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Less than 25% of the volume of the juvenile
continental crust preserved today is older than 3 Ga,
there are no known rocks older than approximately
4 Ga, and yet a number of recent models of continental
growth suggest that at least 60-80% of the present
volume of the continental crust had been generated
by 3Ga. Such models require that large volumes
of pre-3Ga crust were destroyed and replaced by
younger crust since the late Archaean. To address
this issue, we evaluate the influence on the rock
record of changing the rates of generation and
destruction of the continental crust at different times
in Earth’s history. We adopted a box model approach
in a numerical model constrained by the estimated
volumes of continental crust at 3Ga and the present
day, and by the distribution of crust formation
ages in the present-day crust. The data generated
by the model suggest that new continental crust
was generated continuously, but with a marked
decrease in the net growth rate at approximately 3 Ga
resulting in a temporary reduction in the volume
of continental crust at that time. Destruction rates
increased dramatically around 3 billion years ago,
which may be linked to the widespread development
of subduction zones. The volume of continental crust
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may have exceeded its present value by the mid/late Proterozoic. In this model, about 2.6-2.3
times of the present volume of continental crust has been generated since Earth’s formation,
and approximately 1.6-1.3 times of this volume has been destroyed and recycled back into
the mantle.

This article is part of a discussion meeting issue ‘Earth dynamics and the development of
plate tectonics’.

1. The continental growth conundrum

The rates and timings of net addition of newly generated (or juvenile) crust to the continental
landmass, commonly referred to as ‘continental growth’, have remained matters of considerable
debate. This is, in part, because it is difficult to separate the process of crust generation from
the processes of crustal destruction, reworking and preservation from the present rock record
(e.g. [1-6]). Less than 25% of the volume of the continents contains rocks with Nd or Hf crust
formation ages older than 3 Ga ([1,5,7-11], and light brown dashed curve in figure 1), less than
5% of the exposed surface of the continents is of juvenile rocks older than 3 Ga ([14,15], and dark
brown dashed curve in figure 1) and there are no known rocks with crystallization ages older
than 4.02 Ga [16]. Juvenile rocks preserved on Earth’s surface show peaks and troughs in their age
distributions [14,15] that translate into stepped-like curves when plotted as cumulative ‘growth
curves’ (dark brown dashed curve in figure 1). These age peaks have been regarded as reflecting
episodic pulses of new crust generation during mantle ‘superplume’ events [15,17-20], and/or as
resulting from the better preservation potential of some rocks over others through time [3,21,22].

Continental growth curves depict how the volume of continental crust has changed with time.
They therefore reflect the balance between the generation and destruction of crust at different
times in Earth’s history. Some curves are calculated from the cumulative proportion of crust
formation ages in the present-day crust (figure 1, dashed curves). Such curves are based on
the assumption that the relative proportion of juvenile magmatic rocks of different ages that are
exposed on the continents surface [14,15], or the Nd isotope composition of continental sediments
with a range of deposition ages [7,23], can be used to estimate the volumes of juvenile continental
crust generated at different times in Earth’s history. However, as recently discussed in Dhuime
et al. [8] (and see also refs [1,24,25]), it seems unlikely that the relative proportions of rocks with
Phanerozoic and Precambrian crust formation ages presently preserved in the rock record reflect
the relative volumes of Phanerozoic and Precambrian crust that had been generated.

A number of approaches have therefore sought to evaluate the volumes of crust of different
ages independent of the volumes preserved at the present day (figure 1, solid lines). These include
‘mantle-derived’ growth curves from Nb/U variations in basalts and komatiites [12,26] (black
curve), ‘atmosphere-derived’ growth curves from Ar isotope variations in hydrothermal quartz
[13,27] (blue envelope curve) and ‘crust-derived” growth curves from both Nd isotopes in shales
[7,8] (dark red curves) and Hf isotopes in zircon [1,2] (green curve). A key issue is the nature of the
geochemical reservoirs sampled by the different approaches, and it is striking, for instance, that
the worldwide variation in Nd isotopes in shales over the last 1 Ga does not follow the variation in
Hf isotopes in zircon (figure 2), although both are records from the continental crust. It is widely
accepted that shales (i.e. fine-grained continental sediments) sample the upper continental crust
(e.g. [28,29]), and even though zircon is thought to crystallize preferentially from relatively high
silica magmas (e.g. [10,30,31]), the distribution of the median zircon eys data around chondritic
(CHUR) values indicates that the zircon record samples more of the bulk continental crust. The
discrepancy between the shale and zircon records over the last billion years has, however, little
influence on the shape of the continental growth curves modelled from these two records (figure 1,
red curves and green curve), as recently demonstrated by Dhuime et al. [8].

The continental growth curves that are not based on the present-day age distribution of crust
formation ages encouragingly yield similar results (figure 1, solid lines), suggesting that at least
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Figure 1. A selection of recent continental growth models (curves 1-4), which suggest that 60—80% of the present volume of
continental crust was established by 3 Ga. These curves are in stark contrast with the cumulative distribution of crust formation
ages in the crust preserved today (curves 5 and 6). The gap between curves 1-4 and curves 5-6 implies the destruction of large
amounts of ancient continental crust (schematized by the dashed vertical arrows). The rates at which continental crust was
destroyed and replaced by younger crust are explored in this contribution. References to curves: (1) Dhuime et al. [2], (2) Dhuime
etal. [8], (3) Campbell [12], (4) Pujol et al. [13], (5) Condie & Aster [14], (6) Dhuime et al. [8].
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Figure 2. Variation in the ey in zircon (primary Y-axis) and in the eyq in shales (secondary Y-axis) as a function of the
crystallization age of the zircons (zircon data), or the deposition age of the sediments (shales data). The running median of the
data calculated for every 100 Myr time slice is represented by the dots (zircon data) and diamonds (shales data). Zircon database
(including zircons from both juvenile and reworked crust) from Roberts & Spencer [11] and shales database from Dhuime et al. [8].

60% of the present volume of the continental crust (PVCC) was established by 3 billion years
ago. These curves are in contrast with those calculated from the cumulative proportion of crust
formation ages in the present-day crust (figure 1, dashed lines), and this, in turn, implies that
large volumes of pre-3 Ga crust must have been destroyed and replaced by younger crust since
the late Archaean. The break in slope at around 3 Ga in many of the most recent growth models
(figure 1, solid lines) marks the transition from relatively rapid (ca 3.4-2.9 km? yr‘1 on average
before 3 Ga) to slower (ca 0.9-0.6 km3 yr~! on average after 3 Ga) rates of continental growth. This
is increasingly taken to reflect higher crustal destruction rates as plate tectonics and subduction
zones developed [2,8].
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Figure 3. Schematic of the numerical box model used to evaluate the changes in the rates of crust generation and destruction
through time. t;, t,, . .. , t, are the times at which new crustal segments of ages Ty, T, . . . ,T, were generated. Vol. at ,:
volume of continental crust established at £,. The present volume of continental crust targeted by the model is 7.2 x 10° km?
[38,41].

We have developed a numerical box model to explore new ways to reconcile models in which
more than 60% of the PVCC was present by 3Ga (e.g. [2,8,12,13,26,32-37]) with the scarcity
of rocks older than 3Ga and the age distributions of the present-day continental record (e.g.
[5,7-11,14,15]). Two different end-member curves serve as proxies for the relative volumes of
juvenile rocks of different ages preserved in today’s crust: (i) Model 1 is based on the surface
age distribution curve of rocks with juvenile Nd isotope ratios at their age of crystallization
[14]; (ii) Model 2 uses the age distribution curve of juvenile crust modelled from the Nd isotope
composition of continental sediments [8]. Unlike recent growth models in which the methodology
and/or sampling approaches do not allow cumulative curves of crustal volume to decrease
over time (e.g. [1,2,9,12,13,38]), the box model approach let us explore scenarios in which crust
destruction exceeded rates of crust generation, i.e. in time frames in which net crustal growth rates
were negative (see also [21,32]). We used crust generation rates that vary smoothly through time,
in line with temporal changes in mantle temperature [39,40], to show that the present-day age
distribution of the juvenile crust [14] can be modelled by a number of key changes in destruction
rates at different times in Earth’s history. Finally, we show that peaks and troughs in the age
distribution of juvenile rocks preserved on the continents surface (Model 1) do not necessarily
imply any dramatic change in the rates of crustal generation through time.

2. Methodology: the box model approach

A numerical box model illustrated schematically in figure 3 was used to address the effects, at
each step t;, of changing the rates of formation and destruction of the continental crust on both
the volume and the age distribution of the juvenile continental crust through time. Each step t;
has a duration of 500 Myr. The model starts at fg =4.5 Ga (0% crust), with its first step at t; =4 Ga,
its second step at t» =3.5Ga, and so on until its last step ends up at tpresent = 0 Ga. For each step
ty, we have assumed that the continental crust at that time was made of (i) a segment of new crust
formed at t,; and (ii) the crustal segment(s) formed previously at t,,_; and still preserved at t,,. We
also assumed that the volume of crust available at each step t,, was controlled by (i) the volume
of crust that was present at f,,_1; (ii) the volume of new crust added at ¢, and (iii) the volumes of
both new crust (age t,) and pre-existing crustal segments (ages ¢,_;) destroyed at t,. The model
is constrained by a PVCC of 7.2 x 10 km? [38,41], 60 to 80% of the PVCC being present at 3 Ga
[2,8,12,13,38], the distribution of crust formation ages in the present-day crust after Condie &
Aster [14] (Model 1), or after Dhuime et al. [8] (Model 2), a present-day crustal generation rate
(CGR) of 3.2 to 4.4km3 yr‘1 [41-44], and a present-day crustal destruction rate (CDR) of 3.2 to
5.5km3 yr—! [41-45]. In Model 2, we assumed a value of 6 for the erosion parameter K, following
Dhuime et al. [8] (and see discussions on the significance of K and its impact on continental
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Figure 4. Model for the volume and rates of generation and destruction of the continental crust through time, estimated from
the box model approach schematized in figure 3. (a) Cumulative curve for the present-day distribution of juvenile crust (brown
curve, after [14]), which is the target of the model, and the modelled present age distribution (red squares). The grey box at
3 Ga represents the conditional starting parameter of the model, i.e. 60—80% of the present-day volume of continental crust
established by 3 Ga [2,8,12,13]. (b) Rates of generation (blue curve), destruction (red curve) and net growth (green curve) of
the continental crust, for every 500 Myr step of the model. The inset shows the smooth evolution of the mantle temperature
through time, after Herzberg et al. [39] and Korenaga [40]. (c) Volumes of continental crust calculated for every 500 Myr step
of the model (green curve), and estimated changes in the volumes of pre-3 Ga (purple curve) and post-3 Ga (orange curve)
continental crust through time.

growth curves in refs [7,8,46]). Using a trial-and-error approach, the rates of crust generation and
destruction for each crustal segment at each step ¢, were adjusted until all the above-mentioned
constraints (i.e. PVCC, volume of crust at 3Ga, present-day age distribution of juvenile crust,
present CGR and CDR) were satisfied. As a further constraint, crustal generation rates were
assumed to vary smoothly through time, as does the mantle temperature evolution (e.g. [39,40]).
Finally, in order to better account for the preferential destruction of younger high-relief crust
through erosion processes (e.g. [7]), crustal destruction rates of the younger continental segments
formed at t,,_; were, for each step t,, not allowed to be lower than those of the oldest segments.
The key input and output parameters of the box model are summarized in figures 4 and 5, and
in electronic supplementary material, table S1. The brown curves represent the distribution of
crust formation ages in the present crust targeted by our models: Model 1 targeted curve (figure 4a)
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Figure 5. Model 2 for the volume and rates of generation and destruction of the continental crust through time, estimated from
the box model approach schematized in figure 3. The curves are as for figure 4, with one exception as the targeted present-day
age distribution curve (brown curve) is after Dhuime et al. [8].

is from Condie & Aster [14], and Model 2 targeted curve (figure 5a) is from Dhuime et al. [8]. The
red squares represent the calculated present-day distribution of crust formation ages generated
by the box model. Crust generation and destruction rates (figures 4b and 5b) were adjusted until
the model distribution of today’s crust formation ages matches the targeted age distributions
within & 2%. The green curve linking green dots in figures 4c and 5c is the continental growth
curve generated by the model.

3. Rates of generation, destruction and growth of the continental crust
through time

The crust generation and destruction rates calculated from the box model are represented
by the blue and red curves respectively in figure 4b (Model 1) and 5b (Model 2). Rates of
continental crust generation range 3.0-4.7 km? yr_1 (Model 1) and 3.1-4.0 km? yr‘1 (Model 2). They
broadly follow the evolution of mantle temperature (figures 4b and 5b, inset), increasing between
Earth’s formation and ca 3.5-3.0 Ga, and then decreasing to the present day. By contrast, crustal
destruction rates show much greater variations. They range between 0.1-8.4 km? yr—! (Model 1)
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and 0.1-5.5km?yr~! (Model 2), with a marked peak in the period 3.0-2.5Ga. This peak was
generated by the numerical box model because (a) no restriction was applied for the minimum or
the maximum crust destruction rates, and (b) 3.0-2.5 Ga is the period of the maximum difference
between the crustal growth curve and the targeted present-day age distribution of the juvenile
crust. This peak is followed by lower destruction rates after ca 2.5Ga (1.7 km3 yr~! in Model 1 and
1.0km?yr~! in Model 2), with a gradual increase in destruction rates during the Proterozoic. By
the Phanerozoic crustal destruction rates (5.3km?yr—! in Model 1 and 5.5km3 yr~—! in Model 2)
exceeded crust formation rates (4.1 km? yr~—! in Model 1 and 3.5km3 yr~! in Model 2).

The changes in the rates of net continental growth through time, calculated from the variations
in crust generation and destruction rates, are shown by the green curve in figures 4b (Model 1)
and 5b (Model 2). Rates of continental growth are highly variable and range between —3.7 and
4.3km3 yr~! in Model 1, and between —2.0 and 3.3km? yr~! in Model 2. From 4.5 to 3.0 Ga, they
range from 2.8 to 4.3 km? yr*1 (Model 1) and 2.8 to 3.3km? yr*1 (Model 2). There is a marked
reduction in crustal growth rates between 3.0 and 2.5 Ga, with a negative value of —3.7 km?3 yr*1
in Model 1 and —1.5km3yr~! in Model 2. From 2.5Ga until the present day, net growth rates
gradually decrease from 3.0-3.2 km?3 yr‘1 to —1.1km? yr_1 (Model 1), and from 3.0km3 yr_1 to
—2.0km3yr~! (Model 2). The cumulative growth curve calculated from the net growth rates
generated by the box model is represented by the green curve in figures 4c (Model 1) and 5b
(Model 2). This curve differs from recent continental growth models (figure 1) because our box
model allows the incorporation of negative crustal growth rates when building a cumulative
growth curve.

While the models presented here are not unique (e.g. as evidenced by small differences
between Model 1 and Model 2), the approach offers the opportunity of developing more realistic
growth curves for the evolution of the continental crust through time. This evolution can be
summarized in four main stages: a first stage of rapid growth in the volume of continental crust
between ca 4.5 Ga and 3 Ga (70% of the PVCC at 3Ga in Model 1, and 63% in Model 2); a second
stage of crustal destruction and continental shrinking between ca 3 Ga and 2.5 Ga (44% of PVCC
at2.5Ga in Model 1, and 53% in Model 2); a third stage of crustal growth with gradually decreasing
rates of growth between ca 2.5Ga and 0.5 Ga, at the end of which the volume of continental crust
may have exceeded its present volume (108% of the PVCC at 0.5Ga in Model 1, and 114% in
Model 2); a fourth stage between ca 0.5Ga and present, during which the volume of continental
crust has slightly decreased as crustal destruction rates exceeded crustal formation rates (e.g.
[44,45]).

4. Geological implications

The processes involved in the development of the peaks and troughs in the age distributions of
juvenile rocks, and more generally in the age distribution of zircons, have remained controversial
for a number of decades (e.g. see recent reviews in [4,38,47]). Dramatic, episodic variations
in crustal growth rates in relation to changes in mantle convection and the formation of
‘superplumes’ have been invoked to account for age peaks widely observed in the preserved
rock record. Although our model does not rule out an episodic Earth evolution (e.g. [18]), it offers
new insights into alternative models in which continental crust was continuously extracted from
the mantle, and the age distribution of today’s juvenile rock record is at least partly explained by
changes in the rates of destruction of continental crust. This, in turn, relates to the development
of subduction zones in a planet evolving from a ‘single/stagnant lid” to a regime in which plate
tectonics dominates (Cawood et al. [48] and references therein).

Recent studies have suggested that ca 3 Ga marked the transition between two different types
of continental crust. New continental crust generated before 3 Ga was on average mafic, dense
and relatively thin (less than 20 km) [49], and the upper crust preserved from that time was also
relatively mafic [50]. By contrast, continental crust that formed after 3 Ga gradually became more
intermediate in composition, increasingly buoyant and thicker [49]. The volumes of pre-3 Ga and
post-3 Ga continental crust available through time calculated with our box model are shown in
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figures 4c (Model 1) and 5c (Model 2), and these volumes are represented by the purple dashed
curve and red dashed curve, respectively. These highlight that the reduction in estimated crustal
volumes at the end of the Archaean reflects the destruction of largely mafic continental crust, and
the initiation of the generation of continental crust with more immediate compositions.

In the context of the inferred onset of widespread subduction at around 3 Ga (e.g. [2,8,24,51]),
the high peak of destruction rate predicted by the box model for this period is strikingly consistent
with the rapid recycling of mafic/dense pre-3 Ga crust back into the mantle through subduction.
Dense, predominantly mafic and relatively thin pre-3 Ga continental crust reached a volume of
60-70% of the PVCC at 3 Ga (figures 4c and 5c), but has been almost completely destroyed since
then. Only small amounts of that crust preferentially survived after a billion years (i.e. after 2 Ga)
of crustal evolution and recycling (figures 42 and 5a, brown curve). High 3.0-2.5Ga destruction
rates are also consistent with the age distributions of zircons from sediments with a range of
deposition ages, because ages greater than 3 Ga are poorly preserved in sediments younger than
2.5Ga [52,53]. The gradual increase in destruction rates from the Archaean-Proterozoic transition
predicted by the model can be accommodated by a change in subduction dynamics as the Earth
became cooler [54-57] and/or by the emergence of a thicker, buoyant, higher relief and therefore
more prone to erosion, new continental crust [31,49,50,58-60].

The growth of ‘modern’, increasingly thicker, more differentiated and buoyant post-3 Ga
continental crust is represented by the orange dashed curve in figures 4c (Model 1) and 5c (Model 2).
The generation of that crust, dominantly through subduction [49], is likely to be associated with
the emergence of the continents from 3 Ga [49,50,58,59,61]. The shape of the growth curve of
the post-3 Ga crust is similar to that of the juvenile crust thickness curve of Dhuime et al. [49],
as both curves show a gradual increase from the Mesoarchaean to the Meso/Neoproterozoic
followed by a decrease towards the present. This latter feature in the crustal thickness curve
was interpreted by Dhuime ef al. [49] as crustal destruction exceeding crustal generation rates,
consistent with Phanerozoic rates [41-45], and it is independently validated by both Model 1 and
Model 2 (figures 4b and 5b).

Finally, the data generated by our box model imply that about 2.6 times (Model 1), or 2.3 times
(Model 2), of the PVCC has been generated since Earth’s formation, and thus ca 1.6 times (Model 1),
or 1.3 times (Model 2), of the PVCC has been destroyed and recycled back into the mantle since
the onset of plate tectonics. This opens new perspectives for models of mantle evolution and
mantle—crust interaction through time, including testing the scenarios offered by our box model
by modelling of radiogenic isotope systematics in the mantle—crust system.
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