.8 Ga) examples [98–100] and one Mesoproterozoic (ca 1.14 Ga)
example [101]. Brown & Johnson ([64] and references therein) argue that the intermediate
and high dT/dP gradients represent temporally paired systems that commenced at the end
of the Mesoarchaean (less than 2800 Ma). The intermediate thermal gradients are attributed to
subduction and collisional settings, and the higher gradients with the hinterland of the overriding
plate (e.g. high T back arc environments; cf. [102]) or oceanic plateaus.

Stevens & Moyen [103] describe a spatially linked paired metamorphic belt (ca 3.2 Ga) from
the Palaeoarchaean Barberton granite-greenstone terrane. In the recent geologic past, paired
metamorphic belts are related spatially as well as temporally, and the implications of paired
systems only known to be linked temporally are still being debated. Low dT/dP assemblages,
represented by rock types such as blueschists, are linked to the subduction of cold oceanic
lithosphere, which depress geotherms, and are taken as indicative of contemporary convergent
plate interaction associated with secular cooling of the mantle [3]. UHP coesite and diamond-
bearing assemblages are modelled within a cooler mantle environment (less than 100°C higher
than present-day mantle potential temperatures), which enables a deeper level of detachment of
the oceanic plate lithosphere from the lower continental lithosphere during continent-continent
collision [104].

(e) Deformation features
The boundaries of lithospheric plates on the present-day Earth are long curvilinear features
(figure 1) with stress transmitted through the rigid plates and focused at boundaries as evidenced
by the distribution of earthquake foci. Coupling across convergent boundaries results in crustal
thickening and stabilization forming accretionary and collisional orogens (e.g. Cordillera and
Alpine-Himalayan belts, figure 1). Within these mountain belts sedimentary, deformational,
metamorphic and magmatic elements are aligned parallel to the orogen reflecting the temporal
and spatial integration of processes associated with initial tectonic setting (e.g. continental rifting,
passive margin formation, subduction initiation) and those associated with the stabilization
of these pre-existing tectonic associations into the geological archive (e.g. crustal thickening
and metamorphism of plate margin assemblages during orogenesis) [89,105,106]. Long, linear
accretionary and collisional orogens are recognized throughout the Phanerozoic and Proterozoic
and are testimony to the operation of long, linear plate boundaries reflecting horizontal motions of
plates through Wilson cycles of oceans opening and closing; for example, the largely Phanerozoic
Variscan, Appalachian-Caledonian, Uralian, Terra Australis and Central Asian orogens, and the
Proterozoic Cadomian, East African-Mozambique, Grenville-Sveconorwegian-Sunsas, Mazatzal-
Yavapai, Svecofennian, Capricorn, Trans-Hudson, Trans-North China, Eburnean, Karelia, Akitan
and Aldan orogens.

In contrast with modern orogenic belts, those preserved in Archaean cratons are small with
limited along strike extent, and as a consequence the orogenic tracts lack pronounced length



10

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170405

........................................................

to width ratios. However, the original extent of the cratons has been modified by subsequent
cycles of continental accretion and dispersal. For example, the Yilgarn craton consists of a series
of largely linear granite-greenstone belts that were assembled through late Archaean accretionary
events [107,108]. The belts have an overall north-south trend but are truncated along the northern
and southern margins of the craton resulting in a present-day equidimensional aspect ratio but
indicating a greater and unknown original linear extent. Thrust faults and associated asymmetric
folding are features of a number of Archaean blocks (e.g. southwest Greenland, southern Africa,
Yilgarn) and consistent with models involving extensive horizontal shortening [109–111] forming
linear structural patterns that can be traced for hundreds if not thousands of kilometres across
at least late Archaean cratons [112,113]. The Greenland example consists of a thrust stack of
Meso- and Neoarchaean high-grade gneisses separated by mylonites which indicate top to the
northwest sense of movement that is constrained to around 2.7 Ga on the basis of synkinematic
granite sheets intruded along the mylonites [110]. Furthermore, Komiya et al. [114] argue on the
basis of mapping in the northern part of the Isua Belt, West Greenland, for an inferred ocean
floor stratigraphy of basalt, chert and turbidites repeated across strike by low-angle thrusts.
They interpret this lithotectonic association to represent an accretionary complex formed at a
plate boundary trench through off-scrapping of the upper crustal portion of subducted rigid
oceanic lithosphere. Inferred ocean floor and trench deposits have also been mapped within the
1300 km-long accretionary orogen in the central segment of the North China Craton [115,116].

At a crustal scale, seismic reflection profiles have been used to invoke horizontal Archaean
crustal shortening; for example, a profile from the southern Superior craton across the boundary
between the Opatica Plutonic Belt and the Abitibi Greenstone Belt. North-dipping reflectors can
be traced from near the base of the Abitibi Belt northward to 65 km below the Opatica Belt and
they are interpreted to represent either a fossil subduction zone [117,118] or delaminated lower
crust that formed in response to a collisional event further south [119].

Although some cratons consist of accreted linear granite-greenstone terranes, others are
characterized by dome and keel structures resulting in an original equidimensional outcrop
pattern. For example, the eastern Pilbara, Zimbabwe and Dharwar cratons consist of semi-
circular granitoid domes flanked by low-grade synclinal belts of volcanic and volcaniclastic
greenstones that dip and face away from the cores of the domes, with an overall radial mineral
stretching lineation [120–123]. These features are interpreted to form through vertical, diapiric
motion of granitoid bodies (figure 3) driven by density contrasts between granitic crust beneath
a thick, dense and insulating greenstone cover succession [124,125]. Dome and keel structures
contrast with fold and thrust belts related to horizontal motion of the lithosphere and which
characterize crustal development in younger orogens. In the well-studied East Pilbara region,
pluton emplacement and doming extended over hundreds of millions of years, not just across the
craton as a whole but also within individual plutons [126,127]. Dome and keel structures in the
Pilbara ceased around 3.1 Ga and were replaced by linear structural patterns related to horizontal
tectonics [128]. The timing of this change also corresponds with a change in geochemistry from
within-plate-like igneous rocks to rocks with subduction-related signatures [129]. In the Dharwar
craton, India, dome and basin structures are related to lateral constructional flow in the lower
crust of a hot orogen [130]. These structures formed at around 2.6 Ga [131–134], although the
stratigraphic and provenance record of sedimentary units within the craton suggest a stable
craton as early as 3.0 Ga [135]. Diapiric emplacement of ca 2.75 Ga granite gneiss into greenstone
cover occurs locally in the western part of the Yilgarn craton [136]. Dome and basin structures
are associated with ca 2.5 Ga granite-greenstone terranes in the Eastern Block of the North China
craton [116,137,138], with structural analysis suggesting vertical motion of granite domes between
synclinal greenstone belts [139,140].

(f) Magmatic record of subduction
Igneous rocks have geochemical signatures related to their source composition and the nature of
the melting process, and these in turn reflect the tectonic setting in which they were generated
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Figure 6. Mean Th/Nb ratios of suites of Archaean predominantly mafic rocks which are thought not to have been modified
significantly by crustal contamination, after Dhuime et al. [153]. The green field is for elevated Th/Nb ratios, which are attributed
to subduction-related processes, and the orange field is for within plate magmas. We note that in terms of mass balance it is
easier to develop high Th/Nb ratios by the introduction of some from of contaminant (e.g. of pre-existing crust), than it is to
develop low Th/Nb ratios by a contamination process. Data from: Barley et al. [154], Smithies et al. [150,155], O’Neil et al. [156],
Jenner et al. [157,158], Puchtel et al. [159], Shimizu et al. [160] and de Joux et al. [161]. The small squares with different colours
reflect the different locations plotted. Also plotted are the mean Th/Nb data in 100 Ma time slices (grey boxes) from a global
dataset from Keller & Schoene [65].

[141,142]. This is particularly well established for more mafic rock types, with subduction-related
igneous rocks characterized by negative anomalies in Nb and Ta in mantle normalized minor
and trace element patterns, and hence elevated Th/Nb and Th/Ta ratios [141]. Such geochemical
discriminants work well in characterizing subduction zone rocks over the recent geologic past but
their applicability to the early hotter Earth is less certain. This has led to both plate tectonic and
non-plate tectonic models for early continental crust generation [143–147]. Moyen & Laurent [148]
noted that Archaean mafic rocks are often clustered between subduction and non-subduction
compositions, relative to those on the modern Earth, suggesting that true subduction systems
may have been rare.

Nonetheless, trace element ratios that are not strongly affected by variable degrees of mantle
melting have been used to evaluate tectonic settings in the Archaean. Nb and Th have similar
incompatibility during mantle melting and Th/Nb ratios greater than 0.2 are associated with
subduction-related processes associated with the release of fluids or melts from the subducted
slab [65,141]. Using a weighted bootstrapped resampling methodology of a global dataset,
Keller & Schoene [65] noted little change in average Th/Nb ratios through time, and concluded
that subduction-related magmatism had been ongoing throughout much of Earth’s history.
Other studies have recognized the presence in Archaean successions of boninitic magmas
[144,149–151], and in some cases lithostratigraphic associations [152], similar to those found in
more recent subduction-related settings. However, the results of detailed case studies (figure 6,
and references) suggest that magmas associated with subduction and with intraplate tectonic
settings were generated in different areas in the period 3.8–2.7 Ga, and also that there may be a
link between dome and keel tectonics and intraplate magmatism, at least in some of these areas.

Figure 6 illustrates the tectonic settings inferred from a number of different case studies in
different locations in the Archaean, and compares them with the global compilation of Th/Nb
ratios from Keller & Schoene [65]. The studies depicted have used both major element and trace
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element proxies, and the point is not to interrogate those approaches further but to look at their
outcomes and potential implications for geodynamics. Subduction-like magmatism has been
recognized in West Greenland and the eastern Superior Province at approximately 3.8 Ga, and
then later in the Pilbara of NW Australia at less than 3.1 Ga [129,152,157,162,163]. Magmatism
with no significant subduction signal, here termed intraplate even though it may have been too
early for plates to have been established, has in turn been documented in West Greenland, and
in younger rocks in Barberton, Pilbara and Zimbabwe [129,158–160,164]. Moreover, in the last
three examples, the intraplate geochemical signature is associated with dome and keel exposures
indicating vertical tectonics. In a number of areas, subduction-like geochemical signatures extend
into, and become more widespread, in younger Archaean sequences, most notably the Superior
Province ([165]; but see Bédard et al. [166], for an alternative view [167]), the Pilbara [129], parts
of the Yilgarn [168] and the North China Craton [169]. Similarly, Archaean plutonic rocks are the
sodic-rich TTG suite, and are not replaced by more potassic and peraluminious plutonic rocks,
typical of modern tectonic environments, until the latter part of the Archaean (figure 3; [59]).

5. Palaeomagnetism and lateral motion of Archaean continental blocks
Cawood et al. [2] and Evans & Pisarevsky [27] analysed available Archaean and Palaeoproterozoic
palaeomagnetic data to test the existence of plate tectonics at those times. Both sets of analyses
have been positive, but with some reservations concerning the quality and reliability of those
data. For example, 2687 ± 6 Ma Mbabane Pluton pole [170] is not supported by field test and it
is also located suspiciously close to younger poles. The Kaapvaal Ongeluk Lavas pole [171] has
been recently re-dated [172]. On the basis of such revisions, along with new palaeomagnetic data,
we have chosen a series of poles for testing the possibility of mutual lateral motions of cratonic
blocks in the late Archaean to early Palaeoproterozoic. These are datasets on the oldest rocks
currently available. We found three time intervals around 2680 Ma, 2505 Ma and 2440 Ma that
contain coeval reliable palaeomagnetic data from the Superior and Kola-Karelian cratons with
additional reliable palaeopoles also reported from the Kaapvaal craton for ca 2680 and 2440 Ma
(table 1). There are also two coeval pairs of 2780 Ma and 2720 Ma palaeopoles from Kaapvaal and
Pilbara (table 1).

Following the method used by Cawood et al. [2] and Evans & Pisarevsky [27], we made a
series of palaeomagnetic reconstructions of: (i) Superior and Kola-Karelia at 2680 Ma, 2505 Ma
and 2440 Ma (figure 7a–c); (ii) Superior and Kaapvaal at 2680 Ma and 2440 Ma (figure 7d,e); and (iii)
Kola-Karelia and Kaapvaal at 2680 Ma and 2440 Ma (figure 7f,g). In all reconstructions, we fixed
one of the two tested cratons and show schematically two polarity options (solid and dashed
lines) together with longitudinal uncertainty (three possible positions along the same latitude)
for the other craton. These reconstructions reveal that mutual movements of the tested cratons
occurred sometime between 2680 Ma and 2440 Ma. Figure 7h,i demonstrates the same test for
Pilbara and Kaapvaal for 2780 and 2720 Ma. As the palaeopoles for these two cratons suggest
high latitude positions, we have shown only one polarity option. We also consider this test as
positive, but admit that large circles of confidence theoretically permit reconstructions with the
same mutual position of the two cratons at 2780 Ma and 2720 Ma, if we allow minimal overlap
of the circles of confidence (expressed at the 95% level). Owing to longitudinal uncertainty and
polarity ambiguity it is not easy to estimate the relative scale of movements of the tested cratons.
However, using the reconstructions of Superior and Kaapvaal at 2680 Ma and 2440 Ma, which
have the most precise palaeopoles with small circles of confidence, we estimated minimal distance
of their mutual movement between 2680 and 2440 Ma. We chose the closest possible position of
the two cratons at those ages and show them in Superior coordinates (figure 8). The shortest
possible movement of Kaapvaal with respect to Superior is along a small circle (the pole of this
circle is shown in red and the reference point in black) with the radius of about 16° by about 170°
clockwise. This will require about 5100 km of movement of the reference point. All other options
for these two cratons between these two time periods suggest larger distances. We conclude that
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Table 1. Palaeomagnetic data. Hiage and Lowage indicate the age range of the studied rocks. Tests refer to palaeomagnetic
field tests indicating the primary remanence [173] for assessing the reliability of palaeomagnetic data. Plat, Plong and A95 refer
to the measured latitude and longitude of palaeomagnetic poles and their 95% confidence circle.

Craton and
age bracket rock name Hiage Lowage tests Plat Plong A95 reference

2780 Ma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kaapvaal Derdepoort Basalt 2787 2777 G+ −39.6 004.7 17.5 Wingate [174]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pilbara Black Range Dolerite
Suite

2774 2770 G*+,C*+ −3.8 130.4 15.0 Evans et al. [175]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2720 Ma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kaapvaal Westonaria Basalts 2722 2706 −17.1 047.9 18.5 Strik et al. [176]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pilbara Pilbara Flood Basalts,
Packages 8–10

2721 2710 −59.1 186.3 6.1 Strik et al. [177]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2680 Ma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Superior Otto Stock Dykes and
Aureole

2679 2681 C*+,R− 69.0 227.0 4.8 Pullaiah & Irving [178]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kola-Karelia Koitere Sanukitoids 2686 2682 −68 192.5 19.5 Mertanen & Korhonen
[179]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kaapvaal Rykoppies Dykes 2685 2681 C+ −62.1 336.0 3.8 Lubnina et al. [180]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2505 Ma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Superior Ptamigan Mean 2507 2503 −45.3 213.0 13.8 Evans & Halls [181]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kola-Karelia Shalskiy Gabbronorite
Dyke

2512 2504 C*+ 22.7 222.1 11.5 Mertanen et al. [182]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2440 Ma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Superior Matachewan N 2449 2443 C+ 52.3 239.5 2.4 Evans & Halls [181]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kola-Karelia Avdeev Gabbronorite,
Shalskiy Dyke

2510 2441 C*+ −12.3 243.5 14.0 Mertanen et al. [182]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kaapvaal Ongeluk lava and
related intrusions

2429 2423 G*+ 04.1 282.9 5.3 Evans et al. [171];

Gumsley et al. [172]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

there is compelling evidence for significant relative horizontal movement between cratonic blocks
by the late Archaean.

6. Late Archaean changes in character of continental lithosphere
Sedimentological, structural, magmatic, metamorphic and palaeomagnetic datasets provide
proxy evidence for lateral motion of continental lithosphere extending back until at least 3 Ga,
with selected geochemical discriminant data, such as Th/Nb, inferred to represent supra-
subduction zone settings at least locally as old as 3.8 Ga. Furthermore, regional and global datasets
for the continental crust and its lithospheric mantle indicate significant changes in its character
during the Meso- to Neoarchaean (3.2–2.5 Ga; for example, figures 3 and 5).

(a) Continental crust composition and thickness
The continental crust has evolved from a dominantly mafic composition prior to 3.0 Ga to an
andesitic composition today. For example, Tang et al. [183] used Ni/Co and Cr/Zn ratios in
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Figure 7. Palaeomagnetic reconstructions of Superior, Kola-Karelia and Kaapvaal cratons at 2680 Ma (a,d,f ), 2505 Ma (b),
2440 Ma (c,e,g); of Kaapvaal and Pilbara cratons at 2775 and 2720 Ma (h,i). Arrows denote directions to the present data north.
Alternative polarity option is shown with dashed outlines. See also text.

Archaean sedimentary and igneous rocks as a proxy for bulk MgO composition of the Archaean
upper continental crust. It remains difficult to tie down the extent to which the rocks sampled
by greenstone belt sediments are representative of the upper crust. Nonetheless, Tang et al. [183]
concluded that this crust had an initial MgO content of ca 15% prior to 3 Ga, corresponding to a
mafic bulk composition, but had a MgO content of ca 4% by 2.5 Ga, similar to modern felsic upper
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2440 Ma

2680 Ma

Figure 8. Palaeomagnetic reconstructions of Superior and Kaapvaal cratons at 2680 and 2440 Ma (in the Superior coordinates)
with minimal distance between the two cratons.

continental crust. Compiled records of Cr/U in terrigenous sediments suggest derivation from
predominantly mafic crust prior to 3 Ga followed by a 0.5–0.7 Ga transition to crust of modern
andesitic composition [184]. Similarly, statistical modelling from a database of 70 000 analyses of
igneous rocks preserved within the continental crust reveal a significant change in secular trends
at around 2.5 Ga inferred to involve a decrease in mantle melt fraction in basalts, and in indicators
of deep crustal melting and/or fractionation (Na/K, Eu/Eu* and La/Yb ratios in felsic rocks,
[185]).

The rapid shift in elemental abundances relative to the progressive decrease in mantle
temperature around the Archaean–Proterozoic boundary indicates mantle temperature alone
cannot be the driver for these changes [65], and are consistent with changes in processes of crust
generation. Dhuime et al. [80] documented a progressive increase in the median Rb/Sr content
of igneous rocks at the time of their extraction from the mantle, from relatively low values prior
to 3 Ga rising to maximum values between 1.8 to 1.0 Ga. There is a positive correlation between
Rb/Sr ratio, SiO2 content, and thickness of crust for the compiled dataset [80]. The changing
Rb/Sr equates to SiO2 content and thickness of new continental crust, increasing from ca 48% and
20 km before 3.0 Ga to more intermediate compositions of up to ca 57% and 40 km thick crust by
1.8 Ga before decreasing after 1 Ga to values of 55% and 30 km towards the present (figure 5c).
By contrast, Greber et al. [186], using δ49Ti isotopic composition of shales, which they argue
is a proxy for SiO2 content of the source, noted values that are both similar to felsic rocks as
well as relatively constant over the last 3.5 Ga. Thus, they proposed that felsic rocks have been a
dominant component of the eroding crust throughout this timeframe, and that the source of these
fractionated compositions was plate tectonics.

(b) Continental crustal reworking, recycling and subaerial exposure
Temporal variations in U-Pb, Hf and O isotopes in detrital zircons (for example, [79,81]) have
been used to assess the relative contributions of new and reworked continental crust. Global
compilations of δ18O in zircons show a marked departure away from mantle values after
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the Archaean [81,187], which is taken to indicate significant continental crustal reworking
(and increasing crustal thickness) since that time. Spencer et al. [81] concluded that the
highest proportion of reworked crust corresponded with periods of continent/supercontinent
amalgamation and the proportion of reworked crust was uniformly low prior to about 2.7 Ga
(figure 5d). Periods of supercontinent assembly are taken to reflect periods of continental
convergence, assembly and thickening, resulting in reworking of continental lithosphere. The
generally low δ18O, juvenile Hf isotopic values in the Archaean implies little in the way of crustal
thickening associated with collision-related orogenesis and reworking.

Dhuime et al. [79] used zircon isotopic data to argue for a decrease in the rate of continental
growth at around 3.0 Ga. Assuming that new continental crust has been generated at a broadly
constant rate since say 4 Ga, the decrease in the rate of crustal growth at approximately 3 Ga is
attributed to an increase in the rates at which continental crust is destroyed—along destructive
plate margins (figure 5c; [153]). In a similar vein, inclusions in continental sub-lithospheric mantle
diamonds display a major change at around 3 Ga with the incoming of eclogitic inclusions [188].
Eclogite provides evidence of the return of the basalt protolith to the mantle, which Shirey &
Richardson [188] related to the onset of subduction but could equally be achieved via any
mechanism for crustal foundering, such as delamination.

Isotopic proxies of seawater composition indicate a change towards the end of the Archaean
that is related to the widespread emergence of continental crust. The 87Sr/86Sr ratio of carbonates
deviates from contemporaneous mantle values by 3 Ga and possibly as early as 3.2 Ga (figure 5d)
[83,189]. Similarly, δ66Zn values and the Nd-Hf isotopic composition of banded iron formation
deviate from mantle values and shifting towards values for modern seawater by around 2.7 Ga
[190,191]. These observations require the emergence and erosion of a significant area of evolved
crust suggesting that by around 3.2–2.7 Ga the rheology of the continental crust was sufficiently
rigid to enable it to record dyke swarms, be thickened, and become emergent (cf., [192,193]).
The temporal distribution of LIP is also indicative of significant crustal emergence around this
timeframe [28]. If Archaean greenstone belts are LIPs, they are largely submarine [194]. The
first subaerial LIPs occur around 3 Ga in the Pilbara and Kaapvaal cratons and they become
widespread across all cratons by the end of the Archaean, consistent with a major period of
continental thickening and stabilization [195].

(c) Linking geological proxies with geodynamic modelling
Late Archaean changes in the bulk composition and thickness of continental crust along with
increasing amounts of reworking and recycling of the crust, its widespread subaerial exposure
(figure 5), and the emplacement of dyke swarms, are indicative of stabilization of the cratons.
Additional expressions of this stabilization include a change from sodic TTG magmatism to
K-granites and peraluminious granites [59]. These changes in granitoid composition are often
co-incident with pulses of regional deformation and metamorphism followed by a termination
of tectonothermal activity and isolation of the craton from subsequent tectonic events (figure 3).
The timing of these changes are not synchronous but vary from craton to craton; for example, ca
3.7 Ga in parts of the North Atlantic, 3.0 Ga in the Pilbara, 2.9 Ga in the Amazon, 2.85 Ga in the
Kaapvaal, 2.75 in the Karelia, 2.7 Ga in Superior and Yilgarn, and 2.6 Ga in Dharwar, and 2.55 Ga
in North China.

Late Archaean changes in composition and character of rock associations occur within a
framework of decreasing mantle potential temperature [196,197], which is associated with a
change in mantle viscosity and lithospheric rigidity [192]. Although absolute values for mantle
potential temperature in the Archaean are debated (e.g. [197–199]), all involve secular cooling
since at least 3 Ga, which would result in lower degrees of partial melting of the mantle and less
melt impregnation within the lithosphere (cf. [23]). Secular cooling impacts on mantle viscosity,
which along with increasing rigidity of the lithospheric lid [200,201], will lead to an increase in the
wavelength of mantle convection, which in turn feeds back into the mechanism of heat transfer
[202]. Plate tectonics is associated with mantle convection of wide aspect ratios [203], whereas
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Figure 9. Schematic temporal evolution of the lithosphere associated with decreasing mantle temperature. Early Earth, prior
to 3.2 Ga involves a non-plate tectonic regime, with magmatism characterized by a bimodal association of TTG (tonalites,
trondhjemites andgranodiorites) andgreenstonebelts.Mantle plumesare amajor sourceofmaficmagmatism.Recyclingoccurs
through delamination and mantle convection is of relatively small wavelength. Subduction where present is transitory. Plate
tectonics is envisaged to have commenced after 2.5 Ga and is associated with large aspect ratio mantle convection. Between
these two tectonic regimes is a transition phase inwhich the lithosphere is stabilized, differentiates into oceanic and continental
types, with the latter undergoing thickening enabling its emergence and erosion.

the hot early Earth, whether operating in a stagnant-lid or in some other mode, would have had
more vigorous convection of shorter wavelength and aspect ratio beneath a relatively viscous lid
impregnated by plume-related igneous activity [204–206].

Production of continental crust, largely dominated by production of sodic TTG plutons
resulted in differentiation of the lithosphere from an early largely mafic mono-lithologic crust
into oceanic and continental types with contrasting density and thickness profiles. Cooling,
melt extraction and dehydration of the Archaean lithosphere resulted in stabilization [55,56]
of increasing volumes of continental lithosphere [79,207], which combined with their thermal
blanketing effects on the convecting mantle [208,209], enable effective stress transmission through
the lithosphere and its focusing at cratons’ margins [210], breaking the lithosphere into plates and
the formation of subduction zones [211]. Thus, we speculate that the observed changes in the
geological archive in the late Archaean, in association with secular mantle cooling, corresponds
with a change from a poorly mobile to a mobile lithosphere, and the reorganization of short to
long wavelength mantle circulation. This marks the transition to a regime with a global pattern of
linked plate boundaries, enabling sustained plate motions, and commencement of the large-scale
continental assembly and dispersal. This evolving geodynamic scenario is shown schematically
in figure 9.

The staggered timing between cratons in the development of different types of sedimentary
basins, structural styles, metamorphic patterns and igneous rock associations and their
geochemical signatures (for example, figure 3) suggest that the change from a non-plate tectonic
mode to plate tectonics transitioned over some 500 to 700 Myr between ca 3.2 Ga and 2.5 Ga
(cf. [8]). Localized and episodic subduction may have taken place prior to this transition based on
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geochemical signals [152,157], numerical modelling constrained from Archaean lithostratigraphic
assemblages [212], modelling of major meteorite impacts [213,214], and compression around the
margin of plumes [215]. Within the caveat of a fragmentary and incomplete geologic record,
these inferred early pulses of subduction are not considered to form part of a globally linked
system of divergent and convergent boundaries. The episodic nature of this early subduction
likely reflects the infrequent nature of the driving mechanism (for example, meteorite impact),
the hot nature of the mantle leading to slab breakoffs, which prevented the development of a
sustained slab-pull driver for ongoing subduction, and the localized and time-limited nature of
the compressive force (mantle plume) resulting in transient and non-self-sustaining subduction.
In this pre-plate tectonics regime, crust formation and dehydration progressively increased the
rigidity of sizeable blocks of lithosphere. Once entrained in the mantle convection pattern, the
blocks could widen, migrate at larger rates, and undergo thickening and compression at their
margins as they assembled, whereas other regions remained in the undeformed, poorly mobile
lid tectonic mode.

7. Conclusion
Arguments over the timing of the initiation of plate tectonics on Earth are driven in part
by differing interpretations of available spatially and temporally fragmented datasets, and
through emphasis on selected data that are considered to support a particular outcome. On
the modern Earth, features indicative of plate tectonics are directly observable within an
established kinematic reference frame and demonstrate lateral movement of rigid plates of
oceanic and continental lithosphere about Euler poles of rotation. On the early Earth, or indeed
for much of the Palaeozoic and older Earth, the kinematic reference frame is lacking and oceanic
lithosphere, which forms some 60% of the present-day surface, is largely lost and limited to rock
associations such as ophiolites, which are themselves the source of debate as to their exact tectonic
setting (compare [166,216–218]). Furthermore, interpretations of datasets are often disputed; for
example, geodynamic setting derived from geochemical signatures. Thus, to date, no individual
observation, or even groups of observations, provides unique undisputed evidence for plate
tectonics on the early Earth, and it may be that such information is not readily preserved in
the geological record. Although evidence from sedimentary, igneous and metamorphic rock
associations outlined here can be related to interactions across plate boundaries, some researchers
have argued that in the Archaean such features form through lithospheric movement coupled to
a convecting mantle, and are not formed by a linked system of plates moving in response to ridge
push or slab pull (e.g. [9]).

Our approach is to combine abductive reasoning in which we take observations from what are
inevitably particular sites in the geological record, with information from more global datasets
to integrate information from different scales and seek the simplest and most likely explanation.
The well-known example used to illustrate this logical inference is that if something looks like
a duck, swims like a duck, and quacks like a duck, then it probably is a duck. Of course, we
realize that individual criteria often provide non-unique interpretations (e.g. the bill of a duck
and a duck-bill platypus) but spatially and temporally linked sets of observations (bill, web feet,
feathers, quaking) reduces possible alternatives. Thus, the similarity between features formed
on the present day, plate tectonic Earth and those back to the late Archaean, such as passive
margins, foreland basins, compressional linear structures, temporally paired metamorphic belts,
and palaeomagnetically constrained relative motion of lithospheric blocks, as well as the temporal
continuity of these features across this time period, validates our interpretation that they formed
in a mobile lid regime related to plate tectonics. The time at which individual features appear in
the geological record vary, and although this in part reflects the vagaries of preservation, they
generally start to appear in the Mesoarchaean and are widespread across most cratons by the end
of the Neoarchaean. This increasingly widespread distribution through the Archaean, as well as
their noted similarity to features observed on a modern day plate tectonic Earth, suggest they are
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not isolated features related to non-plate tectonic or episodic plate tectonic processes but record
the parturition of a linked system of lithospheric plates.

Recognition of features considered to be characteristic of subduction, whether they be in
the Hadean, Archaean or Proterozoic and younger successions, does not directly constrain
the start of plate tectonics; subduction does not in and of itself equate to plate tectonics.
This is because subduction, at least in earlier parts of Earth history, was likely episodic
[213,215,219]. Thus, the key issue in defining the start of plate tectonics is not in establishing
when subduction first appeared on Earth, although that is a minimum prerequisite, but rather
when convergent along with divergent boundaries delineated the edges of a globally linked
system of plates. Unfortunately, this concept of a globally linked system can only be established
in the post-Pangaea Earth in which ocean floor is preserved, enabling a kinematic reference
frame of plate interaction to be established. Recent attempts have been made at full-plate global
palaeogeographic models for pre-Pangaean times [220–223]. Nevertheless, when plate tectonics
initiated on a pre-Pangaea Earth cannot be unequivocally proven specific proposals can be
falsified [224]. The challenge for those proposing a birthdate for plate tectonics is not more
evidence for subduction at specific time or place but rather to show that it was sustained and part
of a global system of plate boundary interaction. We consider that the progressive development
of geological proxies of rigid lithosphere and for convergent and divergent plate interaction
across all the major cratons by the late Archaean is the expression of the formation of such a
linked system.

In summary, we consider changes in the behaviour and character of the lithosphere in the
later parts of the Archaean to be consistent with a gestational transition from a non-plate tectonic
mode to the birth of plates, followed by sustained plate tectonics. We emphasize the need to
avoid arguments built on observations from specific regions or data types, not least because of
the difficulties in establishing the wider significance of localized datasets in highly heterogeneous
material, such as the continental crust. Such information is important but it must be part of a
multicomponent analysis to build geologically constrained and integrated global datasets. For
it is only through the integration of information from different scales that Earth-wide linked
evolutionary trends can be established, and those remain the prerequisite in recognizing tectonic
modes of lithospheric plate interaction.
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