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Abstract

A crucial step in the understanding of any phenotype is the correct identification of the signaling 

pathways that are significantly impacted in that phenotype. However, most current pathway 

analysis methods produce both false positives as well as false negatives in certain circumstances. 

We hypothesized that such incorrect results are due to the fact that the existing methods fail to 

distinguish between the primary dis-regulation of a given gene itself and the effects of signaling 

coming from upstream. Furthermore, a modern whole-genome experiment performed with a next-

generation technology spends a great deal of effort to measure the entire set of 30,000–100,000 

transcripts in the genome. This is followed by the selection of a few hundreds differentially 

expressed genes, step that literally discards more than 99% of the collected data. We also 

hypothesized that such a drastic filtering could discard many genes that play crucial roles in the 

phenotype. We propose a novel topology-based pathway analysis method that identifies 

significantly impacted pathways using the entire set of measurements, thus allowing the full use of 

the data provided by NGS techniques. The results obtained on 24 real data sets involving 12 

different human diseases, as well as on 8 yeast knock-out data sets show that the proposed method 

yields significant improvements with respect to the state-of-the-art methods: SPIA, GSEA and 

GSA.

Availability—Primary dis-regulation analysis is implemented in R and included in ROntoTools 

Bioconductor package (versions ≥ 2.0.0). https://www.bioconductor.org/packages/release/bioc/

html/ROntoTools.html

Index Terms

Pathway analysis; gene expression; primary disregulation; target pathway

HHS Public Access
Author manuscript
Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2018 October 16.

Published in final edited form as:
Proc IEEE Inst Electr Electron Eng. 2017 March ; 105(3): 482–495. doi:10.1109/JPROC.2016.2531000.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.bioconductor.org/packages/release/bioc/html/ROntoTools.html
https://www.bioconductor.org/packages/release/bioc/html/ROntoTools.html


I. Introduction

The goal of pathway analysis methods is to identify the most perturbed pathways in a given 

condition. Pathways are divided in two main categories: i) signaling pathways, that are 

defined as graphs in which nodes represent genes/proteins and edges are interactions 

between them, and ii) metabolic pathways in which the nodes represent biochemical 

compounds and the edges represent reactions, carried out by enzymes which are coded by 

genes [32]. Such pathways describe all known phenomena involved in a biological process 

(e.g. cell cycle), disease (e.g. Alzheimer’s disease), etc. In this paper, we focus on signaling 

pathways to be able to map the measured expression level of the genes to the corresponding 

nodes in those pathways. Intuitively, the impact of a given phenotype on a given pathway 

should be determined by the number of differentially expressed (DE) genes on the given 

pathway, the magnitude of the changes in the expression level of the genes, and the type, 

direction and strength of the interactions between the genes in that pathway.

The simplest pathway analysis approach is the over-representation analysis (ORA) [23]. 

This approach considers only the number of DE genes that are present in a given pathway. 

ORA techniques calculate the probability of finding a certain number of DE genes among all 

the genes in a pathway just by chance. Another approach to pathway analysis is the 

functional class scoring (FCS) [24], [32]. This approach takes into consideration all 

measured expression changes, as well as the correlation between the expression change of 

the genes and the phenotype. The most popular techniques in the FCS category are Gene Set 

Enrichment Analysis (GSEA) [45] and Gene Set Analysis (GSA) [10]. These two techniques 

rank the genes based on the correlation between their expression and a given phenotype, and 

calculate a score that reflects the degree to which a given pathway is represented at extremes 

of the ranked list. Neither of these two approaches considers the interactions between genes, 

their direction, type, strength, etc. In essence, all these methods treat the pathways as simple 

sets of genes.

However, databases such as KEGG [34], BioCarta [5] and Reactome [21] provide pathways 

that consist of much more than just sets of genes. These databases provide complex graphs 

for each signaling pathways in which each node is a gene/protein and each edge is an 

interaction between two such genes or proteins. Ignoring the wealth of knowledge captured 

in the topology of the pathway is clearly sub-optimal. Even though these databases provide 

more detailed information about the topology of the pathways, there are thousands of genes 

that have not been annotated yet. Furthermore, many of the existing annotations may be 

inaccurate [24]. However, we believe that accuracy and reliability of pathways annotation is 

growing and using this type of information can only help the interpretation of high-

throughput experiments.

One of the first methods to exploit the information about the interactions among genes tried 

to analyze the entire set of known interactions, in order to find circuits, or subnetworks, that 

are affected by the phenotype in analysis. The interactions are obtained by combining 

different sources of information, such as pathways, interaction databases and literature [18].
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More recently, more sophisticated methods that are able to fully take into consideration all 

the interactions between genes in signaling pathways to find which pathway is most 

impacted by a given phenotype have been proposed [9]. These are sometimes referred to as 

“topology-aware” or “third generation” pathway analysis methods [24], [32]. The method 

proposed in this paper belongs to this latest generation of pathway analysis methods, 

inasmuch it considers the topology of the pathways, as well as the changes in expression 

level of the genes.

However, even the most sophisticated current pathway analysis methods still produce both 

false positives as well as false negatives in certain circumstances. We hypothesized that such 

incorrect results are due to the fact that the existing methods fail to distinguish between the 

primary dis-regulation of a given gene itself and the effects of signals coming from 

upstream. We hypothesize that better results could be achieved if one distinguishes between 

genes that are true sources of perturbation, e.g. due to mutations, copy number variations, 

epigenetic changes, etc. and genes that merely respond to perturbation signals coming from 

upstream. Intuitively, a pathway should be more significantly impacted if it hosts more genes 

that are such true sources of perturbation. The method proposed here is an attempt at 

capturing these differences by calculating a “primary dis-regulation” for every gene and 

using them to compute a total pathway perturbation and subsequent significance.

Another issue related to the traditional topological data analysis approaches involves the 

need for a selection of differentially expressed (DE) genes. Traditionally, the pathway 

analysis step is performed after a set of DE genes has been selected using some thresholds 

on some criteria such as fold-change and/or p-values. Typically, a set of a few hundred genes 

are selected as DE. However, a modern whole-genome experiment performed with a next-

generation technology (NGS) provides measurements for the entire set of transcripts in the 

genome, albeit for a non-trivial cost in computation necessary for the assembly and 

quantification of millions of short reads. In addition to the high computational cost, other 

drawbacks are related to the large amount of storage space, and the need to specialized 

bioinformatics expertise to set-up and run the environment necessary for the analysis. Given 

that this great deal of effort is spent in order to measure over 30,000 transcripts, it makes 

little sense to discard approximately 99% of these measurements in order to focus on 300 or 

so genes that are declared to be differentially expressed. Subsequently, the pathway analysis 

step aims to identify system-level changes based on only these 1% of the original data 

collected. More recently, approaches that are able to identify significantly impacted 

pathways based on the entire set of measurements have been proposed [54]. Henceforth, we 

will refer to the original approach based on DE genes as the cut-off -based approach, and to 

the threshold-free approach as the all genes approach. We assessed the novel method 

proposed here with both types of input.

In the methods section, we describe our new proposed method in details. In the discussion 

section, we evaluate our method using 24 data sets involving 12 conditions from different 

experiments comparing human diseased versus normal tissues. The results of the proposed 

method using the cut-off -based approach are compared with SPIA (cut-off) [48], which also 

uses a pre-selected list of DE genes as input. The results of the proposed method using the 

all genes approach are compared with GSEA [45], GSA [10] and SPIA (all genes) [54] 
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which use entire set of genes as input. These existing methods have been selected as the 

reference in our comparisons because they are among the most cited and widely used 

methods in the literature [32]. We also evaluate our method using eight yeast knock-out data 

sets from different experiments comparing samples with knock-out gene versus normal 

samples. The comparisons show that the proposed method is able to perform better than the 

most widely used pathway analysis methods, in identifying the target pathways as 

statistically significant.

II. Methods

The measured expression change of a gene in a given phenotype can be seen as the result of 

influences from upstream genes superposed on the dis-regulation incurred by that particular 

gene itself. We will refer to this later quantity as the primary dis-regulation (pDis). The 

diffusion of signals between genes in regulatory networks, called “network propagation”, 

can be used to find the active genes and subnetworks as well as the function of the genes in 

different conditions [19]. Widely used methods in this field are introduced in [57] and [52]. 

Here, we are using a similar approach that uses propagation between genes to calculate pDis 

in order to find the most impacted pathways. We propose a pathway analysis method that 

focuses on this primary dis-regulation.

The change in the expression level of a gene i, ΔE(gi), can be seen as a sum of the primary 

dis-regulation (pDis) and the secondary dis-regulation (sDis):

ΔE(gi) = pDis(gi) + sDis(gi) (1)

The secondary dis-regulation of the gene gi is the term that is meant to capture the 

perturbation reaching this particular gene from upstream. This can be calculated by adding 

the expression change of upstream genes normalized by the number of their downstream 

genes:

ΔE(gi) = pDis(gi) + ∑
j ∈ U

βi, j ⋅ ΔE(g j)
Nd, s(g j)

(2)

In the equation above, ΔE(gj) is the measured fold change of the gene gj that is somewhere 

directly upstream of gi, U is the set of all such genes directly upstream of gi, and Nds(gj) is 

the number of genes immediately downstream of gj (see Fig. 1). The quantity βi,j represents 

efficiency of the interaction between gene i and gene j. It captures a specific value if an 

interaction is available between two genes. We used +1 if the interaction type is activation or 

expression and −1 if it is inhibition or repression as default values. This is the same 

approach used by the impact analysis [9].

The primary dis-regulation, which gives the change in a gene expression inherent to the gene 

itself, can then be derived as follows:
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pDis(gi) = ΔE(gi) − ∑
j ∈ U

βi, j ⋅ ΔE(g j)
Nds(g j)

(3)

The primary dis-regulation is meant to capture information about the genes that are sources 

of perturbation in a given phenotype, rather than those genes that change as a result of 

upstream changes. For instance, a mutation that induce expression changes would be 

captured by the gene’s primary dis-regulation, while expression changes due to upstream 

signaling would be captured by the secondary dis-regulation. A mutation is an example that 

is sufficient but not necessary to create primary dis-regulation. Other potential cause could 

be copy number variations, epigenetic changes such as methylation, etc. The intuition 

motivating the computation of the primary dis-regulation is that pathways that have more 

genes that are sources of perturbation are more likely to be truly involved in the phenotype.

The process of calculating all values of the primary dis-regulation for all genes in a given 

pathway can be summarized using the matrix equation:

pDis = ΔET ⋅ (I − B) (4)

In this equation, the matrix B represents the adjacency matrix of each signaling pathway 

normalized by the number of downstream genes of each gene.

B =

β1, 1/Nds(g1) β1, 2/Nds(g2) … β1, n/Nds(gn)

β2, 1/Nds(g1) β2, 2/Nds(g2) … β2, n/Nds(gn)

… … … …
βn, 1/Nds(g1) βn, 2/Nds(g2) … βn, n/Nds(gn)

In equation 4, I is an identity matrix with dimensions equal to the number of genes in a 

pathway, and ΔE is the vector of measured expression changes of the genes in that pathway:

ΔE =

ΔE(g1)

ΔE(g2)

…
ΔE(gn)

The score for pathway k is calculated as the sum of the absolute values of primary dis-

regulation of all the genes in the pathway, totalpDis:

totalpDisk = ∑
i ∈ pathwayk

pDis(gi) (5)
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The quantity totalpDis of a pathway represents the amount of primary dis-regulation of the 

whole pathway in the condition under study.

The significance of each pathway is assessed by computing the probability of obtaining just 

by chance a totalpDis value more extreme than the one observed. This probability is 

estimated using a bootstrap approach where the null distribution for totalpDis for each 

pathway is generated by sampling random gene expression changes from the original set of 

expression changes. The number of bootstraps used was 2,000. This process is repeated for 

all pathways and yields a p-value for each pathway. Subsequently, the set of p-values for all 

pathways are corrected for multiple comparisons using the false discovery rate (FDR). The 

average running time for a data set is 6.3 minutes on an architecture using a single Intel 

Xeon core @ 2.66GHz with 1TB of RAM.

Cut-off dependent versus cut-off free analysis

Pathway analysis techniques often take a subset of statistically significant genes as input, 

based on cut-offs for expression change and/or p-value. It has been shown in [35] that small 

variations of the threshold used to select the subset of differentially expressed (DE) genes 

has dramatic effects on the outcome of the methods. Hence, the accuracy of any pathway 

analysis methods using a subset of DE genes will also be very dependent on the threshold(s) 

used. Furthermore, when using a cut-off, some genes that play an important biological role 

may fail to meet the selection criteria and thus, not included in the set of DE genes. This can 

potentially impede the identification of the biologically meaningful pathways.

Recently, it has also been shown that the accuracy of a pathway analysis method can be 

improved by using the entire set of measurement from an experiment rather than a subset of 

DE genes [54]. This means that a selection of a set of DE genes may no longer be needed in 

many situations.

With respect to the method proposed in this paper, the use of a subset of DE genes will affect 

the values of the pDis of other genes in a pathway. The pDis of a gene is simply equal to the 

expression change when there are no upstream DE genes. However, when such upstream 

genes do exist, pDis is calculated using the expression changes of upstream genes as well. 

The inclusion of all genes in the calculation will have a strong impact on the result, even if 

the expression changes are small. This allows the analysis to retain all of the information in 

the data, avoiding arbitrary threshold choices.

We refer to this method as pDis analysis (all genes), as opposed to pDis analysis (cut-off) for 

cut-off based. Here, we show the results from both types of input sets applied to our new 

method proposed in this paper.

III. Discussion and Results

Ranks and p-values for targeted data sets

To date there is no universally accepted technique for the validation of the results of pathway 

analysis methods. The assessment of the results of different pathway analysis methods 

usually involves the selection of a few data sets, and then the interpretation of the results 
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either with the help of biologists in the field, or by searching the published literature. This 

approach is very limited because it can only be applied to a small number of data sets. 

Furthermore, it is subjective, and may lead to bias in the results since most of the time the 

expert who performs the assessment is also a co-author of the paper. Finally, the biological 

phenomena are so complex that with enough literature search, a large number of pathways 

can be implicated in almost any condition. In this work we follow two validation 

approaches. The first one is the validation approach introduced in [47]. We like this 

evaluation approach because it is objective, reproducible, based on multiple data sets, and it 

does not require an unavoidably biased “expert” human evaluation of the results [47]. This 

approach requires testing on a large number (at least 10 but preferably more) of different 

data sets coming from a variety of different conditions, tissues, and laboratories. The data 

sets are selected such that there are specific pathways in the target pathway databases that 

model each of the given diseases. For each data set, the pathway corresponding to the 

phenotype is considered to be the target pathway (e.g. the colorectal cancer pathway will be 

the target pathway in a colorectal cancer data set). The evaluation focuses on the ability of 

each method to identify these true positive pathways as significant, and rank them as high as 

possible. In this paper we validated the proposed method using 24 data sets involving 12 

different human diseases. These data sets are shown in Table I.

The second approach uses knock-out data sets. In this case, the exact source of perturbation 

is known: the specific gene being knock-out. Thus the pathways that include this gene will 

be truly relevant to the phenotype, since they contain the very source of the perturbation that 

created the phenotype. In other words, these pathways are true positives and are also 

considered the target pathways in our validation.

The p-values (representing the probability of observing the given perturbations just by 

chance) are used to assign significance to each pathway. The list of pathways is then ranked 

based on these p-values.

In order to formalize and quantify the assessment, we define an “improvement factor” that 

will be used to compare the performance of two pathway analysis methods. If the target 

pathway for a given data set goes from not significant in the results of method 1 to 

significant in the results of method 2, the improvement factor for this data set will be 1 (see 

Fig. 2). If the target pathway goes from significant to not significant, the improvement factor 

will be −1. If the significance of the target pathway does not change but the ranking 

improves, the improvement factor will be +0.5. Finally, if the significance does not change 

but the ranking worsens, the improvement will be −0.5. If the ranking remains the same, the 

improvement is zero for that data set. The improvement of method 2 compared to method 1 

is the average of improvement factors associated to each target pathway over the set of 24 

different data sets. If the overall improvement is positive, then method 2 is considered to 

perform better than method 1 based on this validation method.

The proposed method was implemented using the R statistical programming environment 

[50]. The code is currently available by request from the authors. We are also planning to 

make the code available as a Bioconductor R package. We used KEGG signaling pathways 

as input pathways. The pathways were obtained from the “SPIA” R package version 2.14.0 
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[49] as included in Bioconductor version 2.13, released on October 15th, 2013. We selected 

all pathways that have at least one interaction with the type of activation, inhibition, 

repression or expression between their genes. This resulted in a set of 139 pathways. The 

results of pDis analysis (all genes) are compared to GSA, GSEA and SPIA (all genes) and 

the results of pDis analysis (cut-off) are compared to SPIA (cut-off). SPIA (cut-off) 

combines two different p-values. One is the perturbation p-value (pPERT) of a pathway. The 

perturbation p-value is computed based on the perturbation accumulation of the pathway, 

which is the sum of the perturbation factors of its genes. The other p-value of SPIA is the 

hypergeometric p-value, based on the number of DE genes in the pathway in a given data 

set. Since the number of DE genes in each pathway does not depend on the analysis method, 

the hypergeometric p-value is the same in SPIA (cut-off) and the method proposed in this 

paper.

Each data set was normalized by the “mar” normalization method available in the “affy” R 

package (version 1.38.1) [20] from Bioconductor version 2.12, release on April 4th, 2013. 

For each gene, the probe id was mapped to gene Entrez ID. The fold change between normal 

and disease conditions for each probe was calculated by using the “limma” package (version 

3.16.8) [43] from Bioconductor version 2.12, release on April 4th, 2013. We used the log2-

transform of the fold changes for each gene in our analysis. The moderated t-test was 

performed on each probe to compute the significance of the changes between two 

phenotypes. For the methods that use cut-off approach, we used a 5% threshold to select the 

DE genes.

Ranks and p-values of target pathways for 24 disease data sets

The ranks and p-values of target pathways in all human disease data sets are shown in Fig. 3. 

The details of the results for the proposed and reference methods are provided in Table III 

(SPIA and pDis analysis (cut-off) and Table IV, V and VI (GSEA, GSA, SPIA (all genes) 

and pDis analysis (all genes)). The distributions of the ranks and the p-values obtained for 

the target pathways in four methods are shown as boxplots in Fig. 3.

The paired t-test and the paired Wilcoxon test were performed to compare the distribution of 

the ranks and p-values of target pathways in each method. The results are shown in table II. 

The statistical tests are performed as one-tail tests in order to test whether the ranks and p-

values of target pathways in proposed methods are significantly lower than the reference 

methods. The results show that the p-values of the target pathways in pDis analysis (cut-off) 

are significantly lower than SPIA. Furthermore, the ranks and the p-values of the target 

pathways in pDis analysis (all genes) is significantly lower than GSEA. The p-values of 

pDis analysis (all genes) are also lower than those yielded by GSA but not significantly so 

(at 5%).

The pDis analysis (all genes) yields better results compared to GSEA, in term of both ranks 

(panel C in Fig. 3, Wilcoxon test p-value = 0.29), as well as p-values of the target pathways 

(panel D in Fig. 3, t-test p-value = 0.074). The proposed method yields significantly better 

results compared to SPIA (all genes) in terms of both ranks (panel C in Fig. 3, Wilcoxon test 

p-value = 0.05), as well as p-values of the target pathways (panel D in Fig. 3, t-test p-value 

=0.01). The results also show that the proposed method provides more significant p-values 
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compared to GSA, even thought the differences are not statistically significant (see Table II). 

There is not significant difference between the ranks yielded by pDis (all genes) and GSA. 

The figure also shows the comparison between pDis analysis (cut-off) and SPIA (cut-off). 

The proposed method yields significantly better results compared to SPIA (cut-off) in terms 

of p-values (panel B in Fig. 3, t-test p=0.01). The results are also better in terms of ranks, 

even though the difference is not statistically significant (panel A in Fig 3, Wilcoxon test p-

value =0.13).

As some diseases are complex phenotypes involving fundamental biochemical pathways, 

other pathways might be significantly impacted in addition to the target pathway. Therefore, 

we studied the detailed results of pDis analysis (all genes) on a data set, in order to show that 

our method is not limited to identifying the target pathway as significantly impacted, but it is 

also able to correctly report relevant fundamental biochemical mechanisms in the condition 

under study. We chose to perform detailed analysis of the first neurodegenerative disease as 

it appears in table I. We provide the information about the p-values of all the analyzed 

pathways with FDR-corrected p-value lower that 5% for the data set studying alzheimer 

disease [6] (see table VII). The pathways with bold font in each table indicate the pathways 

that are known to be related to that disease based on existing literature. We can see that most 

of the significant pathways are biologically meaningful in the condition in analysis, showing 

high precision in the results. These results indicate that the proposed method is able to report 

the target pathways as more significant and ranked higher, compared to the state-of-the-art 

methods for pathway analysis, as well as it is able to report as significant the pathways that 

are known to be associated to a given disease.

Ranks and p-values for the target pathways for eight yeast knock-out data sets

We also validate our approach using eight data sets that comes from experiment studying 

eight yeast knock-out genes. We obtained the KEGG signaling pathways for yeast from the 

“ROntoTools” R package version 1.2.0 [55] as included in Bioconductor version 2.12 

released on April 4th, 2013. We used all pathways that have at least one interaction of type 

activation, inhibition, expression, or repression. There are nine such yeast pathways in 

KEGG. We used the data provided by [22] as our wild type and knock-out sample. These are 

contained in the in the data sets GSE42215 [22] and GSE42527 [22], respectively. We 

selected eight knock-out data sets whose knock-out genes belong to at least one pathway 

considered in the analysis. The log2-fold changes for each knock-out sample were calculated 

by comparing expression levels of that sample with the wild type samples. Each data set was 

processed as described in section III. We performed the pDis analysis (all genes), SPIA (all 

genes) and GSA, for each of the eight knock-out sample using the calculated log2-fold 

changes. The target pathways for each knock-out data are the pathways that include the 

knock-out genes. The ranks and p-values of the target pathways for eight yeast knockout 

data sets are shown in the tables VIII and IX. The data show an improvement of about 50% 

with respect to SPIA (all genes) and an improvement of about 20% with respect to GSA. 

The GSEA results were not included in the comparison on the knock-out data sets because 

all data sets involve yeast and GSEA is not available for yeast pathways. The statistical tests 

are performed as one-tail in order to test whether the ranks and p-values of target pathways 

in proposed methods are significantly lower than the reference methods. The proposed 
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method yields significantly better results compared to SPIA (all genes) in terms of both p-

values (t-test p-value = 0.002) as well as ranks of the target pathways (Wilcoxon test p-value 

= 0.01). The result show that pDis (all genes) provides lower p-values (t-test p-value = 0.09) 

and lower ranks for the target pathways, although not significantly (Wilcoxon test p-value = 

0.36) when compared to GSA.

False positives under the null hypothesis

As we have demonstrated, the proposed method produces significantly lower p-values for 

the target pathways compared with the existing methods, across the set of 24 data sets used 

in the validation. However, lower p-values for the target pathways could be produced if the 

new method indiscriminately lowered the p-values for all pathways, thus introducing many 

false positives.

In order to show that this is not the case, we ran a number of experiments with completely 

random data. In each of these experiments, a set of expression changes are assigned to the 

genes from a random normal distribution with mean of zero and standard deviation of 1. 

This was repeated 1,000 times and p-values for the pathways were computed in each 

iteration. The pathway p-values for these random data sets, produced the distribution for the 

p-values under the null hypothesis. Null-hypothesis distributions were also calculated for 

each target pathway and showed no abnormal tendencies. The distribution of the pooled p-

values for all pathways over the 1,000 iterations is shown in Fig. 4. Both the distribution of 

the pooled p-values, as well as all null distributions associated with each individual target 

pathway were uniform, demonstrating that our method does not yield more significant p-

values for the target pathways by lowering all p-values. These distributions demonstrate that 

the proposed method does not produce any more false positives than appropriate for any 

significance threshold.

IV. Conclusion

Here we proposed a new topological pathway analysis method based on the amount of 

perturbation associated with each individual gene. The proposed pDis analysis considers the 

dis-regulation of each gene in every pathway to calculate a p-value with respect to the 

distribution of the dis-regulation under the null hypothesis. The proposed method is able to 

use either i) a pre-selected number of DE genes, pDis analysis (cut-off), or ii) the entire list 

of measured expression levels, pDis analysis (all genes). The results showed that the 

proposed method yields significant improvements with respect to the state-of-the-art 

methods: SPIA, GSEA and GSA. The comparisons have been performed with a validation 

method that used 24 different data sets involving 12 different human diseases and eight 

different data sets involving eight knocked out genes in yeast.
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Fig. 1. 
An example of one upstream gene and its three downstream genes. pDis(gi) is calculated 

using its measured fold change of ΔE(gi) and measured fold change of upstream genes (e.g. 

ΔE(gj)). In this example, the number of downstream genes for gj is Nds(gj) = 3.
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Fig. 2. 
The criteria used to assess the results. Alpha (α) represents the chosen significance 

threshold. The green and red arrows denote situations in which method 2 is better or worse 

than method 1, respectively. The number on each arrow represents the value the 

improvement factor in each case. If a target pathway becomes significant in the results of 

method 2, the improvement factor for that target pathway will be +1 (e.g. target pathway 

TP1); if the pathway becomes not significant, the improvement factor is considered −1 (e.g. 

TP4). If the target remains on the same side of the significance threshold, the improvement 

factor is considered +0.5 or −0.5 based on the improvement or deterioration of the rank, 

respectively (e.g. TP2 and TP3).
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Fig. 3. 
The ranks (in the left column, lower is better) and negative log of p-values of the target 

pathways (in the right column, higher is better) in the proposed and reference methods. The 

first row (panel A and panel B) shows the comparison between methods using a set of DE 

genes: pDis (cut-off) and SPIA (cut-off). The second row (panel C and panel D) shows the 

comparison between methods using all genes: GSEA, GSA and SPIA (all genes), pDis (all 

genes). For SPIA, the comparisons are based on the perturbation p-value (pPERT). All 

human signaling pathways from KEGG (139 pathways) were used in the comparisons. The 

data show the results obtained for the target pathways in the 24 data sets shown in Table I. 

The bold line in the boxplots represents the median of the distribution. These distributions 

show that the proposed method pDis analysis (in blue) is never significantly worse than any 

of the existing methods, while it yields a statistically significant improvement in 5 out of the 

8 comparisons (see Table II).
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Fig. 4. 
The null distribution of the p-values obtained from pDis analysis for all KEGG signaling 

pathway (139 pathways) in 1,000 iterations. The input gene expression values were chosen 

from a random normal distribution with mean of 0 and standard deviation of 1. The 

histogram shows the null distribution of the pooled p-values. Uniform distributions were 

also obtained for each individual target pathway (data not shown). The uniform distributions 

prove that pDis analysis does not produce any more false positives than expected.
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TABLE II

Results of the statistical tests that were performed to compare the results of the various methods. pDis analysis 

(cut-off) was compared to SPIA (cut-off). pDis analysis (all genes) was compared to GSEA, GSA and SPIA 

(all genes). Each p-value shows whether the ranks and the p-values of the target pathways in proposed method 

are significantly lower than the reference methods (at 5% significance threshold). The results show that pDis 

analysis (cut-off) yields significantly better p-values than SPIA (cut-off) for the target pathways. Also, pDis 

analysis (all genes) yields lower p-values as well as lower ranks compared to GSEA and SPIA (all genes).

P-value (paired t.test p-value) SPIA (cut-off) GSA GSEA SPIA (all genes)

pDis analysis (cut-off) 0.01 – – –

pDis analysis (all genes) – 0.07 0.074 0.01

Ranks (paired Wilcoxon.test p-value) SPIA (cut-off) GSA GSEA SPIA (all genes)

pDis analysis (cut-off) 0.13 – – –

pDis analysis (all genes) – 0.75 0.29 0.05
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