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Summary

This study aims to combine
whole-mount prostate pa-
thology with multiparametric
magnetic resonance imaging
from 39 patients to generate
predictive maps of epithe-
lium and lumen density in
magnetic resonance imaging
space. We show that the new
image contrasts generated
stratify high-grade tumors
from low-grade tumors and
healthy tissue. Future studies
will explore targeted radia-
tion therapy and clinical
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Purpose: This study aims to combine multiparametric magnetic resonance imaging
(MRI) and digitized pathology with machine learning to generate predictive maps
of histologic features for prostate cancer localization.
Methods and Materials: Thirty-nine patients underwent MRI prior to prostatectomy.
After surgery, tissue was sliced according to MRI orientation using patient-specific
3-dimensionally printed slicing jigs. Whole-mount sections were annotated by our
pathologist and digitally contoured to differentiate the lumen and epithelium. Slides were
co-registered to the T2-weightedMRI scan. A learning curvewas generated to determine
the number of patients required for a stable machine-learning model. Patients were
randomly stratified into 2 training sets and 1 test set. Two partial least-squares regression
models were trained, each capable of predicting lumen and epithelium density. Predicted
density values were calculated for each patient in the test dataset, mapped into the MRI
space, and compared between regions confirmed as high-grade prostate cancer.
Results: The learning-curve analysis showed that a stable fitwas achievedwith data from
10 patients. Maps indicated that regions of increased epithelium and decreased lumen
density, generated from each independent model, corresponded with pathologist-
annotated regions of high-grade cancer.
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disease staging using the

radio-pathomic mapping
technique.
Conclusions: Wepresent a radio-pathomic approach tomapping prostate cancer.Wefind
that the maps are useful for highlighting high-grade tumors. This technique may be rele-
vant for dose-painting strategies in prostate radiation therapy. � 2018 The Author(s).
Published by Elsevier Inc. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Prostate cancer will be diagnosed in 1 in 7 men, although
not all cases are clinically significant (1). Gleason grade 3
(G3) cancers often never progress to metastatic cancer,
while Gleason grade 4 (G4) and grade 5 (G5) cancers are
more likely to progress and cause death (2). Differentiation
of indolent from aggressive disease is therefore a major
focus of ongoing radiologic studies.

Multiparametric (MP) magnetic resonance imaging
(MRI) including diffusion and perfusion imaging has
recently shown promise in improving the diagnostic accuracy
in high-grade prostate cancer (3, 4). Ongoing standardization
efforts have also improved the consistency of radiologist
reports (5, 6). Studies have shown that MP-MRI is useful for
biopsy guidance (7) and potentially selective radiation ther-
apy boost strategies (8). Noninvasive imaging is therefore
becoming standard for staging and localizing prostate cancer.

Radiomics describes the field of study in which images
are treated as mineable databases to solve classification
problems (9, 10). Image features, which can be a statistical
expression of pixel neighborhood or tumor morphometry,
as well as clinical variables (9, 11, 12), are used as inputs to
classification algorithms. Models can then be used to detect
and characterize a clinically relevant outcome (12-15).

“Rad-path” correlation is the integration of radiology
and pathology, in which diagnostic information from tissue
is aligned with medical imaging. Whole-mount tissue
alignment has allowed the measurement of tissue hetero-
geneity across large regions that include many voxels and
various degrees of cancer aggressiveness (16-18).

This study presents a technique, radio-pathomic map-
ping, that combines whole-mount prostate rad-path with
machine learning to generate predictive maps of pathologic
features based on noninvasive imaging alone. Two
machine-learning models were generated from separate
training datasets and subsequently applied to a naive test
dataset. We hypothesized that radio-pathomic maps of
epithelium and lumen density would highlight regions of
high-grade prostate cancer, which has direct implications
for the radiation oncology community.

Methods and Materials

Patient population

We prospectively recruited 39 patients undergoing MP-
MRI prior to prostatectomy for this institutional review
boardeapproved study. Written consent was obtained from all
patients, who ranged in age from 45 to 72 years (mean,
60 years). The average prostate-specific antigen score
measured prior to surgerywas 8.2 ng/mL,with a range of 2.8 to
27.5 ng/mL. Eligible patients were identified and recruited
consecutively. The distribution of tumor burden in the cohort is
shown in Table E1 (available online at www.redjournal.org).

Imaging

MP-MRI was acquired on a 3-T MRI scanner (General
Electric, Waukesha, WI) using an endorectal coil. MP-MRI
included field-of-view optimized and constrained undis-
torted single shot (FOCUS) diffusion weighted imaging with
10 b values (0, 10, 25, 50, 80, 100, 200, 500, 1000, and 2000),
dynamic contrast-enhanced imaging, and T2-weighted im-
aging (19). A summary of imaging parameters is shown in
Table E2 (available online at www.redjournal.org).

MRI preprocessing

To correct for intersubject intensity variation, T2-weighted
images were intensity normalized using previously published
techniques (12). Apparent diffusion coefficient (ADC) maps
were calculated from different combinations of b values. The
image with b Z 0 was aligned with the T2 image using
FMRIB’s Linear Image Registration Tool (Functional Mag-
netic Resonance Imaging of the Brain Library, Oxford, UK),
and all resulting diffusion maps were transformed into the T2
space using the calculated transformation matrix
(20). Alignment was verified and manually corrected if
misregistration occurred by use of the tkregister tool from
FreeSurfer (surfer.nmr.mgh.harvard.edu). Contrast uptake
was calculated from the dynamic contrast-enhanced imaging.

Surgery

Robotic prostatectomy was performed using the da Vinci ro-
botic system (Intuitive Surgical, Sunnyvale, CA). All surgical
procedures were performed by a single fellowship-trained
surgeon (KJ) using a robotic surgical technique (21, 22). Sur-
gical specimens were extracted en bloc and fixed in formalin.

Tissue sectioning

Prostate samples were inked and sectioned using patient-
specific tissue-slicing molds (16, 23). Prostate masks were
manually segmented from the patient’s T2-weighted scan
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using AFNI (Analysis of Functional NeuroImages, afni.nimh.
nih.gov) (24). Surface models were wrapped around the
masked prostate using 3DSlicer (slicer.org). The molds were
then designed in Blender (blender.org) and 3-dimensionally
printed using a fifth-generation Makerbot (Makerbot In-
dustries, Brooklyn, NY) (Fig. 1). Tissue sections were paraffin
embedded and whole-mount hematoxylin-eosin stained.
Slides were digitally scanned using a microscope equipped
with an automated stage (Nikon Metrology, Brighton, MI).
Pathologic annotation and tissue segmentation

Digitized histology was annotated by a fellowship-trained
urologic pathologist (KAI) using the Gleason grading
T2 MRI ADC

Patient Specific
Prostate Slicing Jig 3D Printed Jig
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Whole Mount
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Fig. 1. Summary of tissue processing. Magnetic resonance
images of a prostate are shown at the top. An example of a
patient-specific 3-dimensionally (3D) printed prostate slicing
jig for aligning slices with the axial magnetic resonance im-
aging (MRI) orientation is shown in the middle. The resulting
tissue section and histology are shown at the bottom. Digitized
slides were scanned at 40� and annotated with color-coded
regions of interest (Hematoxylin and Eosin staining, original
magnification 40�). Abbreviations: ADC Z apparent diffu-
sion coefficient; G3 Z Gleason grade 3 lesion; G4 Z
Gleason grade 4 lesion; G5 Z Gleason grade 5 lesion;
HGPIN Z high-grade intraepithelial neoplasia.
system updated to distinguish cribriform from non-
cribriform glands within G4 tumors (25). Cribriform can-
cer was distinguished from fused gland cancer because of
the notable difference in outcome between the 2 types of
G4 tumors (26). For the purposes of this analysis, both G4
tumor types and G5 tumors were grouped into a high-grade
classification. Examples of scored samples are shown in
Figure 1. Regions of solid color indicating disease severity
were manually annotated on the high-resolution histologic
images using a Microsoft Surface Pro 4 (Microsoft, Seattle,
WA). Automated segmentation of the lumen and epithelium
(27) was performed using custom code developed in
MATLAB (The MathWorks, Natick, MA). The algorithm
used raw self explanatory values and binary morphologic
operations to create tissue masks for the lumen, epithelium,
and other tissue. An example of the automated prostate
segmentation is shown in Figure 2. This study included 210
whole-mount slides from the 39 patients.
Warped and MRI-Aligned
Epithelium Segmentation

Control Point Co-Registration
of Histology and MRI

Histology T2MRI

Control Points

Nonlinearly Warped MRI-Resolustion
Histology Segmentations

 Original Segmentations

Epithelium

Lumen

Other

Warped and MRI-Aligned
Lumen Segmentation

0% 100%
Percent Segmentation

Fig. 2. Control point co-registration of histology to T2
magnetic resonance image. The automated segmentation of
the lumen and epithelium was nonlinearly warped and
down-sampled to the magnetic resonance imaging (MRI)
resolution for a one-to-one comparison.
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Tissue segmentation validation

To determine whether our custom software performed
similarly to a human, 18 samples of different Gleason
grades including normal, G3, G4, and atrophy from 11
patients were manually annotated and confirmed by a
pathologist (KAI) with urologic pathology fellowship
training. The lumen and epithelium densities were then
compared with the densities calculated by the automated
segmentation software using a Pearson correlation.
Comparison of histologic segmentation values
between Gleason grades

The mean histologic segmentation values for the lumen and
epithelium were computed across each annotated tumor
region identified by our pathologist. Statistical comparisons
were performed between lesion grades using a t test.

Histologic co-registration
Digitized samples were co-registered to the T2-weighted
image using software and techniques previously published
(23). A control point co-registration was applied using
manually placed analogous points in each modality. Points
were placed along the boundaries of the organ and on clearly
identifiable landmarks within the organ. Between 20 and 50
control points were placed on each slide. The whole-mount
slide and the control points were down-sampled to MRI res-
olution. A nonlinear spatial transformwas calculated from the
control points using MATLAB’s “fitgeotrans” function, and
the transformation matrix was saved. The transform was then
applied using the “imwarp” function.A localweighted-means
transform was used for the histology to account for the
nonuniform distortions caused by the endorectal coil com-
pressing the organ, bringing the histology into the MRI space
(Fig. 2). This nonlinear spatial transformwas likewise applied
to the digitized pathologic annotation and segmentations
(Fig. 2) (23, 28). A nearest-neighbor transform was used for
the pathologist’s annotations to retain the integer values.

Co-registration validation
To validate the control point co-registration, the nonlinear
control pointederived transforms were compared with a
known spatial transform, which altered the size, rotation,
and skew of 5 whole-mount histologic slides containing
pathologist-annotated regions. Analogous control points
were placed on both the original slide and the slide with the
known transform. The imwarp function was then applied to
the original slides and the expert annotations. A Dice co-
efficient was calculated to quantify the similarity between
the known and calculated transformed annotations.

Machine-learning model optimization
The MP-MRI lesion values were used as the input variables
to a machine-learning algorithm (described later) trained
with the aligned lumen and epithelium densities derived
from pathology. A learning curve was generated to deter-
mine the ideal number of patients required for a stable
model. Models were iteratively trained, increasing the
number of patients from 1 to 29, with 10 iterations per-
formed at each step. Patients were randomly selected at
each iteration, and the models were trained lesion-wise.
Lesions included G3 or higher and benign atrophy. Data
points were corrected for patient number and slice number.
A plot of root-mean-square error versus number of lesions
included in the training set was created, and a curve of the
form shown in equation 1 was fit to the data, in which a, b,
and g are constants and N is the number of data points used
to train the algorithm (29). To determine the optimal lesion
number, the limit of the learning curve as N approached
infinity was determined. The curve was then evaluated to
determine the point at which 99% of the calculated limit
was achieved, resulting in the optimal number of training
data points included.

ErrorZ a �Nb þ g ð1Þ

Group assignment
On the basis of the learning-curve analysis outlined earlier,
it was determined that 10 patients were sufficient for a
stable training dataset (as is discussed in the “Results”
section). Patients were assigned to 3 class-balanced groups:
2 training sets of 10 patients and 1 test group of 19 patients.
Tumor burden was balanced across the 3 cohorts. The total
number of lesions was calculated on a per-patient basis;
patients were then randomly permuted, with tracking of the
total tumor burden of each cohort. Patients with G5 tumors
were shuffled and assigned such that the distribution was
constant across all cohorts. This process was repeated
recursively for G4 and G3 tumors.

Input feature set and analysis
Six MP-MRI contrasts were used as the input set: intensity-
normalized T2, delta T1, BZ0 diffusion weighted image,
and ADC calculated with 3 b-value combinations (0-1000,
1000-2000, and 500-2000), each sensitive to different tissue
diffusion characteristics (23). Median MP-MRI values were
calculated within each pathologist-annotated region of in-
terest, and the feature set was then z normalized. To
determine the predictive power of each MP-MRI feature,
we performed a recursive greedy analysis for each training
cohort. The correlation between each feature and epithe-
lium and lumen density was also measured. To additionally
determine the level of collinearity, a correlation analysis
was performed on each input feature set for cohorts 1 and 2.

Machine-learning approach
The median MP-MRI values and corresponding pathologi-
cally derived lumen and epithelium densities were used to
train partial least-squares regressionmodels for each training
cohort of 10 patients. Each model was generated using 1
latent variable. Separate fits were calculated for the lumen
and epithelium. The resultingmodels from both cohorts were
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then applied to the test cohort as outlined later. A schematic
of the machine-learning protocol is shown in Figure 3.

Radio-pathomic mapping
The resulting partial least-squares models were applied to
the MP-MRI scans from each of the 19 patients in the test
cohort. Predicted values of epithelium and lumen density
were calculated voxel-wise for each model. An image was
then generated from the predicted values in the space
defined by the T2 image (Fig. 3). No spatial filters were
applied to the resulting maps prior to display.

Comparison of predicted values between Gleason grades
The average predicted lumen and epithelium values from the
radio-pathomic maps were calculated from the pathologist-
annotated regions of different Gleason grades. These values
were then compared statistically using a t test forG4or higher
versus G3 or lower tumors. Analogous lumen and epithelium
density values were statistically compared likewise from the
actual histologic segmentations.

Receiver operating characteristic analysis
To quantify the performance of the radio-pathomic models,
a receiver operating characteristic (ROC) analysis was
performed lesion-wise on the test dataset, evaluating each
model’s ability to differentiate G4þ from G3e tumors. The
ROC curves were statistically tested between models to
determine whether the performance varied statistically.
Fig. 3. Diagram of machine-learning protocol used in
study. Patients were stratified into 1 of 3 cohorts (2 inde-
pendent training cohorts and 1 test cohort). Magnetic
resonance imaging (MRI) values were used as input fea-
tures to predict epithelium and lumen density. Two inde-
pendent models were produced using the 2 training sets.
Both derived models were then applied to the same test
cohort. Abbreviations: ADC Z apparent diffusion coeffi-
cient; PLS Z partial least squares; ROC Z receiver
operating characteristic.
Results

Segmentation accuracy

The segmentation accuracy results are shown in Figure E1
(available online at www.redjournal.org). The lumen and
epithelium both showed high correlation between manual
and computational segmentation (R Z 0.99 and R Z 0.72,
respectively; P < .001).

Co-registration accuracy

The Dice coefficient analysis revealed 94.5% overlap,
indicating that the control point warping technique effec-
tively transforms the pathologist’s expert annotations and
histologic segmentations into the MRI space (Fig. E2;
available online at www.redjournal.org).

Input feature set and analysis

The MP-MRI features ranked by predictive power are
shown in Table E3 (available online at www.redjournal.
org), in which the contributions of each feature varied
slightly between cohorts and the histologic feature of in-
terest. Each feature was significantly correlated with both
the lumen and epithelium for both models (P < .001). We
found that ADC calculated with b values of 0 to 1000 was
highly predictive in all 4 conditions; delta T1 was also
highly predictive in 3 of 4 conditions. The cross correlation
of the 6 input features is shown in Figure E3 (available
online at www.redjournal.org). As expected, the ADC
features showed a high degree of correlation. An interesting
finding was that delta T1 provided the most diverse source
of information comparatively.

Model cross validation

The results plotting root-mean-square error versus number
of lesions are shown in Figure E4 (available online at www.
redjournal.org). The lumen curve reached 99% of the
calculated limit at 320 lesions, which equates to about 10
patients. Epithelium values stabilized sooner. Radio-
pathomic maps of epithelium density resulting from
models trained with 2, 4, 6, 8, and 10 patients are shown in
Figure E5 (available online at www.redjournal.org). The
contrast improved as patients were added to the training
dataset, and the maps stabilized at 10 patients, analogous to
the learning curve.

Radio-pathomic maps

Predicted lumen and epithelium density values were
generated for each of the 19 patients in the test cohort and
mapped voxel-wise. Figure 4 shows radio-pathomic maps of
lumen and epithelium density from 4 representative patients,
where regions of increased epithelium density and decreased
lumen density corresponded with pathologist-annotated

http://www.redjournal.org
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high-grade tumors for both models. Figure 5 shows 4
additional sets of radio-pathomic maps compared with the
aligned pathologist annotations.

Comparison of predicted values between Gleason
grades

The t test comparison of radio-pathomic map values be-
tween G4þ and G3e tumors in the test cohort was sig-
nificant for lumen density in models 1 and 2 (P < .001) and
epithelium density in models 1 and 2 (P < .01). The results
are shown in Figure E6 (available online at www.
redjournal.org) and compared with the actual histologic
segmentations within analogous regions (both significantly
different with P < .001).

ROC analysis

Results of the ROC analysis using radio-pathomic map
values to differentiate high-grade cancer (G4þ) are shown
in Figure 6, in which model 1 had an epithelium area under
the curve (AUC) of 0.76 � 0.11 and lumen AUC of
0.82 � 0.09. Model 2 had an epithelium AUC of
0.78 � 0.10 and lumen AUC of 0.86 � 0.08. The ROC
curves compared between models 1 and 2 for both the
lumen and epithelium were not statistically different
Fig. 4. Examples of the resulting radio-pathomic maps of l
compared with the expert pathologist annotation overlaid on the
highlighted as increased epithelium density and decreased lumen
The 3 patients on the top had high-grade tumors (true positives
grade 3 (G3), not highlighted by the radio-pathomic maps (true n
G4fg Z Grade 4 fused gland; HGPIN Z high-grade intraepithe
(P Z .32 and P Z .77, respectively). Lumen density maps
outperformed epithelium density maps, mirroring the re-
sults seen in the aforementioned t test.
Discussion

We present a technique, termed “radio-pathomic mapping,”
that generates predictive maps of prostate cancer pathologic
features in MRI space. The steps necessary for generating
these maps were extensively validated by subanalyses that
(1) validated the automatic segmentation of prostate his-
tology, (2) determined the ideal number of data points
included in the training datasets, and (3) verified nonlinear
alignment transforms against known transforms. We
determined that rad-path datasets from 10 patients were
sufficient to train a stable model and split our sample of 39
patients into 2 training cohorts and 1 test cohort. Separate
models were derived from each training cohort and applied
to the test cohort to calculate predicted epithelium and
lumen density voxel-wise values using MP-MRI alone.
Predicted densities were then extracted from pathologist-
defined regions of interest brought into the MRI space
and compared statistically. We found that the maps were
visually interpretable and statistically separated G4þ from
G3e prostate cancer.
umen and epithelium density generated with each model
T2 magnetic resonance image. The high-grade lesions are
density, analogous to the actual histology (0%-90% scale).
), while the patient on the bottom had a region of Gleason
egative). Abbreviations: G4cg Z Grade 4 cribriform gland;
lial neoplasia.

http://www.redjournal.org
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Fig. 5. Additional examples of the resulting radio-pathomic maps of lumen and epithelium density generated with each
model compared with the expert pathologist annotation overlaid on the T2 magnetic resonance image (0%-90% scale). The 2
patients on the top had high-grade tumors (true positives), while the 2 patients on the bottom had true-negative
findings. Abbreviation: HGPIN Z high-grade intraepithelial neoplasia.
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The treatment and staging of prostate cancer could
stand to benefit from improved noninvasive imaging,
especially in the field of image guided radiation therapy.
The current standard of care involves irradiating the
whole gland with a single prescription dose. Active
Fig. 6. Receiver operating characteristic analysis of the perform
the test cohort. The model 1 area-under-the-curve values for the
respectively. The model 2 performance evaluated in the test coh
epithelium of 0.86 � 0.08 and 0.78 � 0.10, respectively.
investigations are ongoing that focus on the integration of
MP-MRI into radiation treatment planning both in
the prostate (30) and in other organs (31). Several limi-
tations prevent direct implementation, such as the
subjectivity of MP-MRI interpretation, the subjectivity of
ance of models 1 and 2 differentiating high-grade cancer in
lumen and epithelium were 0.82 � 0.09 and 0.76 � 0.11,
ort showed area-under-the-curve values for the lumen and
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tumor boundaries, and the limited direct correlation with
histopathologic data. Radio-pathomic mapping may pro-
vide additional information in MRI space for targeted
radiation therapy.

The presence of G4 cancer is a critical barrier for driving
prostate cancer treatment (32). This study shows that radio-
pathomic maps of epithelium and lumen density effectively
discriminate G4þ tumors. Examples of patients with both
G4þ and G3 tumors are shown in Figures 4 and 5, in which
high-grade tumors are readily seen on both the epithelium
and lumen density maps derived from each model. Com-
bined with clinical imaging, radiologists may be able to
filter out false positives and use these maps to increase their
confidence in clinical decision making. Validating this hy-
pothesis will require a full reader study.

There are several potential sources of error intrinsic to
radio-pathomic mapping. The histologic slides were cut at
10 mm, sampling only a small portion of the full 4-mm MRI
slice. We used custom patient-specific prostate slicing jigs
to optimize the orientation of tissue sectioning and included
on average 5 slices per patient. This is a potential avenue
for future research, in which perturbations in MRI orien-
tation and co-registrations could be intentionally induced to
determine the downstream consequences on the radio-
pathomic algorithm.

There are known sources of interobserver variability in
prostate pathology grading that may also contribute error to
our ground truth. One recent study compared annotations
from 23 genitourinary pathologists and found a consensus
(80% agreement) in 78% of cases (33). A similar study
comparing 2 pathologists’ observations over a wider range
of disease found moderate agreement between pathologists
(34). It is therefore possible that both our models and ROC
results would vary given a different pathologist’s annota-
tions. In its current form, our technique correctly identifies
prostate cancer annotated by our pathologist using data
collected on our MRI system. While we believe this tech-
nique will generalize beyond our institution, a multi-
institutional study should be performed varying the MRI
scanner and the pathologist annotating the ground truth.

The Prostate Imaging Reporting and Data System
(PI-RADS) system used for standardized interpretation
of prostate MRI scans weights different imaging character-
istics differently depending on where in the prostate a lesion
is located. This study combined lesions from both zones into
1 training and test dataset. Future studies should be per-
formed to determine the spatial dependence of the radio-
pathomic methodology.

In conclusion, we present a radio-pathomic approach for
generating predictive maps of prostate cancer histologic
features. Our technique highlights and stratifies G4þ tu-
mors and generates 2 new interpretable image contrasts of
epithelium and lumen density. These maps may have
important relevance for personalized radiation dose-
painting strategies and detection of clinically relevant
prostate cancer.
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