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Abstract

Understanding how expression of airway secretory mucins MUC5B
and MUC5AC is regulated in health and disease is important to
elucidating the pathogenesis ofmucoobstructive respiratory diseases.
The transcription factor SPDEF (sterile a-motif pointed domain
epithelial specific transcription factor) is a key regulator of MUC5AC,
but its role in regulating MUC5B in health and in mucoobstructive
lung diseases is unknown. Characterization of Spdef-deficient mice
upper and lower airways demonstrated region-specific, Spdef-
dependent regulation of basal Muc5b expression. Neonatal Spdef-
deficient mice exhibited reductions in BAL Muc5ac and Muc5b.
Adult Spdef-deficient mice partially phenocopiedMuc5b-deficient
mice as they exhibited reducedMuc5b in nasopharyngeal and airway
epithelia but not in olfactory Bowman glands, 75% incidence of
nasopharyngeal hair/mucus plugs, and mild bacterial otitis media,
without defective mucociliary clearance in the nasopharynx. In
contrast, tracheal mucociliary clearance was reduced in Spdef-
deficient mice in the absence of lung disease. To evaluate the role of
Spdef in the development and persistence of Muc5b-predominant
mucoobstructive lung disease, Spdef-deficientmicewere crossedwith
Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface
dehydration-induced airway mucus obstruction and inflammation.
Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not

Muc5b, expression and BAL content. Airway mucus obstruction
was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent
with Muc5b-dominant Scnn1b disease, but increased airway
neutrophilia was observed compared with Spdef-sufficient
Scnn1b-Tg mice. Collectively, these results indicate that Spdef
regulates baseline Muc5b expression in respiratory epithelia but
does not contribute to Muc5b regulation in a mouse model of
Muc5b-predominant mucus obstruction caused by airway
dehydration.
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Clinical Relevance

In our present study, we identified the role of SPDEF (sterile
a-motif pointed domain epithelial specific transcription
factor) in the regulation of mucin production in the upper and
lower airways of the mouse. We raise caution that targeting
SPDEF may not be effective in treating mucus obstruction
caused by airway surface dehydration such as that seen in
cystic fibrosis.

Mucoobstructive lung diseases, such as the
chronic bronchitic component of chronic
obstructive pulmonary disease (COPD),
cystic fibrosis, and asthma, share alterations

in mucus biology as a component of their
pathophysiology (1–3). These diseases
are associated with dysregulated mRNA
expression, protein expression, secretion,

and extracellular concentration of the two
major airway-secreted mucins, MUC5AC
and MUC5B. Classically, the paradigm for
the human respiratory tract has held that
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MUC5B is expressed primarily in the mucous
cells of submucosal glands (4), and MUC5AC
is secreted from the superficial airway goblet
cells (5, 6). However, recent data describe
Muc5b expression in airway superficial
epithelia during health and that Muc5b is
essential for normal mucociliary clearance
(MCC) and innate immune functions (7–11).
Although MUC5AC is not the predominant
secreted airway mucin during health, it can be
robustly upregulated by a wide variety of
stimuli, including developmental cues (8),
microbial and growth factors, and
inflammatory cytokines (12). Studies
elucidating the molecular signals that regulate
goblet cell differentiation are ongoing
(reviewed in reference 13), but a
comprehensive understanding of how these
processes are regulated during health versus
disease is lacking.

One gene recently described as a key
transcriptional regulator of mucin expression
is SPDEF/Spdef. SPDEF was originally
classified as a prostate epithelium–specific
Ets transcription factor (14), but it has since
been recognized as integral to goblet cell
differentiation in the intestine, lung, and
conjunctiva (15–19). Recent work has
demonstrated that Spdef is involved in
T-helper cell type 2 (Th2)-driven goblet
cell differentiation during postnatal lung
development in mice (20). Spdef is similarly
required for Th2 inflammation–driven goblet
cell metaplasia and increased Muc5ac
secretion in response to ovalbumin and
house dust mite challenge, acting
through the IL-13/IL-4 receptor-a
and the STAT6 (signal transducer and
activator of transcription 6) axis (21, 22).
Furthermore, Spdef overexpression
induces a number of genes regulating
mucin biosynthesis/glycosylation and
goblet cell differentiation and suppresses
genes involved in airway epithelial Na1

and fluid absorption (e.g., Scnn1b and
Scnn1 g) (17). In addition to its role as a
transcription factor, Spdef also has
cytoplasmic functions regulating innate
immunity because its overexpression
blunts LPS-driven neutrophilia in vivo and
inhibits MyD88 (myeloid differentiation
primary response 88)-mediated cytokine
production and Toll/IL-1 receptor
domain-containing adapter-inducing
IFN-mediated IFN-b production upon
rhinovirus challenge in vitro (23).

Although Spdef regulation of Muc5ac
expression in the respiratory tract in
response to Th2 challenge has been amply

documented, its influence on Muc5b, in
both health and disease, has not been
described. To elucidate the role of SPDEF
in health, Spdef-deficient mice were
characterized with respect to regulation of
airway Muc5b and Muc5ac expression,
MCC, and respiratory tract pathology. In the
context of disease, the airway-targeted
overexpression of the b-subunit of the
epithelial sodium channel (b-ENaC,
encoded by the Scnn1b gene) produces
accelerated Na1 absorption and airway
surface liquid (ASL) volume depletion. ASL
volume depletion in turn produces the
mucus hyperconcentration/stasis and
chronic inflammation (24–31) that
recapitulate the pathologic features of
human mucoobstructive diseases associated
with an increase in MUC5B, including cystic
fibrosis, chronic bronchitis, and COPD
(31–35). Therefore, to investigate the role
of Spdef in a complex disease model
dominated by Muc5b-enriched mucus
hyperconcentration and accumulation, Spdef-
deficient mice were crossed with Scnn1b-Tg
mice and their progeny phenotyped for
severity of lung disease using measures
of airway mucus obstruction and
inflammation.

Methods

Mice
Mice were maintained and studied under
protocols approved by the University of
North Carolina Institutional Animal Care
and Use Committee. Mice were housed in
individually ventilated microisolator cages
in a specific pathogen-free facility at the
University of North Carolina at Chapel Hill
on a 12-hour/12-hour day/night cycle. Mice
were fed regular chow and given water
ad libitum. F10 C57BL/6N Spdef 2/2 mice
were obtained from Dr. Jeffrey Whitsett’s
laboratory (Cincinnati Children’s Hospital
Medical Center). Spdef 1/2 mice were bred
with congenic C57BL/6N Scnn1b-Tg mice
(25) to generate Spdef-deficient Scnn1b-Tg
mice. Before Postnatal Day (PND) 5, pups
were toe clipped for identification and
genotyping as previously described (20, 24).
Mice studied were littermates when
possible, age matched, and of both sexes.

Mouse Phenotyping and Histology
Mouse lungs were immersion fixed in 10%
neutral-buffered formalin, embedded, and
sectioned at 5-mm thickness. Mouse heads

were fixed in 10% NBF, decaled 24 hrs in
Formical-4, and the nasal cavity was cut
at the level of the upper incisors, in front
of the incisive papilla, at the level of the
second palatal ridge, and at the level
of the third molar (36) to yield four
sequential levels. Hematoxylin and eosin
staining was performed using Richard-
Allan Scientific hematoxylin and eosin
(catalogue numbers 7221 and 7111).
The protocol for Alcian blue/periodic
acid–Schiff (AB-PAS) staining involved
10 minutes in AB, pH 2.5 (catalogue
number 867; Anatech) to highlight acidic
proteoglycans (teal), a 10-minute wash
in running tap water, 5 minutes in
0.5% periodic acid, a rinse in tap water,
15 minutes in Schiff’s reagent (catalog
number SS32-500; Fisher Scientific) to
highlight neutral proteoglycans (magenta),
20 dips in sulfurous rinse, and a 10-minute
wash in running tap water. With this
method, airway mucus typically exhibits
a combination of magenta and teal
color (gradation of purple/blue) stain.
Experimental groups were processed using
the same batch of fixative and staining
reagents.

Immunohistochemistry and Western
Blot Analysis
Muc5ac and Muc5b immunohistochemical
staining was performed as previously
described (17). Briefly, after antigen
retrieval with citrate buffer and heat,
MUC5AC (ab3649; Abcam), MUC5B
antibodies (SC20119; Santa Cruz
Biotechnology), FOXA3 antibody
(SC5361; Santa Cruz Biotechnology),
and acetylated a-tubulin antibody
(T7451; Sigma-Aldrich) were used for
immunostaining. Morphometric analysis
of volume density (VS) for AB-PAS

1,
Muc5ac1, or Muc5b1 staining was
performed as previously described (26, 37)
on cross-sections of the left lobe main
stem bronchus serially cut every 2 mm
starting at the hilum to yield systematic
sampling of the proximal, intermediate,
and distal airways. The histological
micrographs shown in the figures are
montages acquired using the Olympus
VS120 Virtual Slide Scanning System
(Olympus). Slides were scanned at 403
magnification unless otherwise specified.
Quantification of secreted mucins in BAL
by Western blotting was performed as
previously described (26).
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MCC Assay
MCC was measured in the upper (anterior
nasopharynx) and lower (trachea) airways
as previously described (38), using
fluorescent microbead tracking and
quantification in KOH-solubilized lungs,
respectively.

Airway Bioelectric Studies
Adult mice were studied at 4–5 months of
age. All studies were performed blinded
with respect to genotype. Details of the
Ussing chamber preparations have been
published previously (39). Amiloride
(1024 M apical addition) was used to block
electrogenic Na1 absorption. Forskolin
(1025 M apical) and UTP (1024 M apical)
were used to induce anion secretion
via an increase in intracellular cAMP
and intracellular Ca21 concentrations,
respectively. All drugs were purchased from
Sigma-Aldrich with the exception of UTP
(Amersham Pharmacia Biotech).

Middle Ear Lavage for Assessment of
Otitis Media
Middle ear lavage was performed as
previously described (7) by instilling and
retrieving sterile PBS in the tympanic bulla
and plating serial dilutions of the retrieved
fluid on BD Columbia anaerobe sheep
blood agar (Becton Dickinson). Colony-
forming units were enumerated after
24-hour growth at 378C in a candle jar
(microanaerobiosis).

Mouse Tracheal Epithelial Cell
Culture and Ciliary Beat Frequency
Assays
Mouse tracheal epithelial cell (mTEC)
isolation and culturing were carried out
according to protocols previously described
(40) using PluriQ differentiation media
(Stem Cell, Inc.), Millicell inserts (PICM01250;
MilliporeSigma), and culturing for 4 weeks
at the air–liquid interface to allow full
differentiation. Ciliary beat frequency
(CBF) was measured in fully hydrated
conditions according to previously
described protocols (38, 41).

RNA Analysis
Cellular RNA was isolated with TRIzol
reagent and the Direct-zol RNA Miniprep
Kit (Zymo Research). Total RNAs (500 ng)
were reverse transcribed to cDNA by using
the Verso cDNA Synthesis Kit (Thermo
Fisher Scientific). Quantitative RT-PCR was

performed using TaqMan probes and
primer sets (Thermo Fisher Scientific)
specific for Spdef (Mm00600221_m1),
Muc5ac (Mm01276718_m1),
Muc5b (Mm00466391_m1), Scnn1a
(Mm00803386_m1), Scnn1b
(Mm00441215_m1), and Scnn1g
(Mm00441228_m1). A probe and primer
set for Gapdh (Mm99999915_g1) was used
as a normalization control because its
expression did not significantly change
among groups. PCRs were performed using
the Applied Biosystems QuantStudio 6 PCR
System (Thermo Fisher Scientific).

Statistics
Student’s t test (two tailed, unpaired)
(Prism 6 software; GraphPad Software)
was used for comparison of statistical
differences between two groups. One-way
ANOVA followed by Dunnett’s multiple-
comparisons test (Prism 6) was used to
compare three or more groups. P values less
than 0.05 were considered significantly
different. Data are presented as mean6 SD
unless otherwise indicated in the figure
legends.

Results

Characterization of Naive Upper
Airways Reveals Region-Specific,
Spdef-Dependent Regulation of Basal
Muc5b Expression
Because Spdef could influence both the level
of expression and the glycosylation of
airway mucins, we first evaluated the upper
airways (nasal cavities and nasopharynx) of
adult (PND 48) Spdef-deficient (Spdef2/2)
versus wild-type (WT; Spdef1/1) mice for
glycoconjugates by using the AB-PAS
histochemical stain and for Muc5b by using
immunohistochemistry. Spdef deficiency
produced a striking reduction in both
AB-PAS and Muc5b-positive staining of
the surface airway epithelium of the nasal
septum, vomeronasal organ, and anterior
nasopharynx, but not in the Bowman
glands underlying the olfactory epithelium,
as compared with WT mice (Figures 1A
and 1B). Of note, currently available
antibodies specific for murine Muc5ac do
not work in decalcified specimens, which
prevented Muc5ac evaluation in the upper
airways of Spdef2/2 mice versus WT
littermates.

During the course of these studies, we
noticed that a high proportion (11 out of 16)

of adult (PNDs 43–170) Spdef2/2 mice
exhibited visible “hair/mucus” plugs in the
nasopharyngeal cavity (Figure 1C), which
resembled those found in Muc5b-knockout
(Muc5b2/2) mice (7). Spdef2/2 mice also
exhibited bacterial otitis media, though
milder than Muc5b2/2 mice (Figure 1D).
Unlike adult (.3-month-old) Muc5b2/2

mice, Spdef2/2 mice did not have reduced
MCC in the anterior nasopharynx
(Figure 1E) as compared with WT
littermates. No weight loss or reduction in
survival was noted in Spdef2/2 mice (not
shown).

Analysis of tracheal submucosal glands
in PND 42 mice revealed that loss of Spdef
inhibited mucous cell differentiation
(Figure 2A) as previously reported (17) and
decreased AB1 staining, whereas PAS
staining was preserved (Figure 2B). Muc5b
immunostaining was reduced in Spdef2/2

submucosal glands (Figure 2C) and in
tracheal surface epithelium (Figure 2D),
whereas Muc5ac expression was absent in
submucosal gland and tracheal surface
epithelium of both Spdef2/2 mice and WT
littermates (Figure 2E).

Spdef Deficiency in Naive Mouse
Lower Airways Causes Defective
Muc5b and Muc5ac Expression,
Decreased MCC, and Altered Airway
Epithelial Ion Transport
Extending our analysis to the lower airways,
we first considered the effect of Spdef
deficiency during the early postnatal period,
which in mouse airways is normally
characterized by a transient increase in
AB-PAS–positive cells (24). Qualitatively,
airway epithelial cells from the main stem
bronchi of PND 7–10 WT mice exhibited
a mixture of magenta and blue AB-PAS
staining, indicating the presence of
both neutral and acidic glycoconjugates,
respectively. In contrast, bronchi from
Spdef-deficient littermates exhibited
reduced and less acidic (i.e., less
blue/purple) AB-PAS staining (Figure 3A).
These changes were associated with a
reduction in both Muc5ac and Muc5b
protein levels in unfractionated BAL
samples collected at the same age
(Figure 3B and Figure E1A in the data
supplement).

Similar qualitative changes in AB-
PAS–positive staining were also observed in
the lower airways (i.e., intrapulmonary
main stem bronchi) of adult (PND 42)
Spdef-deficient mice as compared with WT
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Figure 1. Mucin-related phenotypes in the upper airways of adult Spdef (sterile a-motif pointed domain epithelial specific transcription factor)-deficient
mice. (A and B) Representative micrographs illustrating (A) Alcian blue/periodic acid–Schiff (AB-PAS) stain and (B) Muc5b immunohistochemical (IHC) stain
of various upper airway tissues (indicated on the right-hand side), comparing staining patterns between Spdef-sufficient (Spdef1/1) and Spdef-deficient
(Spdef2/2) naive mice at Postnatal Day (PND) 56. Insets show high-magnification views of areas highlighted by the arrows in the low-magnification panels.
Micrographs are representative of at least three mice for each genotype, and they are montages acquired with a slide scanner, as described in the
METHODS section of the text. Scale bars: 100 mm. (C) Representative image of a nasopharyngeal hair/mucus plug in situ (left panel) or removed (right panel)
from a 5.6-month-old Spdef2/2 mouse. Scale bar: 1 mm. (D) Culturable bacteria counts in middle ear lavage from Spdef2/2 (solid dots) and control (open
dots) mice at 4–5 months of age (n = 6–7/genotype). Dashed line represents the average colony-forming units per ear for Muc5b-knockout mice, which
exhibit highly penetrant bacterial otitis media with effusion (7). (E) Mucociliary clearance (MCC) measurements in the anterior nasopharynx of naive Spdef-
sufficient (Spdef1/1; open bar) and Spdef-deficient (Spdef2/2; solid bar) mice (n = 9/genotype) at ages PND 43 (n = 7) and PND 170 (n = 2) for both
genotypes.
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littermates (Figure 3C, upper panel). To
quantitate the AB-PAS–positive material
present in the airways of Spdef2/2 mice and
WT littermates, morphometric analysis of
AB-PAS–positive volume density (VS),
which does not discriminate between
magenta and blue staining, was performed
across three different levels of the left main
stem bronchus (proximal = at the hilum,
intermediate = 2 mm caudal to the hilum,
and distal = 4 mm caudal to the hilum)
(Figure E1B). These analyses indicated that

Spdef-deficient mice exhibited a trend
toward reduced AB-PAS VS in the
proximal but not distal regions of the
main stem bronchus (Figure 3D).
Immunohistochemical localization of
Muc5b and Muc5ac in serial sections
followed by morphometry indicated that
Muc5b staining mirrored the pattern
observed for the AB-PAS staining
(Figure 3C, middle panel; Figure 3E; and
Figure E2A), whereas Muc5ac was
undetectable at baseline in both Spdef2/2

mice and WT littermates (Figure 3C,
bottom panel; Figure 3F; and Figure E2B).
Consistent with these observations, the
levels of Muc5b in BAL were slightly
reduced in adult Spdef2/2 mice as
compared with WT littermates, whereas
Muc5ac was undetectable in both genotypes
(Figure 3G). Notably, both Muc5ac
and Muc5b mRNA expression was
downregulated in whole lung from adult
Spdef-deficient mice as compared with WT
littermates (Figure 3H).

Unlike the observations in the upper
airways, loss of Spdef was accompanied by a
significant reduction in tracheal MCC in
adult mice (Figure 3I). Reduced MCC has
been associated with several mechanisms,
including 1) reduced Muc5b expression (7,
38), 2) airway surface dehydration (26), or
3) reduced ciliated cell numbers/function
(41). Because Spdef is known to regulate
several genes involved in the MCC system,
we tested for mechanisms in addition to the
observed reduction in Muc5b level that
could produce low MCC in Spdef2/2

mice. To test if loss of Spdef affected the
bioelectrical properties of epithelial cells
lining the mouse trachea, Ussing chamber
analyses of freshly excised tracheas from
WT and Spdef-deficient adult mice were
performed. Spdef deficiency was associated
with increased ENaC activity, as indexed
by elevated basal and amiloride-sensitive
short-circuit currents (Isc) (Figure 3J). This
alteration was accompanied by a small but
significant increase in forskolin-stimulated
anion secretion but no change in UTP
responses. Because Spdef overexpression
has been shown to inhibit transcription of
the b- and g-ENaC subunits (17), which
are believed to be rate limiting for murine
airway epithelial ENaC function (42), we
tested whether loss of Spdef was associated
with increased transcription of the a-, b-,
or g-ENaC subunits (Scnn1a, Scnn1b,
Scnn1g). This analysis revealed a subtle but
significant increase in whole-lung mRNA
expression of the a-subunit, but not of the
b- and g-subunits, in Spdef2/2 mice as
compared with WT littermates (Figure
E3A).

To investigate whether loss of Spdef
altered ciliated cell populations and/or
changed CBF, we quantified ciliated cell
numbers in tracheas by morphometric
analysis of acetylated a-tubulin staining
(a ciliated cell-specific marker). There were
no significant differences in acetylated
a-tubulin1 VS or cell number in tracheas
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from Spdef2/2 mice versus their littermates
(Figures E3B and E3C). To assess CBF,
mTECs were isolated from WT and
Spdef2/2 mice and cultured under
air–liquid interface conditions until fully
differentiated. No significant difference
in CBF was detected between WT and
Spdef2/2 mTEC (Figure E3D), suggesting
that loss of Spdef did not overtly alter CBF.

Loss of Spdef Improved Survival but
Did Not Prevent Mucus Obstruction in
a Mouse Model of Airway Surface
Dehydration
To explore the role of Spdef in Muc5b-
dominated mucoobstructive lung disease,
we bred Spdef2/2 mice to Scnn1b-Tg
mice and evaluated the phenotype of the
progeny. Spdef-deficient Scnn1b-Tg mice

were born at the expected Mendelian
proportion, and their survival (z100%)
was significantly higher than that of
Spdef-sufficient Scnn1b-Tg mice (z80%)
(Figure 4A).

Both Spdef-deficient and Spdef-
sufficient Scnn1b-Tg mice exhibited
airway mucus plugging as early as PND 7
(Figure 4B). Qualitatively, airway mucus

Figure 3. (Continued). (n = 5–6/genotype). (C) Representative micrographs illustrating AB-PAS (upper panel), Muc5b (middle panel), and Muc5ac (lower panel)
staining in the proximal main stem bronchus (left lung) of naive Spdef1/1 and Spdef2/2 mice at PND 42. Insets show high-magnification views of areas
highlighted by the arrows in the low-magnification panels. Micrographs are montages acquired with a slide scanner as described in the METHODS section
of the main text. Scale bars: 100 mm. (D–F) Morphometric quantification of (D) AB-PAS1, (E) Muc5b1, and (F) Muc5ac1 volume densities in proximal,
intermediate, and distal sections of the main stem bronchus in naive Spdef1/1 (open dots) and Spdef2/2 (solid dots) mice at PND 42. Data are presented
as mean6 SEM and were analyzed with an unpaired Student’s t test. (G) Densitometric analysis of Muc5b- and Muc5ac-specific signaling in agarose
Western blots of BAL from naive Spdef1/1 (open dots) and Spdef2/2 (solid dots) mice at 4–5 months of age (n = 3–4/genotype). Note that Muc5ac was
undetectable for both genotypes in adult mice. (H) Quantitative RT-PCR results for Muc5b and Muc5ac transcripts in naive Spdef1/1 (open dots) and
Spdef2/2 (solid dots) mice at PND 42 (n = 7–9/genotype). (I) Tracheal mucociliary clearance measurements in naive Spdef1/1 (open bar) and Spdef2/2

(solid bar) adult mice (n = 9/genotype) at ages PND 43 (n = 7) and PND 170 (n = 2) for both genotypes. (J) Bioelectrical properties of tracheal epithelium
isolated from naive Spdef1/1 (open bar) and Spdef2/2 (solid bar) mice at 4–5 months of age (n = 5–7/genotype). *P , 0.05, analyzed with 2 tailed,
unpaired Student’s t test.
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plugs in neonatal Spdef-deficient Scnn1b-Tg
mice exhibited a less acidic AB-PAS
staining than that of mucus plugs in Spdef-
sufficient Scnn1b-Tg littermates. At the
mRNA level, neonatal Spdef-deficient
Scnn1b-Tg mice exhibited a reduction in
Muc5ac mRNA as compared with Spdef-
sufficient Scnn1b-Tg littermates. However,
the dominant secreted mucin in the
Scnn1b-Tg model (i.e., Muc5b) was
unaffected by Spdef deficiency (Figure 4C),
suggesting that Muc5b transcription was
supported by a different signaling pathway
from very early in the development of
mucoobstructive lung disease in this model.

Because Spdef-directed therapies are
being proposed to alleviate the symptoms
of both developing and established
mucoobstructive lung disease (43), we
characterized the phenotype of adult
Spdef-sufficient and Spdef-deficient
Scnn1b-Tg mice. AB-PAS staining and
immunohistochemistry for Muc5b were
performed in sequential cross-sections of
the proximal, intermediate, and distal left
main stem bronchus (Figures E4A–E4H),
and luminal versus epithelial versus total
(luminal1 epithelial) mucus “burden” was
evaluated. Of note, we could not perform
parallel Muc5ac immunostaining in
Scnn1b-Tg mice, because the available
antibody for murine Muc5ac recognizes
intracellular Muc5ac, but it cannot reliably
be used to evaluate Muc5ac in intraluminal
mucus plugs, owing to interfering murine
IgGs located inside the plug (Figure E5).

Notably, Spdef depletion did not alter
the airway mucus burden in adult Scnn1b-Tg
mice, as quantified by morphometric
analysis of the luminal versus epithelial
compartment after AB-PAS– and Muc5b-
specific staining (Figures 5A–5G).
Specifically, the bulk of the AB-PAS– and
Muc5b-specific signaling was confined to
the airway lumen, as previously described
(26), and this pattern was conserved in
Spdef-deficient and Spdef-sufficient Scnn1b-
Tg mice (Figures 5B and 5C vs. 5D and
Figures 5E and 5F vs. 5G). In Spdef-sufficient

Scnn1b-Tg mice, epithelial AB-PAS1 VS

was higher than that in WT mice, and
Spdef deletion was associated with a
reduction of this index (Figure 5D). Of note,
significant lower epithelial AB-PAS1 VS was
consistently measured in the proximal and
intermediate airways of Spdef-deficient
Scnn1b-Tg mice (Figure E4D), whereas
Muc5b1 VS was unaffected (Figures 4G and
E4H).

As an alternative index of airway
mucus obstruction, BAL levels of secreted
Muc5b and Muc5ac were measured. Spdef-
deficient Scnn1b-Tg mice exhibited
equivalent levels of Muc5b and reduced
levels of Muc5ac in BAL compared
with Spdef-sufficient Scnn1b-Tg mice
(Figure 5H). At the transcription
level, Muc5ac mRNA expression was
downregulated in the absence of Spdef,
whereas Muc5b transcription was
unchanged (Figure 5I), mirroring the
pattern observed in neonatal Scnn1b-Tg
mice derived from this cross (Figure 4C).
Collectively, these studies indicate that
Spdef did not significantly contribute to
Muc5b transcriptional regulation,
expression, secretion, or intraluminal
accumulation in the context of the chronic
airway surface dehydration–generated
mucoobstructive lung disease characteristic
of adult Scnn1b-Tg mice. A summary of the
mucin expression/secretion and mucus
obstruction phenotypes observed for Spdef-
deficient and Spdef-sufficient mice at
baseline and in the context of Scnn1b-Tg
mucoobstructive lung disease is provided in
Table E1.

To test whether activation of an
alternative signaling pathway converging
on downstream genes in the Spdef–mucin
axis could bypass the Spdef requirement
for Muc5b expression in Scnn1b-Tg mice,
we tested for nuclear expression of
Foxa3 (Forkhead box A3). Foxa3 is a
transcription factor with both Spdef-
dependent and Spdef-independent
functions whose overexpression has been
shown to induce both Muc5b and Muc5ac

in vivo (20). Immunohistochemical
detection indicated no Foxa3
immunostaining in Spdef-sufficient or
Spdef-deficient WT mice (Figures 6A and
6B). Moderate nuclear expression of
Foxa3 was detected in the surface airway
epithelium of Spdef-sufficient Scnn1b-Tg
mice. This immunostaining was
completely lost in the absence of Spdef
(Figures 6C and 6D). Altogether, these
results suggest that in the Scnn1b-Tg
mouse model, 1) Foxa3 expression is
Spdef dependent and 2) Muc5b
expression is both Spdef and Foxa3
independent. Consistent with the results
showing complete Spdef dependency of
Foxa3 expression in adult lung, Foxa3
mRNA was largely reduced in whole lung
from neonatal Spdef-deficient mice,
regardless of their Scnn1b-Tg status
(Figure 6E).

Spdef Deletion Increased Airway
Neutrophilic Inflammation in Neonatal
Scnn1b-Tg Mice
In addition to being a master regulator
of mucous cell metaplasia, previous
studies have identified a role for Spdef
in maintaining immune homeostasis
by blunting innate immune responses
during inflammatory challenges through
cytoplasmic binding to key adaptor
molecules (i.e., MyD88) (23). In this study,
Spdef deficiency alone was not sufficient
to cause BAL neutrophilia. However,
increased BAL neutrophilia was observed in
neonatal Spdef-deficient Scnn1b-Tg mice as
compared with Spdef-sufficient Scnn1b-Tg
littermates (Figure 7A). Although the
observation was not significant, neonatal
Spdef-deficient Scnn1b-Tg mice also
exhibited a trend toward increased
macrophage numbers as compared
with Spdef-sufficient Scnn1b-Tg mice
(Figure 7B). No other genotype-dependent
differences were detected in the BAL
differential cell counts in neonatal or adult
mice (Figures 7C and 7D).

Figure 5. (Continued). distal sections of the main stem bronchus) in adult (PND 42) mice from the Spdef1/23 Scnn1b-Tg cross: Spdef1/1 (open dots),
Spdef2/2 (solid dots), Spdef1/1; Scnn1b-Tg (open diamonds), or Spdef2/2; Scnn1b-Tg (solid diamonds). For each stain, total (luminal1 epithelial;
B and E), luminal-only (C and F), and epithelial-only (D and G) volume densities are graphed. Results for individual levels are reported in Figures
E4B–E4D and Figures E4F–E4H, respectively. Data are presented as mean6 SEM and were analyzed by unpaired Student’s t test. (H) Densi-
tometric analysis of Muc5b- and Muc5ac-specific signaling in agarose Western blots of BAL from adult (PND 42) Scnn1b-Tg mice that were either
Spdef1/1; Scnn1b-Tg (open diamonds) or Spdef2/2; Scnn1b-Tg (solid diamonds) (n = 5/genotype). (I) Quantitative RT-PCR results for Muc5b and
Muc5ac transcripts in adult (PND 42) Spdef1/1 (open dots), Spdef2/2 (solid dots), Spdef1/1; Scnn1b-Tg (open diamonds), or Spdef2/2; Scnn1b-Tg
(solid diamonds) mice (n = 6–9/genotype).
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Discussion

Secretory cells, including mucous secretory
cells, are essential in health to maintain
proper lubrication and protection of
epithelial surfaces, including the intestine,
eustachian tubes, and respiratory tract.
Although Spdef has been defined as a central
transcription factor in mucous cell biology

in a variety of epithelial tissues, molecular
complexity likely arises within the Spdef
pathway as a result of tissue-specific and
health status–specific upstream signals that
regulate Spdef expression and a multiplicity
of downstream targets.

Previous reports indicated that mucin
expression in the healthy respiratory tract is
developmental stage dependent and region

specific (8, 24, 44, 45). Our results indicate
that Spdef deficiency also differentially
regulates the distribution of mucins in
both the upper and lower airways. With
reference to the mucin expression in the
upper airways (Figures 1A, 1B, and 2A–2E),
Spdef appears to regulate expression of
Muc5b in the surface epithelium of the
nasal septum, anterior nasopharynx, and
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trachea, as well as in the mucus-secreting
cells of the submucosal glands, but not in
the Bowman glands associated with the
olfactory epithelium. Similar to its role in
the tracheal compartment, Muc5b was the
dominant expressed mucin in the murine
lower airways (Figure 3).

Spdef deletion resulted in lower basal
Muc5b mRNA expression (Figure 3H),
intraepithelial content (especially in the
proximal airways; Figure 3E), and BAL
content in both neonatal and adult naive
Spdef2/2 mice than in WT littermates
(Figures 3B and 3G). A shift toward a
less acidic AB-PAS staining pattern was
observed in both neonatal (Figure 3A) and
adult (Figure 3C, upper panel) Spdef2/2

mice, which may reflect Spdef-dependent
downregulation of key glycosylation
enzymes and reduced mucin glycosylation
(17, 20).

Intriguingly, Spdef2/2 mice partially
phenocopied Muc5b2/2 mice, as exhibited
by decreased Muc5b expression (Figures
1B, 3E, and 3G), distinctive nasopharyngeal
hair/mucus plugs (Figure 1C), a milder but
detectable otitis media (Figure 1D), and

defective tracheal MCC (Figure 3I).
However, they did not exhibit MCC defects
in the anterior nasopharynx (Figure 1E) or
abnormalities in the olfactory epithelium
Bowman glands (Figures 1A and 1B). The
retention of Muc5b expression in Bowman
glands points to redundant or alternative
control of Muc5b expression in this tissue.
It is of interest that both the Muc5b2/2

mice and the Spdef2/2 mice exhibited
nasopharyngeal hair/mucus plugs, but
Spdef2/2 mice did so in the absence of
defective anterior nasopharynx MCC.
Clearly, the presence or absence of
MCC was not the sole determinant of
hair/mucus plug formation in the posterior
nasopharynx, because mice with amotile
cilia, and thus no MCC, do not form
hair/mucus plugs (B. Grubb, unpublished
results). We speculate that the most
important contributor to hair/mucus plug
formation is the composition of surface
mucus, which acts as a lubricant to facilitate
transport of hair/debris through the distal
portion of the nasopharynx, possibly by
muscular propulsion. In this context,
Spdef depletion may have altered mucus

composition (in terms of both mucins and
ancillary proteins [46]), overall hydration,
or glycosylation, which affected its lubricating
function.

The observed defect in tracheal MCC
led to the discovery of another unexpected
phenotype in naive Spdef2/2 mice—that is,
the ion transport abnormalities indicative
of increased Na1 absorption (amiloride-
sensitive Isc) and Cl2 secretion (forskolin-
stimulated Isc)—in tracheas studied ex vivo
(Figure 3J). Previous studies have suggested
that ciliated cells are the main source
of the ion transport properties of
the airways (47). Thus, the simplest
explanation for increased Na1 absorption
and Cl2 secretion in the Spdef2/2 mice
is an increase in the density of ciliated
cells per unit of surface area. However,
measurement of the density of acetylated
a-tubulin1 ciliated cells in the portion of
the trachea used to measure bioelectrical
properties failed to reveal significant
differences in cell distribution between
Spdef-deficient and Spdef-sufficient mice
(Figures E3B and E3C). It is also possible
that Spdef-dependent transcriptional
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Figure 7. Loss of Spdef increases airway neutrophil infiltration in Scnn1b-Tg mice. (A–D) Differential BAL cell counts: (A) neutrophils, (B) macrophages, (C)
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regulation of ENaC contributed to
this phenotype. However, the modest
upregulation of a-ENaC in the absence
of Spdef appears unlikely to raise Na1

transport rates. Regardless, owing to the
balanced increase in Na1 absorption and
Cl2 secretion, the overall airway surface
hydration status likely was not significantly
altered in Spdef2/2 mice. Therefore, it is
likely that reduced Muc5b expression in the
tracheal surface epithelium (Figure 2D) was
the main cause of the reduction in MCC in
Spdef-deficient mice.

Many human mucoobstructive lung
diseases, such as chronic bronchitis,
cystic fibrosis, and primary ciliary
dyskinesia, appear to be characterized
by intrapulmonary accumulations of
hyperconcentrated mucins, often dominated
by MUC5B (33–35).These diseases appear
to reflect in part abnormalities in both
Na1 absorption and Cl2 secretion that
produce ASL depletion (i.e., “dehydration”),
with concomitant mucus-mucin
hyperconcentration (48, 49). To investigate
the role of Spdef in a mouse model
dominated by ASL dehydration and
Muc5b accumulation (26), Spdef-deficient
mice were crossed with Scnn1b-Tg mice.
These studies indicated that the
dependence of Muc5b expression on
Spdef differed in health versus disease. In
contrast to naive Spedf2/2 mice (Figures
3B and 3H), Spdef deficiency did not affect
Muc5b mRNA expression in either
neonatal or adult Scnn1b-Tg mice (Figures
4C and 5I), nor did it affect Muc5b protein
as measured by intraluminal or
intraepithelial content (Figures 5A and
5E–5G) and BAL levels (Figure 5H) in adult
mice. Thus, we hypothesize that the
complex inflammatory milieu associated
with Scnn1b-Tg mucoobstructive lung
disease (50) bypassed Spdef (and Foxa3) in

regulating Muc5b transcription. Thus, the
failure of Spdef deficiency to abolish airway
mucus obstruction in Scnn1b-Tg mice likely
reflects sustained expression/secretion
of Muc5b, perhaps in part due to
hypoxia-mediated mechanisms (51, 52),
coupled to failed clearance due to mucus
dehydration.

Unlike Muc5b, Muc5ac protein and
mRNA levels were reduced in Spdef-
deficient Scnn1b-Tg mice (Figures 4C, 5H,
and 5I), which paralleled the findings in
naive Spdef-deficient mice (Figures 3B, 3G,
and 3H). Our previous data for Muc5ac-
deficient Scnn1b-Tg mice suggested that
Muc5ac has a temporally confined
contribution to the obstructive lung
pathology of Scnn1b-Tg mice because it
supports the formation of tracheal mucus
plugging associated with neonatal mortality
in Scnn1b-Tg mice (26). Both Muc5ac2/2

mice and neonatal Spdef-deficient Scnn1b-
Tg mice exhibit a neonatal survival
advantage as compared with their
Spdef-sufficient Scnn1b-Tg littermates
(Figure 4A). These data suggest that Spdef
regulation of Muc5ac contributed to the
poor survival of neonatal Spdef-sufficient
Scnn1b-Tg mice.

The Spdef deletion–dependent
downregulation of Muc5ac expression,
however, had little effect on the adult
phenotype of Scnn1b-Tg mice, as
assessed by immunohistochemistry and
morphometry. Indirect evidence of
Spdef-dependent Muc5ac regulation in
adult Scnn1b-Tg mice emerged from
morphometric studies that showed a
consistent decrease in proximal and
intermediate epithelial AB-PAS1 VS in
Spdef-deficient Scnn1b-Tg mice as
compared with Spdef-sufficient Scnn1b-Tg
mice. Because this pattern was not
paralleled by a similar change in Muc5b1

VS, the decreased AB-PAS staining could
reflect loss of Muc5ac and/or loss of acidic
post-translational modification.

Interestingly, despite the survival
advantage, Spdef deletion resulted in
increased airway neutrophilia in neonatal
Scnn1b-Tg mice (Figure 7A). This result
suggests that loss of the Spdef-dependent
innate immune suppression of inflammation
(23) produced a potentially detrimental
hyperinflammatory response.

In summary, our data show that Spdef-
dependent regulation of Muc5ac and
Muc5b expression in the airways was tissue
specific and disease dependent. We
hypothesize that the consequences of Spdef
depletion in airway mucous cell biology
depend both on regulation of mucin
transcription and on other related
processes, such as mucin glycosylation.
Moreover, our data suggest that Spdef may
not be an effective therapeutic target for
conditions characterized by Muc5b-
dominated airway mucus hypersecretion
and obstruction. n
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