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Liver and Pancreas: Do Similar Embryonic Development and Tissue 
Organization Lead to Similar Mechanisms of Tumorigenesis?
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The liver and pancreas are closely associated organs that share a common embryological origin. They display 
amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and 
acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and 
pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver 
and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide 
insight into our understanding of carcinogenesis in the other organ.
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INTRODUCTION

The liver and pancreas originate from adjacent regions 
of the definitive endoderm, with liver development being 
initiated by formation of a tissue bud on the ventral side 
of the distal foregut, and the pancreas arising from ventral 
and dorsal endodermal buds located caudally to the liver. 
Formation of the organ buds and their outgrowth from the 
distal foregut endoderm are controlled by mesodermal sig-
nals, which specify endoderm cells to hepatic and pancre-
atic fates and promote proliferation of the budding cells1,2. 
Cell proliferation rapidly generates a population of hepatic 
and pancreatic multipotent progenitors that differentiate to 
several mature epithelial cell types, namely, hepatocytes 
and cholangiocytes in the liver, and endocrine, acinar, and 
ductal cells in the pancreas3–6. Importantly, the extrahepatic 
biliary tract, namely, the gallbladder, hepatic, cystic, and 
common bile ducts, develop from the same endodermal 
region as the ventral pancreas7. However, as soon as the 
ventral pancreas starts rotating around the gut to merge 
with the dorsal pancreas, the extrahepatic biliary tract 
develops separately from the pancreas while maintaining a 
connection with the common pancreatic duct.

At the end of organogenesis, the liver and pancreas 
have developed a tissue organization that allows them 
to function as amphicrine glands. The endocrine func-
tion is ensured by the hepatocytes in the liver and the 
islets of Langerhans in the pancreas. In both organs, a 
dense network of fenestrated capillaries enables secretion 
of hormones and growth factors into the bloodstream. 
Exocrine functions are exerted by hepatocytes and aci-
nar cells, which contribute roughly to 80% of the mass 
of their respective organs. They produce bile and diges-
tive enzymes (e.g., amylase, lipases) that are discharged 
into the duodenum via a ductal network. Ducts are lined 
by cholangiocytes in the liver and by ductal cells in the 
pancreas. Notably, hepatocytes secrete most of their pro-
tein products directly into the plasma, secreting only bile 
components to the biliary ducts. In contrast, acinar cells 
secrete all their protein products through the pancreatic 
duct system.

In view of the common developmental origin and  
histological similarities of the two organs, it is not  
surprising that common transcriptional regulators con-
trol the ontogenesis and homeostasis of the liver and 
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pancreas. Thus, members of the Forkhead box A (FoxA), 
Onecut, SRY-related HMG box (Sox), and hepatocyte 
nuclear factor (HNF) families are essential in developing 
adult liver and pancreas8–12. The similarities between the 
pancreatic and hepatic developmental programs are also 
reflected in the fact that acinar cells can transdifferentiate 
into hepatocytes13–15.

The liver and pancreas are affected by cancers char-
acterized by poor survival rates. Considering the his-
tological and molecular similarities of fetal and adult 
liver and pancreas, we reasoned that some mechanisms 
driving carcinogenesis might be analogous in the two 
organs. Here we summarize basic concepts about tumor
igenesis in the liver and pancreas and discuss how 
tumor development in an organ may provide insight into  
our understanding of carcinogenesis in the other organ.

HEPATIC AND PANCREATIC 
CARCINOGENESIS

In the liver, the most frequent cancers are hepato
cellular carcinoma (HCC). Cholangiocarcinoma (CCA) 
is the second most frequent type of liver cancer, and it 
accounts for about 10%–25% of all hepatobiliary malignan-
cies. In the pancreas, pancreatic ductal adenocarcinoma  
(PDAC) is the most frequent pancreatic tumor (85%–95% 
of cases)16. Acinar cell carcinomas (ACCs) are less fre-
quent: they are detected in 1%–2% of adult patients and 
about 15% of pediatric patients17. Pancreatic cystic tumors 
represent only 1% of cases, but nevertheless account for 
about 15% of pancreatic cancer resections18. These three 
pancreatic tumor types derive from the exocrine compart-
ment; endocrine tumors are not discussed here. Owing to 
the similarities discussed above, we here make pairwise 
comparisons between HCC and ACC, CCA and PDAC, as 
well as CCA and pancreatic cystic tumors, and highlight 
the similarities between these cancers at the histological 
level and with regard to their mutational landscape.

HEPATOCELLULAR CARCINOMA  
AND ACINAR CELL CARCINOMA

HCC is frequently associated with cirrhosis caused 
by hepatitis B and C, alcohol abuse, or non-alcoholic 
fatty liver disease19. Several reports indicate that HCC 
develops from hepatocytes20, although it has also been 
suggested that HCC originates from liver stem cells21. 
Macroscopically, HCCs appear as nodular or infiltrative 
tumors. Generally, nodular tumors are well circumscribed, 
with trabecular formations composed of cells resembling 
hepatocytes, whereas infiltrative tumors are poorly dif-
ferentiated22. Pancreatic ACC may originate from acinar 
cells, as suggested by the expression of acinar-specific 
enzymes, such as trypsin, lipase, amylase, and carboxyl 
ester lipase in tumor tissue23,24. Histological features are 
similar to those of HCC: trabecular structures and cells 

resembling the acinar cell type of origin are observed; 
poorly differentiated cells are found in some cases. In 
both HCC and ACC, scant stroma is detected.

Interestingly, in addition to those shared histological 
features, HCC and ACC are often driven by dysfunc-
tional Wnt/b-catenin pathway. Genomic alterations have 
been extensively studied in HCC, revealing that 30%–50% 
of HCCs display perturbed Wnt/b-catenin (CTNNB1) sig
naling, mostly resulting from mutations in CTNNB1, APC, 
and AXIN125–28. Genomic studies of ACC are less numer-
ous because of the rarity of cases. However, they reveal 
that CTNNB1 and APC alterations (mutations, gene loss, 
and/or promoter hypermethylation) are detected in up to 
56% in patients29,30. Chromosomal imbalances are also 
recurrent in HCC and ACC, possibly as a consequence 
of APC loss25,31,32. The most frequent amplifications of 
chromosomal regions are found on 1q, 8q, and 20q in 
both lesions. This includes amplification of c-MYC at the 
8q24 locus.

Another striking similarity between HCC and ACC 
relates to the KRAS oncogene. Indeed, despite that KRAS 
is the most frequently mutated oncogene in human can-
cers, being mutated in 22% of tumors, the frequency of 
KRAS mutations in HCC and ACC is surprisingly low 
(0% and 1%–2%, respectively)25,32,33. This observation 
extends to the downstream effector of KRAS, BRAF, as 
well as the epidermal growth factor receptor (EGFR), a 
receptor whose signaling critically depends on KRAS 
activity32,34. Altogether, this indicates that in both cancer 
types, the EGFR/KRAS/ERK pathway is not predomi-
nantly involved in tumorigenesis, in contrast to many 
other cancer types.

CHOLANGIOCARCINOMA AND PANCREATIC 
DUCTAL ADENOCARCINOMA

CCA has a 5-year survival rate of about 10%, and this 
remains unchanged in the last 20 years35. As for HCC, 
chronic liver inflammation is a common risk factor. In 
Southeast Asia, CCA development is often associated 
with infection by Opisthorchis viverini or Clonorchis 
sinensis. Based on the anatomical localization, CCAs 
are classified according to their anatomical localization 
as intrahepatic CCA (iCCA), perihilar CCA (pCCA), and 
distal (or extrahepatic) CCA (dCCA)36. While pCCA and 
dCCA are mainly mucinous adenocarcinomas, iCCAs are 
histologically heterogeneous: bile ductular type (mixed) 
arises from small intrahepatic bile ducts, and bile duct 
type (mucinous) develops from large intrahepatic bile 
ducts37. Not surprisingly, the diverse anatomical locations 
of CCA are associated with heterogeneity in the muta-
tional landscape of these tumors38,39.

PDAC is one of the deadliest cancers, and the mean 
survival period after diagnosis has not significantly 
improved over the last decades. Lifestyle factors, such 
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as cigarette smoking, excessive alcohol consumption, 
and obesity, increase the risk of PDAC, likely resulting 
from chronic pancreatitis40. A striking characteristic of 
PDAC is the prevalence of oncogenic KRAS mutations, 
which varies between 88% and 100%41,42. This very 
high mutation rate suggests that KRAS plays a key role 
in pancreatic tumorigenesis and prompted the develop-
ment of mouse models with induction of mutated Kras in 
the pancreas43. These models revealed that PDAC could 
originate from acinar cells and not necessarily from duc-
tal cells as suggested by the histological features of the 
tumors44–46. However, the presence of a Kras mutation 
in the acinar genome is not sufficient to initiate tumor 
development and evolution toward malignancy. Tumor 
development requires association of a KRAS mutation 
and inflammation45,47,48 and occurs in a stepwise man-
ner starting with inflammation-induced acinar-to-ductal 
metaplasia (ADM), during which acinar cells acquire a 
ductal-like phenotype49. When a Kras mutation occurs 
in this inflammatory context, the metaplastic acinar cell 
transforms into a neoplastic lesion called pancreatic intra-
epithelial neoplasia (PanIN), which evolves to cancer 
upon accumulation of other gene mutations, mainly p53, 
p16, and Smad450–53. Still, this scheme has yet to be con-
firmed in humans.

In CCA, even though KRAS still appears as the most 
frequently mutated oncogene, its mutation rate is much 
less important than the prevalence of KRAS mutations in 
PDAC16 and varies considerably according to the CCA 
localization38,54. Like in mouse models of PDAC, the 
mere presence of a Kras mutation in hepatocytes or cho-
langiocytes is not sufficient to transform these cells55,56. 
By analogy with the pancreas, it would be interesting to 
couple the presence of a Kras mutation in the liver with 
the presence of inflammation. Supporting the need for 
such experiments, bile ductular-type CCA is frequently 
associated with chronic liver diseases (viral hepatitis or 
cirrhosis) in which inflammation plays an important part 
in disease progression and cancer initiation. It should be 
noted that independent of the presence of inflammation, 
coupling a Kras mutation with mutation in the tumor-
suppressor Pten results in iCCA development55.

A central question about CCA development refers 
to the identity of the cell type of origin. Murine models 
have shown that iCCA can derive from cholangiocytes 
or hepatocytes57–59. In the latter case, hepatocyte-to- 
cholangiocyte transdifferentiation requires activation of  
the Notch pathway, which is comparable to Notch-
controlled ADM in the pancreas60. Progression to iCCA 
depends on the combination of Notch activation with 
hepatotoxin-induced liver fibrosis or activation of the 
AKT pathway59,58, whereas activated Notch and activat-
ing Kras mutations synergistically induce PanIN forma-
tion from ADM44. Future work will determine the extent 

of similarities between hepatocyte-derived iCCA and 
acinar-derived PDAC and whether similar mechanisms 
operate in humans.

CHOLANGIOCARCINOMA AND PANCREATIC 
CYSTIC TUMORS

A small proportion of CCA and pancreatic cancers 
arise from neoplastic lesions called intraductal papillary 
neoplasm of the bile duct (IPNB) and intraductal papil-
lary mucinous neoplasm of the pancreas (IPMN). Both 
lesions appear as papillary tumors within dilated duct 
lumens and are usually associated with the production of 
mucinous secretions and the presence of cysts61,62. IPNB 
can be detected both in extra- and large intrahepatic bile 
ducts, and IPMNs are localized in the main pancreatic 
duct, the branch ducts, or both locations63–65. IPNB and 
IPMN are classified into four identical histotypes: gas-
tric, intestinal, pancreatobiliary, and oncocytic types. 
IPMN evolves into invasive carcinoma in 20% to 40% 
of cases and IPNB in 4% to 38% of cases61,66,67. Gastric 
and pancreatobiliary types give rise to tubular adenocar-
cinoma, whereas intestinal types form mucinous/colloid 
carcinoma66,67.

Beyond these histological similarities, IPMN and 
IPNB share common genetic alterations. In humans, 
KRAS is the most frequently mutated oncogene in both 
lesions. On average, KRAS is mutated in 29%–46% of 
IPNB and in 61% of IPMN68,69. GNAS, which encodes the 
G-protein a stimulatory subunit (Gas) of heterotrimeric 
G proteins, is also frequently mutated in IPNB (50%) 
and IPMN (56%)68,70. Interestingly, KRAS mutations are 
predominant in gastric (65%–73%) and pancreatobiliary  
subtypes (64%–100%) compared to intestinal subtype 
(44%–46%), whereas GNAS mutations are more typically 
detected in the intestinal subtype (59%–100%) compared 
to gastric and pancreatobiliary subtypes (46%–65% and 
0%–43%, respectively)68,71–73, suggesting that mutated GNAS 
promotes intestinal differentiation of IPNB and IPMN. 
Similarities in the mutational profiles of IPNB and IPMN 
extend beyond KRAS and GNAS mutations. Indeed, the 
third most frequently mutated gene in IPMN, namely,  
the gene coding for ubiquitin ligase RNF43, with 23% 
of the mutated cases, also appears mutated at a high fre-
quency in IPNB (12%)68,74. Full understanding of the 
role of KRAS, GNAS, and RNF43 in IPNB and IPMN 
development requires the development of new murine 
transgenic models. A murine model coupling Kras and 
Gnas mutations in the pancreas was generated75. These 
mice develop IPMN, supporting a role of Kras and Gnas 
mutations in the development of these lesions. How
ever, the mutations were induced during embryogenesis. 
Considering the sensitivity of embryonic cells to onco-
genic stimuli and the resistance of mature pancreatic 
cells to such injury, Gnas and Kras mutations should 
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ideally be induced in adult mouse pancreas to strengthen 
the conclusions.

Similar mutational profiles in IPNB and IPMN also 
suggest that the two lesions originate from the same cell 
type. Histopathological observations suggest that IPNB 
and IPMN arise from the biliary and pancreatic ductal 
cells. However, peribiliary glands (PBGs) and pancreatic 
duct glands (PDGs) are associated with the large biliary 
or pancreatic ducts76,77. PBG and PDG are proposed to 
contain stem/progenitor cells78–80 and may give rise to 

IPNB and IPMN61. The analysis of mouse models sup-
ports the hypothesis that IPMN originates from the PDG81 
and that dCCA can originate from the PBG, yet in the  
latter model, dCCA appeared as an undifferentiated ade-
nocarcinoma, not as a cystic tumor82.

In conclusion, current data support the notion that 
the mechanisms of tumorigenesis in the liver and pan-
creas might significantly overlap (summarized in Fig. 1). 
Development of new transgenic mouse models, especially 
to explore the possibility that PBGs and PDGs are a source 

Figure 1.  Summary of similarities and differences between liver and pancreatic cancers reported in this article.
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of IPNB and IPMN and subsequently of cancer, as well as 
studies of patient-derived xenografts and liver and pan-
creas organoids83,84, will enable us to determine to what 
exact extent pancreas and liver tumorigenesis can be con-
sidered similar.
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