Skip to main content
. 2018 Sep 19;474(2217):20180305. doi: 10.1098/rspa.2018.0305

Table 5.

Discovery of identities in Navier–Stokes equations using threshold sparse Bayesian regression with threshold 0.1. Here, 202 data are used. Result 1, Result 4, Result 5, Result 8 have the smallest error bars, and they are equivalent to the identity ∂u1/∂x + ∂u2/∂y = 0.

result 1 2 3 4 5 6 7
u1u1/∂x 1 1.000 −0.396
u1u1/∂y 1
u1u2/∂x 2.271 1 −0.349 −0.231
u1u2/∂y 1.000 −0.909 1 0.993
u2u1/∂x 1.746 1
u2u1/∂y −0.608 1 −0.204
u2u2/∂x 4.997 0.154 −1.223 1
u2u2/∂y 1.000 −0.575
ν∂2u1/∂x2 −3.389 −0.632 0.676 −0.534
ν∂2u1/∂y2 −1.366
ν∂2u2/∂x2 2.455 −0.613 0.657
ν∂2u2/∂y2 −7.156 −0.351 2.774 −1.111
∂(p/ρ)/∂x −0.100 0.209
∂(p/ρ)/∂y −1.008 −0.294
error bar  × 103 0.000 1110.362 183.139 0.000 0.000 3139.186 127.743
result 8 9 10 11 12 13 14
u1u1/∂x −1.179
u1u1/∂y −0.220
u1u2/∂x −0.388 −1.290 0.721
u1u2/∂y −0.640
u2u1/∂x 1.000 −0.478
u2u1/∂y 0.119 −0.193 0.203 0.533
u2u2/∂x −0.387 −2.059 0.770 −0.468 −0.867 −1.043
u2u2/∂y 1 0.581
ν∂2u1/∂x2 1 2.436 −0.745 0.232 −0.441 0.489
ν∂2u1/∂y2 1 −0.463
ν∂2u2/∂x2 −0.317 −1.002 1 −0.128 −0.274 −1.515
ν∂2u2/∂y2 0.463 3.272 −0.521 1 1.233 −0.116
∂(p/ρ)/∂x −0.796 1
∂(p/ρ)/∂y 0.128 0.370 −0.473 1
error bar × 103 0.000 189.638 332.790 88.404 48.410 358.041 1081.667