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Abstract

A crucial step in the understanding of any phenotype is the correct identification of the signaling
pathways that are significantly impacted in that phenotype. However, most current pathway
analysis methods produce both false positives as well as false negatives in certain circumstances.
We hypothesized that such incorrect results are due to the fact that the existing methods fail to
distinguish between the primary dis-regulation of a given gene itself and the effects of signaling
coming from upstream. Furthermore, a modern whole-genome experiment performed with a next-
generation technology spends a great deal of effort to measure the entire set of 30,000-100,000
transcripts in the genome. This is followed by the selection of a few hundreds differentially
expressed genes, step that literally discards more than 99% of the collected data. We also
hypothesized that such a drastic filtering could discard many genes that play crucial roles in the
phenotype. We propose a novel topology-based pathway analysis method that identifies
significantly impacted pathways using the entire set of measurements, thus allowing the full use of
the data provided by NGS techniques. The results obtained on 24 real data sets involving 12
different human diseases, as well as on 8 yeast knock-out data sets show that the proposed method
yields significant improvements with respect to the state-of-the-art methods: SPIA, GSEA and
GSA.

Availability—Primary dis-regulation analysis is implemented in R and included in ROntoTools
Bioconductor package (versions = 2.0.0). https://www.bioconductor.org/packages/release/bioc/
html/ROntoTools.html
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[. Introduction

The goal of pathway analysis methods is to identify the most perturbed pathways in a given
condition. Pathways are divided in two main categories: i) signaling pathways, that are
defined as graphs in which nodes represent genes/proteins and edges are interactions
between them, and ii) metabolic pathways in which the nodes represent biochemical
compounds and the edges represent reactions, carried out by enzymes which are coded by
genes [32]. Such pathways describe all known phenomena involved in a biological process
(e.g. cell cycle), disease (e.g. Alzheimer’s disease), etc. In this paper, we focus on signaling
pathways to be able to map the measured expression level of the genes to the corresponding
nodes in those pathways. Intuitively, the impact of a given phenotype on a given pathway
should be determined by the number of differentially expressed (DE) genes on the given
pathway, the magnitude of the changes in the expression level of the genes, and the type,
direction and strength of the interactions between the genes in that pathway.

The simplest pathway analysis approach is the over-representation analysis (ORA) [23].
This approach considers only the number of DE genes that are present in a given pathway.
ORA techniques calculate the probability of finding a certain number of DE genes among all
the genes in a pathway just by chance. Another approach to pathway analysis is the
functional class scoring (FCS) [24], [32]. This approach takes into consideration all
measured expression changes, as well as the correlation between the expression change of
the genes and the phenotype. The most popular techniques in the FCS category are Gene Set
Enrichment Analysis (GSEA) [45] and Gene Set Analysis (GSA) [10]. These two techniques
rank the genes based on the correlation between their expression and a given phenotype, and
calculate a score that reflects the degree to which a given pathway is represented at extremes
of the ranked list. Neither of these two approaches considers the interactions between genes,
their direction, type, strength, etc. In essence, all these methods treat the pathways as simple
sets of genes.

However, databases such as KEGG [34], BioCarta [5] and Reactome [21] provide pathways
that consist of much more than just sets of genes. These databases provide complex graphs
for each signaling pathways in which each node is a gene/protein and each edge is an
interaction between two such genes or proteins. Ignoring the wealth of knowledge captured
in the topology of the pathway is clearly sub-optimal. Even though these databases provide
more detailed information about the topology of the pathways, there are thousands of genes
that have not been annotated yet. Furthermore, many of the existing annotations may be
inaccurate [24]. However, we believe that accuracy and reliability of pathways annotation is
growing and using this type of information can only help the interpretation of high-
throughput experiments.

One of the first methods to exploit the information about the interactions among genes tried
to analyze the entire set of known interactions, in order to find circuits, or subnetworks, that
are affected by the phenotype in analysis. The interactions are obtained by combining

different sources of information, such as pathways, interaction databases and literature [18].
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More recently, more sophisticated methods that are able to fully take into consideration all
the interactions between genes in signaling pathways to find which pathway is most
impacted by a given phenotype have been proposed [9]. These are sometimes referred to as
“topology-aware” or “third generation” pathway analysis methods [24], [32]. The method
proposed in this paper belongs to this latest generation of pathway analysis methods,
inasmuch it considers the topology of the pathways, as well as the changes in expression
level of the genes.

However, even the most sophisticated current pathway analysis methods still produce both
false positives as well as false negatives in certain circumstances. We hypothesized that such
incorrect results are due to the fact that the existing methods fail to distinguish between the
primary dis-regulation of a given gene itself and the effects of signals coming from
upstream. We hypothesize that better results could be achieved if one distinguishes between
genes that are true sources of perturbation, e.g. due to mutations, copy number variations,
epigenetic changes, etc. and genes that merely respond to perturbation signals coming from
upstream. Intuitively, a pathway should be more significantly impacted if it hosts more genes
that are such true sources of perturbation. The method proposed here is an attempt at
capturing these differences by calculating a “primary dis-regulation” for every gene and
using them to compute a total pathway perturbation and subsequent significance.

Another issue related to the traditional topological data analysis approaches involves the
need for a selection of differentially expressed (DE) genes. Traditionally, the pathway
analysis step is performed after a set of DE genes has been selected using some thresholds
on some criteria such as fold-change and/or p-values. Typically, a set of a few hundred genes
are selected as DE. However, a modern whole-genome experiment performed with a next-
generation technology (NGS) provides measurements for the entire set of transcripts in the
genome, albeit for a non-trivial cost in computation necessary for the assembly and
quantification of millions of short reads. In addition to the high computational cost, other
drawbacks are related to the large amount of storage space, and the need to specialized
bioinformatics expertise to set-up and run the environment necessary for the analysis. Given
that this great deal of effort is spent in order to measure over 30,000 transcripts, it makes
little sense to discard approximately 99% of these measurements in order to focus on 300 or
so genes that are declared to be differentially expressed. Subsequently, the pathway analysis
step aims to identify system-level changes based on only these 1% of the original data
collected. More recently, approaches that are able to identify significantly impacted
pathways based on the entire set of measurements have been proposed [54]. Henceforth, we
will refer to the original approach based on DE genes as the cut-off-based approach, and to
the threshold-free approach as the a// genes approach. We assessed the novel method
proposed here with both types of input.

In the methods section, we describe our new proposed method in details. In the discussion
section, we evaluate our method using 24 data sets involving 12 conditions from different
experiments comparing human diseased versus normal tissues. The results of the proposed
method using the cut-off-based approach are compared with SPIA (cut-off) [48], which also
uses a pre-selected list of DE genes as input. The results of the proposed method using the
all genes approach are compared with GSEA [45], GSA [10] and SPIA (all genes) [54]
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which use entire set of genes as input. These existing methods have been selected as the
reference in our comparisons because they are among the most cited and widely used
methods in the literature [32]. We also evaluate our method using eight yeast knock-out data
sets from different experiments comparing samples with knock-out gene versus normal
samples. The comparisons show that the proposed method is able to perform better than the
most widely used pathway analysis methods, in identifying the target pathways as
statistically significant.

[l. Methods

The measured expression change of a gene in a given phenotype can be seen as the result of
influences from upstream genes superposed on the dis-regulation incurred by that particular
gene itself. We will refer to this later quantity as the primary dis-regulation (pDis). The
diffusion of signals between genes in regulatory networks, called “network propagation”,
can be used to find the active genes and subnetworks as well as the function of the genes in
different conditions [19]. Widely used methods in this field are introduced in [57] and [52].
Here, we are using a similar approach that uses propagation between genes to calculate pDis
in order to find the most impacted pathways. We propose a pathway analysis method that
focuses on this primary dis-regulation.

The change in the expression level of a gene 7, AE(g)), can be seen as a sum of the primary
dis-regulation (pDis) and the secondary dis-regulation (sDis):

AE(g,) = pDis(g;)) + sDis(g;) (1)

The secondary dis-regulation of the gene g;is the term that is meant to capture the
perturbation reaching this particular gene from upstream. This can be calculated by adding
the expression change of upstream genes normalized by the number of their downstream
genes:

Z ﬂl‘,]’ : AE(gj)

2
eU Nd, Y(g]) ( )

AE(g;) = pDis(g;) +
J

In the equation above, A£(g)) is the measured fold change of the gene gjthat is somewhere
directly upstream of gj, Uis the set of all such genes directly upstream of g and Nj{(g)) is
the number of genes immediately downstream of g; (see Fig. 1). The quantity ; ;represents
efficiency of the interaction between gene i and gene j. It captures a specific value if an
interaction is available between two genes. We used +1 if the interaction type is activation or
expression and -1 if it is inhibition or repression as default values. This is the same
approach used by the impact analysis [9].

The primary dis-regulation, which gives the change in a gene expression inherent to the gene
itself, can then be derived as follows:
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ﬁi,j : AE(gj)

27

jeu

3)

The primary dis-regulation is meant to capture information about the genes that are sources
of perturbation in a given phenotype, rather than those genes that change as a result of
upstream changes. For instance, a mutation that induce expression changes would be
captured by the gene’s primary dis-regulation, while expression changes due to upstream
signaling would be captured by the secondary dis-regulation. A mutation is an example that
is sufficient but not necessary to create primary dis-regulation. Other potential cause could
be copy number variations, epigenetic changes such as methylation, etc. The intuition
motivating the computation of the primary dis-regulation is that pathways that have more
genes that are sources of perturbation are more likely to be truly involved in the phenotype.

The process of calculating all values of the primary dis-regulation for all genes in a given
pathway can be summarized using the matrix equation:

pDis = AET . (I-B) (4)
In this equation, the matrix B represents the adjacency matrix of each signaling pathway
normalized by the number of downstream genes of each gene.
PraNasg) Pr.a"Nasig,) -+ PronNascs, )
B ﬁ2, l/Nds(gl) ﬁZ, 2/Nds(g2) ﬁ2, n/Nds(gn)
ﬁn, l/Nds(gl) ﬁn, 2/Nds(g2) ﬁn, n/Nds(gn)

In equation 4, 1 is an identity matrix with dimensions equal to the number of genes in a
pathway, and A£is the vector of measured expression changes of the genes in that pathway:

AE(g))
_|aEGy

AE(g,)

The score for pathway kis calculated as the sum of the absolute values of primary dis-
regulation of all the genes in the pathway, fotalpDis.

totalpDis;, = Z |pDis(g)|  (5)
ie pathwayk
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The quantity fotalpDis of a pathway represents the amount of primary dis-regulation of the
whole pathway in the condition under study.

The significance of each pathway is assessed by computing the probability of obtaining just
by chance a fotalpDis value more extreme than the one observed. This probability is
estimated using a bootstrap approach where the null distribution for fotalpDis for each
pathway is generated by sampling random gene expression changes from the original set of
expression changes. The number of bootstraps used was 2,000. This process is repeated for
all pathways and yields a p-value for each pathway. Subsequently, the set of p-values for all
pathways are corrected for multiple comparisons using the false discovery rate (FDR). The
average running time for a data set is 6.3 minutes on an architecture using a single Intel
Xeon core @ 2.66GHz with 1TB of RAM.

Cut-off dependent versus cut-off free analysis

Pathway analysis techniques often take a subset of statistically significant genes as input,
based on cut-offs for expression change and/or p-value. It has been shown in [35] that small
variations of the threshold used to select the subset of differentially expressed (DE) genes
has dramatic effects on the outcome of the methods. Hence, the accuracy of any pathway
analysis methods using a subset of DE genes will also be very dependent on the threshold(s)
used. Furthermore, when using a cut-off, some genes that play an important biological role
may fail to meet the selection criteria and thus, not included in the set of DE genes. This can
potentially impede the identification of the biologically meaningful pathways.

Recently, it has also been shown that the accuracy of a pathway analysis method can be
improved by using the entire set of measurement from an experiment rather than a subset of
DE genes [54]. This means that a selection of a set of DE genes may no longer be needed in
many situations.

With respect to the method proposed in this paper, the use of a subset of DE genes will affect
the values of the pDis of other genes in a pathway. The pDis of a gene is simply equal to the
expression change when there are no upstream DE genes. However, when such upstream
genes do exist, pDis is calculated using the expression changes of upstream genes as well.
The inclusion of all genes in the calculation will have a strong impact on the result, even if
the expression changes are small. This allows the analysis to retain all of the information in
the data, avoiding arbitrary threshold choices.

We refer to this method as pDis analysis (all genes), as opposed to pDis analysis (cut-off) for
cut-off based. Here, we show the results from both types of input sets applied to our new
method proposed in this paper.

[1l. Discussion and Results

Ranks and p-values for targeted data sets

To date there is no universally accepted technique for the validation of the results of pathway
analysis methods. The assessment of the results of different pathway analysis methods
usually involves the selection of a few data sets, and then the interpretation of the results

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2018 October 16.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ansari et al. Page 7

either with the help of biologists in the field, or by searching the published literature. This
approach is very limited because it can only be applied to a small number of data sets.
Furthermore, it is subjective, and may lead to bias in the results since most of the time the
expert who performs the assessment is also a co-author of the paper. Finally, the biological
phenomena are so complex that with enough literature search, a large number of pathways
can be implicated in almost any condition. In this work we follow two validation
approaches. The first one is the validation approach introduced in [47]. We like this
evaluation approach because it is objective, reproducible, based on multiple data sets, and it
does not require an unavoidably biased “expert” human evaluation of the results [47]. This
approach requires testing on a large number (at least 10 but preferably more) of different
data sets coming from a variety of different conditions, tissues, and laboratories. The data
sets are selected such that there are specific pathways in the target pathway databases that
model each of the given diseases. For each data set, the pathway corresponding to the
phenotype is considered to be the target pathway (e.g. the colorectal cancer pathway will be
the target pathway in a colorectal cancer data set). The evaluation focuses on the ability of
each method to identify these true positive pathways as significant, and rank them as high as
possible. In this paper we validated the proposed method using 24 data sets involving 12
different human diseases. These data sets are shown in Table I.

The second approach uses knock-out data sets. In this case, the exact source of perturbation
is known: the specific gene being knock-out. Thus the pathways that include this gene will
be truly relevant to the phenotype, since they contain the very source of the perturbation that
created the phenotype. In other words, these pathways are true positives and are also
considered the target pathways in our validation.

The p-values (representing the probability of observing the given perturbations just by
chance) are used to assign significance to each pathway. The list of pathways is then ranked
based on these p-values.

In order to formalize and quantify the assessment, we define an “improvement factor” that
will be used to compare the performance of two pathway analysis methods. If the target
pathway for a given data set goes from not significant in the results of method 1 to
significant in the results of method 2, the improvement factor for this data set will be 1 (see
Fig. 2). If the target pathway goes from significant to not significant, the improvement factor
will be —1. If the significance of the target pathway does not change but the ranking
improves, the improvement factor will be +0.5. Finally, if the significance does not change
but the ranking worsens, the improvement will be —0.5. If the ranking remains the same, the
improvement is zero for that data set. The improvement of method 2 compared to method 1
is the average of improvement factors associated to each target pathway over the set of 24
different data sets. If the overall improvement is positive, then method 2 is considered to
perform better than method 1 based on this validation method.

The proposed method was implemented using the R statistical programming environment
[50]. The code is currently available by request from the authors. We are also planning to
make the code available as a Bioconductor R package. We used KEGG signaling pathways
as input pathways. The pathways were obtained from the “SPIA” R package version 2.14.0
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[49] as included in Bioconductor version 2.13, released on October 15th, 2013. We selected
all pathways that have at least one interaction with the type of activation, inhibition,
repression or expression between their genes. This resulted in a set of 139 pathways. The
results of pDis analysis (all genes) are compared to GSA, GSEA and SPIA (all genes) and
the results of pDis analysis (cut-off) are compared to SPIA (cut-off). SPIA (cut-off)
combines two different p-values. One is the perturbation p-value (pPERT) of a pathway. The
perturbation p-value is computed based on the perturbation accumulation of the pathway,
which is the sum of the perturbation factors of its genes. The other p-value of SPIA is the
hypergeometric p-value, based on the number of DE genes in the pathway in a given data
set. Since the number of DE genes in each pathway does not depend on the analysis method,
the hypergeometric p-value is the same in SPIA (cut-off) and the method proposed in this

paper.

Each data set was normalized by the “mar” normalization method available in the “affy” R
package (version 1.38.1) [20] from Bioconductor version 2.12, release on April 4th, 2013.
For each gene, the probe id was mapped to gene Entrez ID. The fold change between normal
and disease conditions for each probe was calculated by using the “limma” package (version
3.16.8) [43] from Bioconductor version 2.12, release on April 4th, 2013. We used the log2-
transform of the fold changes for each gene in our analysis. The moderated t-test was
performed on each probe to compute the significance of the changes between two
phenotypes. For the methods that use cut-off approach, we used a 5% threshold to select the
DE genes.

Ranks and p-values of target pathways for 24 disease data sets

The ranks and p-values of target pathways in all human disease data sets are shown in Fig. 3.
The details of the results for the proposed and reference methods are provided in Table 11l
(SPIA and pDis analysis (cut-off) and Table IV, V and VI (GSEA, GSA, SPIA (all genes)
and pDis analysis (all genes)). The distributions of the ranks and the p-values obtained for
the target pathways in four methods are shown as boxplots in Fig. 3.

The paired t-test and the paired Wilcoxon test were performed to compare the distribution of
the ranks and p-values of target pathways in each method. The results are shown in table I1.
The statistical tests are performed as one-tail tests in order to test whether the ranks and p-
values of target pathways in proposed methods are significantly lower than the reference
methods. The results show that the p-values of the target pathways in pDis analysis (cut-off)
are significantly lower than SPIA. Furthermore, the ranks and the p-values of the target
pathways in pDis analysis (all genes) is significantly lower than GSEA. The p-values of
pDis analysis (all genes) are also lower than those yielded by GSA but not significantly so
(at 5%).

The pDis analysis (all genes) yields better results compared to GSEA, in term of both ranks
(panel C in Fig. 3, Wilcoxon test p-value = 0.29), as well as p-values of the target pathways
(panel D in Fig. 3, t-test p-value = 0.074). The proposed method yields significantly better
results compared to SPIA (all genes) in terms of both ranks (panel C in Fig. 3, Wilcoxon test
p-value = 0.05), as well as p-values of the target pathways (panel D in Fig. 3, t-test p-value
=0.01). The results also show that the proposed method provides more significant p-values
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compared to GSA, even thought the differences are not statistically significant (see Table II).
There is not significant difference between the ranks yielded by pDis (all genes) and GSA.
The figure also shows the comparison between pDis analysis (cut-off) and SPIA (cut-off).
The proposed method yields significantly better results compared to SPIA (cut-off) in terms
of p-values (panel B in Fig. 3, t-test p=0.01). The results are also better in terms of ranks,
even though the difference is not statistically significant (panel A in Fig 3, Wilcoxon test p-
value =0.13).

As some diseases are complex phenotypes involving fundamental biochemical pathways,
other pathways might be significantly impacted in addition to the target pathway. Therefore,
we studied the detailed results of pDis analysis (all genes) on a data set, in order to show that
our method is not limited to identifying the target pathway as significantly impacted, but it is
also able to correctly report relevant fundamental biochemical mechanisms in the condition
under study. We chose to perform detailed analysis of the first neurodegenerative disease as
it appears in table 1. We provide the information about the p-values of all the analyzed
pathways with FDR-corrected p-value lower that 5% for the data set studying alzheimer
disease [6] (see table VII). The pathways with bold font in each table indicate the pathways
that are known to be related to that disease based on existing literature. We can see that most
of the significant pathways are biologically meaningful in the condition in analysis, showing
high precision in the results. These results indicate that the proposed method is able to report
the target pathways as more significant and ranked higher, compared to the state-of-the-art
methods for pathway analysis, as well as it is able to report as significant the pathways that
are known to be associated to a given disease.

Ranks and p-values for the target pathways for eight yeast knock-out data sets

We also validate our approach using eight data sets that comes from experiment studying
eight yeast knock-out genes. We obtained the KEGG signaling pathways for yeast from the
“ROntoTools” R package version 1.2.0 [55] as included in Bioconductor version 2.12
released on April 4th, 2013. We used all pathways that have at least one interaction of type
activation, inhibition, expression, or repression. There are nine such yeast pathways in
KEGG. We used the data provided by [22] as our wild type and knock-out sample. These are
contained in the in the data sets GSE42215 [22] and GSE42527 [22], respectively. We
selected eight knock-out data sets whose knock-out genes belong to at least one pathway
considered in the analysis. The log2-fold changes for each knock-out sample were calculated
by comparing expression levels of that sample with the wild type samples. Each data set was
processed as described in section I11. We performed the pDis analysis (all genes), SPIA (all
genes) and GSA, for each of the eight knock-out sample using the calculated log2-fold
changes. The target pathways for each knock-out data are the pathways that include the
knock-out genes. The ranks and p-values of the target pathways for eight yeast knockout
data sets are shown in the tables VIl and IX. The data show an improvement of about 50%
with respect to SPIA (all genes) and an improvement of about 20% with respect to GSA.
The GSEA results were not included in the comparison on the knock-out data sets because
all data sets involve yeast and GSEA is not available for yeast pathways. The statistical tests
are performed as one-tail in order to test whether the ranks and p-values of target pathways
in proposed methods are significantly lower than the reference methods. The proposed
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method yields significantly better results compared to SPIA (all genes) in terms of both p-
values (t-test p-value = 0.002) as well as ranks of the target pathways (Wilcoxon test p-value
=0.01). The result show that pDis (all genes) provides lower p-values (t-test p-value = 0.09)
and lower ranks for the target pathways, although not significantly (Wilcoxon test p-value =
0.36) when compared to GSA.

False positives under the null hypothesis

As we have demonstrated, the proposed method produces significantly lower p-values for
the target pathways compared with the existing methods, across the set of 24 data sets used
in the validation. However, lower p-values for the target pathways could be produced if the
new method indiscriminately lowered the p-values for a/l pathways, thus introducing many
false positives.

In order to show that this is not the case, we ran a number of experiments with completely
random data. In each of these experiments, a set of expression changes are assigned to the
genes from a random normal distribution with mean of zero and standard deviation of 1.
This was repeated 1,000 times and p-values for the pathways were computed in each
iteration. The pathway p-values for these random data sets, produced the distribution for the
p-values under the null hypothesis. Null-hypothesis distributions were also calculated for
each target pathway and showed no abnormal tendencies. The distribution of the pooled p-
values for all pathways over the 1,000 iterations is shown in Fig. 4. Both the distribution of
the pooled p-values, as well as all null distributions associated with each individual target
pathway were uniform, demonstrating that our method does not yield more significant p-
values for the target pathways by lowering all p-values. These distributions demonstrate that
the proposed method does not produce any more false positives than appropriate for any
significance threshold.

IV. Conclusion

Here we proposed a new topological pathway analysis method based on the amount of
perturbation associated with each individual gene. The proposed pDis analysis considers the
dis-regulation of each gene in every pathway to calculate a p-value with respect to the
distribution of the dis-regulation under the null hypothesis. The proposed method is able to
use either i) a pre-selected number of DE genes, pDis analysis (cut-off), or ii) the entire list
of measured expression levels, pDis analysis (all genes). The results showed that the
proposed method yields significant improvements with respect to the state-of-the-art
methods: SPIA, GSEA and GSA. The comparisons have been performed with a validation
method that used 24 different data sets involving 12 different human diseases and eight
different data sets involving eight knocked out genes in yeast.
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Fig. 1.
An example of one upstream gene and its three downstream genes. pDis(g)) is calculated

using its measured fold change of A£(g)) and measured fold change of upstream genes (e.g.
AE(g)). In this example, the number of downstream genes for gjis Ny(g) = 3.
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Fig. 2.

Tr?e criteria used to assess the results. Alpha (a) represents the chosen significance
threshold. The green and red arrows denote situations in which method 2 is better or worse
than method 1, respectively. The number on each arrow represents the value the
improvement factor in each case. If a target pathway becomes significant in the results of
method 2, the improvement factor for that target pathway will be +1 (e.g. target pathway
TP1); if the pathway becomes not significant, the improvement factor is considered -1 (e.g.
TP4). If the target remains on the same side of the significance threshold, the improvement
factor is considered +0.5 or —0.5 based on the improvement or deterioration of the rank,
respectively (e.g. TP2 and TP3).
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Fig. 3.

Tr?e ranks (in the left column, lower is better) and negative log of p-values of the target
pathways (in the right column, higher is better) in the proposed and reference methods. The
first row (panel A and panel B) shows the comparison between methods using a set of DE
genes: pDis (cut-off) and SPIA (cut-off). The second row (panel C and panel D) shows the
comparison between methods using all genes: GSEA, GSA and SPIA (all genes), pDis (all
genes). For SPIA, the comparisons are based on the perturbation p-value (pPERT). All
human signaling pathways from KEGG (139 pathways) were used in the comparisons. The
data show the results obtained for the target pathways in the 24 data sets shown in Table I.
The bold line in the boxplots represents the median of the distribution. These distributions
show that the proposed method pDis analysis (in blue) is never significantly worse than any
of the existing methods, while it yields a statistically significant improvement in 5 out of the
8 comparisons (see Table I1).
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Fig. 4.

Tr?e null distribution of the p-values obtained from pDis analysis for all KEGG signaling
pathway (139 pathways) in 1,000 iterations. The input gene expression values were chosen
from a random normal distribution with mean of 0 and standard deviation of 1. The
histogram shows the null distribution of the pooled p-values. Uniform distributions were
also obtained for each individual target pathway (data not shown). The uniform distributions
prove that pDis analysis does not produce any more false positives than expected.
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TABLE Il

Results of the statistical tests that were performed to compare the results of the various methods. pDis analysis
(cut-off) was compared to SPIA (cut-off). pDis analysis (all genes) was compared to GSEA, GSA and SPIA
(all genes). Each p-value shows whether the ranks and the p-values of the target pathways in proposed method
are significantly lower than the reference methods (at 5% significance threshold). The results show that pDis
analysis (cut-off) yields significantly better p-values than SPIA (cut-off) for the target pathways. Also, pDis
analysis (all genes) yields lower p-values as well as lower ranks compared to GSEA and SPIA (all genes).

P-value (paired t.test p-value) | SPIA (cut-off) | GSA | GSEA | SPIA (all genes)

pDis analysis (cut-off) 0.01 - - -

pDis analysis (all genes) - 0.07 | 0.074 0.01

Ranks (paired Wilcoxon.test p-value) | SPIA (cut-off) | GSA | GSEA | SPIA (all genes)
pDis analysis (cut-off) 0.13 - - -

pDis analysis (all genes) - 0.75 | 0.29 0.05
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