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INTRODUCTION
Prostate cancer is the more common malignant neoplasm 
in males, accounting for 25% of all tumors and the second 
cause of death due to cancer.1

Currently, radical prostatectomy (RP) represents the treat-
ment of choice of locally advanced prostatic cancer, but is 
burdened with complications such as urinary incontinence 
and erectile dysfunction. RP provides excellent long-term 
disease control for patients with clinically localized pros-
tate carcinoma,2 aiming to a complete excision of the 
tumor.3 Unfortunately, even if the recent introduction of 
“nerve-sparing” techniques has reduced the incidence 
of both urinary incontinence and erectile dysfunction in 
comparison with “non nerve-sparing” approaches,4–7 their 

incidence is still not negligible: it varies from 42 to 89% after 
unilateral nerve-sparing and from 18 to 32% after bilateral 
nerve-sparing surgery.8

The need to avoid these complications has become more 
and more challenging because of the younger age of the 
diagnosis of prostate cancer in the last three decades. In 
fact, after the introduction of PSA screening in 1986, the 
incidence doubled from 350 to 667 per 100,000 for males 
aged 60–69 years and tripled from 59 to 216 per 100,000 for 
males aged 50–59 years.9

In this scenario, the visualization of the PNFs represents 
an emerging issue in the post-surgical evaluation of 
the effects induced by surgery on the PNFs.2 It has been 
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Objective: To evaluate if diffusion tensor imaging (DTI) 
is able to detect changes of periprostatic neurovascular 
fibers (PNFs) before and after radical prostatectomy 
(RP), and if these changes are related to post-surgical 
urinary incontinence and erectile dysfunction.
Methods: 22 patients (mean age 62.6 years) with biop-
sy-proven prostate cancer underwent 1.5 T DTI before and 
after RP. The number, fractional anisotropy (FA) values 
and length of PNFs before and after RP were compared 
using Student’s t-test. Each patient filled out two ques-
tionnaires before and after RP, one for the evaluation of 
urinary continence (ICIQ-SF) and one for the evaluation 
of erectile function (IIEF-5). The ratios of the number, 
FA values and length of PNFs before and after RP (DTI 
B-A RATIOs) and the ratios between the scores obtained 
before and after RP for both ICIQ-SF and IIEF-2 (ICIQ-SF 
B-A RATIOs and IIEF-2 B-A RATIOs) were calculated to 
perform the Kendall’s τ-test between them.

Results: There was a statistically significant decrease 
of the number of PNFs after RP at base, midgland, and 
apex (p < 0.01) and of FA values at midgland (p < 0.05), 
with positive statistically significant correlation between 
the DTI B-A RATIOs of the number of PNFs and IIEF-2 
B-A RATIOs (p < 0.05, ρ = 0.47).
Conclusion: DTI was able to detect that the decrease of 
the number of the PNFs after RP was statistically related 
to the post-surgical erectile dysfunction (p < 0.05).
Advances in knowledge: This work demonstrates that: 
(1)  1.5 T MRI DTI is able to detect the decrease of the 
number and of the FA of PNFs after prostatectomy; 
(2)  the decrease of the number of PNFs after pros-
tatectomy is related with the post-surgical erectile 
dysfunction; (3)  1.5 T MRI DTI has demonstrated to 
be a reproducible technique in detecting the changes 
of the PNFs induced by RP, with high interobserver  
agreement.
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demonstrated that the recovery of erectile function after RP is 
directly related to the number of preserved periprostatic neuro-
vascular fibers (PNFs) during RP.10,11 Even if MRI is the recom-
mended imaging modality for diagnosis, staging and follow up 
of prostate cancer12–16 with high accuracy in the evaluation of 
extracapsular invasion of prostate cancer,17,18 the visualization 
of the PNFs remains still difficult. In a study of 93 patients who 
underwent bilateral nerve-sparing RP, pre-operative conven-
tional T2 weighted MRI visualized the PNFs in only 37.6% of 
patients.19

Nowadays, diffusion tensor imaging (DTI) is an emerging and 
non-invasive MRI modality in the field of neuroimaging that 
provides a successful depiction of central and peripheral nervous 
fibers.20–30 In particular, this technique has been used for the 
neurosurgical planning in the removal of brain tumors22, as well 
as for the depiction of neural pathway in the mapping of the 
brain, spinal cord and brachial plexus.30 More recently, DTI has 
been introduced as useful imaging modality in the mapping of 
the PNFs.2,31,32 DTI is based on the sensitivity to “anisotropic 
diffusion” of the water protons in the biological tissues with a 
strictly orientated texture, such as nervous central and periph-
eral fibers, including the PNFs.20 In this kind of tissues, the 
water protons diffusion is not casual or “Brownian”, but oriented 
along a determined axis or “anisotropic”.33 Throughout the 
measurement of fractional anisotropy (FA) for each single voxel 
in, at least six non-collinear and non-coplanar directions, DTI is 
able to quantify the phenomenon of anistropic diffusion. Then, 
by the integration of FA values of all voxels, it becomes possible 
to depict the direction of nervous fibers in all three dimensions 
of space, giving both quantitative and qualitative anatomic 
information.

Therefore, the aim of the present study was to evaluate if DTI 
is able to detect changes of the PNFs before and after RP, and if 
these changes are related to post-surgical complications, such as 
urinary incontinence and erectile dysfunction.

Methods and MATERIALS
Patient population
This prospective study was approved by our institutional review 
board, and included male patients with biopsy-proven prostate 
cancer candidate to RP, who gave their written informed consent 
to MRI examination. Conversely, patients with absolute contra-
indications to perform an MRI examination or patients who 
did not give their consent were excluded from the study; more-
over, post-surgical or post-biopsy bleeding (hyperintensity on 
T1 weighted images) and death were also considered as exclusion 
criteria.

Thus, our study population consisted of 22 patients (mean age 
62.6 years), who underwent 1.5 T MRI including DTI before 
and after RP between October 2014 and May 2016. The mean 
interval between pre-RP DTI and RP was 30 days (range:  
1–129 days), while the mean interval between RP and post-RP 
DTI was 132 days (range: 27–434 days). Furthermore, the mean 
interval between pre-RP DTI and biopsy was 44 days (range: 
22–68 days).Ta
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MRI
Before the MRI examination, we asked the patients to fast from 
solid food since 4–6 h and administrated intramuscularly 20 mg 
of scopolamine butyl bromide (Buscopan; Boehringer Ingelheim, 
Yamagata, Japan) to suppress intestinal peristalsis. Moreover, we 
asked the patients to have half-filled bladder to limit involuntary 
movements.

All patients were scanned with a 1.5 T MR unit (Ingenia; Philips 
Medical Systems, Eindhoven, Netherlands) using a multichannel 
phased array (32-channel coil) for signal reception, without 
using endorectal coil.

MRI protocol (Table 1) consisted of T2 weighted turbo spin echo 
(TSE) images (slice thickness 4 mm) on axial plane, high resolu-
tion T2 weighted TSE images on axial, sagittal and coronal plane 
(slice thickness 3.5 mm), and diffusion-weighted images on axial 
plane (slice thickness 3 mm, b-value = 0, 800 s mm–2). After stan-
dard anatomical TSE and diffusion-weightedimaging sequences, 
the DTI was acquired in 32 directions (repetition time/echo time 
1449/88 ms, thickness 3 mm, b-value = 0, 800 s mm–2), with a scan 
duration for DTI sequence of 3 min and 14 s. At last, the dynamic 
imaging was performed during gadolinium chelate injection (0.1 
mmol per kg of body weight gadolinium chelates, MultiHance®, 
Bracco Imaging, Milan, Italy; Gadovist®, Schering, Berlin, 
Germany) with a power injector (Medrad® Spectris Solaris®; 
Medrad, Pittsburgh, PA) at a rate of 2 ml s−1. The dynamic imaging 
was acquired only for pre-RP MRI examinations and consisted of 
the repetition of 14 T1 DIXON acquisitions after contrast injection, 
while for post-RP MRI examinations only one T1 DIXON acquisi-
tion was performed without medium contrast administration.

Surgery
Robotic-assisted radical prostatectomy with the retrograde 
approach was performed in 22/22 patients (100%), with nerve-
sparing technique in 12/22 (54%) patients and non-nerve sparing 
technique in 10/22 (46%) patients. The nerve-sparing technique 
was performed through the intrafascial approach (2/12), if the 
plane of dissection was performed between the prostatic capsule 
and the prostatic fascia or through the interfascial approach 
(10/12), if the plane of dissection was performed between the 
prostatic fascia and the lateral pelvic fascia.34–36 In the extrafas-
cial non nerve-sparing technique, the plane of dissection was 
performed laterally to the lateral pelvic fascia.

Moreover, the extended pelvic lymphadenectomy was performed 
in 2/22 (9%) patients, while bladder–urethral anastomosis was 
performed using a continuous suture.37

Image analysis
MR images were analyzed by two radiologists (VDP, AJC with 7 
and 5 years experience in prostate imaging), who independently 
performed their own post-processing tractographic recon-
struction of PNFs on each single MRI examination. The recon-
struction was performed by using the Fiber Tracking Software 
provided by Philips (v. 4.1), which consisted of a deterministic 
tracking algorithm based on the criterion of linear propaga-
tion using the following parameters: angle threshold of 45°, FA 
threshold of 0.15 and minimum length threshold of 5 mm, anal-
ogously to other published studies.30,31

In the DTI post-processing phase, the DTI images were 
synchronized with the axial T2  weighted images to correct 

Figure 1. (a) Placing of ROIs on the fused T2-DTI images in the periprostatic fat tissue at base (a), mid gland (b) and apex (c) before 
radical prostatectomy. (b) Placing of ROIs on the fused T2-DTI images in the periprostatic fat tissue at base (d), mid gland (e) and 
apex (f) after radical prostatectomy. ROIs, regions of interest.

http://birpublications.org/bjr
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Table 2. Mean values and standard deviation of the number, of the FA values and of the length (mm) of the fiber tracts before and 
after radical prostatectomy at base, midgland, and apex levels for right and left side, with relative DTI B-A RATIOs and p-value

Number
Base Midgland Apex

right left right left right left

Before-RP 152 ± 40 153 ± 42 115 ± 34 120 ± 35 41 ± 17 42 ± 19

After-RP 111 ± 41 113 ± 51 86 ± 30 84 ± 40 25 ± 11 26 ± 13

DTI B-A RATIOs 1.5 1.6 1.5 1.9 1.9 1.7

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Fractional anisotropy (FA)
Base Midgland Apex

right left right left right left

Before-RP 0.431 ± 0.060 0.416 ± 0.057 0.450 ± 0.053 0.444 ± 0.063 0.319 ± 0.043 0.324 ± 0.045

After-RP 0.430 ± 0.063 0.417 ± 0.064 0.414 ± 0.052 0.406 ± 0.055 0.315 ± 0.046 0.304 ± 0.041

DTI B-A RATIOs 1.0 1.0 1.1 1.1 1.0 1.1

p-value 0.96 0.96 <0.05 <0.05 0.13 0.74

Length (mm)
Base Midgland Apex

right left right left right left

Before-RP 12.3 ± 0.3 12.4 ± 0.03 12.1 ± 2.5 12.2 ± 1.6 13.8 ± 0.8 14.7 ± 0.1

After-RP 12.2 ± 1.6 12.1 ± 1.5 12.1 ± 1.5 11.7 ± 1.2 13.2 ± 2.8 13.4 ± 2.5

DTI B-A RATIOs 1.0 1.0 1.0 1.0 1.1 1.1

p-value 0.82 0.61 0.96 0.28 0.51 0.17

DTI B-A RATIOs, ratio between numbers, FA values and length of the fiber tracts before and after radical prostatectomy; RP, radical prostatectomy.

Figure 2. Number of fiber tracts at base (a), midgland (b) and apex (c) before radical prostatectomy: they were significantly lower 
(p < 0.01) after radical prostatectomy at base (d), at mid gland (e) and at apex (f).

http://birpublications.org/bjr
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eventual movement artifacts of the patients; subsequently, the 
axial T2  weighted images were fused with the synchronized 
DTI images, obtaining a T2  weighted-DTI hybrid images. 
On these fused T2/DTI images, the regions of interest were 
drawn by each observer in the periprostatic fat tissue tangen-
tially to prostatic capsule and wall bladder, to avoid that fibro-
muscular fibers were included in the reconstruction. Both 
observers placed independently six regions of interest in the 
periprostatic fat tissue at base, midgland and apex, both on 
the right and the left side before (Figure  1a) and after RP  
(Figure 1b).

After software elaboration, the number, the FA and 
ADC values and the length in millimeters were calcu-
lated for each reconstructed fiber tract at base, midgland, 
apex both on the right and the left side before and after  
RP.

Quantitative analysis
Then, the numbers, the FA values and the length of the fiber 
tracts before and after RP were compared using Student’s t-test at 
the base, midgland, and apex levels for both right and left side to 
evaluate if there were statistically significant differences between 
these values before and after RP. The ratio between numbers, the 
FA values and the length of the fiber tracts before and after RP 
was also calculated for all these localizations (DTI B-A RATIOs).

Correlation with urinary incontinence and erectile 
dysfunction
Each patient were asked to fill out two questionnaires before and 
after RP, one for the evaluation of urinary continence (ICIQ-
SF),38 and one for the evaluation of erectile function (IIEF-5).39 
The ratios between the scores obtained before and the score 
obtained after RP for both ICIQ-SF and IIEF-2 was also calcu-
lated (ICIQ-SF B-A RATIOs and IIEF-2 B-A RATIOs).

Subsequently, the Kendall’s τ-test was performed between the 
DTI B-A RATIOs of the total number, of the FA values and of 
the length of the fiber tracts, and both the ICIQ-SF B-A RATIOs 
and the IIEF-2 B-A RATIOs to evaluate if there was a statistically 
significant correlation between the changes of the fiber tracts 
after RP and both urinary incontinence and erectile dysfunction.

Interobserver agreement
The interobserver agreement for the number, for the FA values 
and for the length of the fiber tracts before and after RP was 
assessed by means of intraclass correlation coefficient (ICC): a 
value of 0.20 indicated poor agreement; a value of 0.21–0.40, fair 
agreement; a value of 0.41–0.60, moderate agreement; a value of 
0.61–0.80, good agreement; and a value of 0.81–1.00, excellent 
agreement.

Repeatability
Bias and limits of agreement of the repeated DTI measurements 
were assessed by both observers via Bland–Altman analysis. 
These analyses were applied to the number, FA values and fiber 
tracts lengths before and after RP.

RESULTS
The mean values of the numbers, the FA values and of the length 
of fiber tracts before and after RP at base, midgland, and apex 
levels for right and left side, with relative DTI B-A RATIOs and 
p-values are reported in Table 2.

The number of fiber tracts decreased after RP at base, midgland, 
and apex for both right and left side (Figure 2); the decrease was 
statistically significant for all these sites (p < 0.01) (Figure 3).

The FA values at midgland showed a decrease after RP from 0.450 
to 0.414 on the right side and from 0.444 to 0.406 on the left side, 
with statistically significant difference (p < 0.05) (Figure 3). No 
statistically significant differences were found for the FA values 
at base and apex. The length of the fibers did not show any statis-
tically significant differences (Figure 3).

Figure 3. Decrease of the number of fiber tracts after radical 
prostatectomy (RP) at base, mid gland, and apex on right (R) 
and left (L) side. FA values after RP at mid gland on right and 
left side. RP, radical prostatectomy; R, right; L, left

http://birpublications.org/bjr
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Correlation with urinary incontinence and erectile 
dysfunction
The scores of the two questionnaires (ICIQ-SF and IIEF-2) 
before and after RP and their relative B-A RATIOs are reported 
in Table 3.

There was a positive statistically significant correla-
tion between the DTI B-A RATIOs of the number 
of fiber tracts and IIEF-2 B-A RATIOs (p < 0.05,  
τ = 0.35) (Figure 4).

No statistically significant correlations were found between 
the DTI B-A RATIOs of the FA values and of the length 
of the fiber tracts and the IIEF-2 B-A RATIOs, neither 
between the DTI B-A RATIOs of the number, of the FA 
values and of the length of the fiber tracts and ICIQ-SF B-A  
RATIOs.

Interobserver agreement
The interobserver agreement values before and after RP were: 
0.82 and 0.61 for the number, 0.92 and 0.73 for FA values, 0.96 
and 0.75 for the length of the fibers.

Repeatability
The Bland–Altman analysis for the number, for the FA values 
and for the length of the fiber tracts before and after RP showed 
that all data points were included within the limits of agreement 
(Figure  5a,b). The bias detected on the basis of the measured 
limits of agreement appears to be not clinically important  
(Table 4).

Table 3. ICIQ-SF scores sand IIEF-2 scores before and after radical prostatectomy and their relative B-A RATIOs

ICIQ-SF pre IIEF-2 pre ICIQ-SF post IIEF-2 post ICIQ-SF B-A RATIOs IIEF-2 B-A RATIOs
1 25 7 1 7 25

1 10 9 2 9 5

1 21 9 1 9 21

1 16 9 5 9 3.2

1 25 1 17 1 1.5

1 23 11 1 11 23

1 20 22 1 22 20

1 25 5 12 5 2.1

1 25 7 17 7 1.5

1 25 9 1 9 25

1 21 8 1 8 21

1 25 16 1 16 25

1 25 8 19 8 1.3

1 25 11 1 11 25

1 25 13 9 13 2.8

1 24 20 1 20 24

1 24 11 7 11 3.4

1 20 5 5 5 4

1 25 1 6 1 4.2

1 25 7 8 7 3.1

1 25 4 22 4 1.1

1 10 4 1 4 10

B-A RATIOs, ratio before/after radical prostatectomy.

Figure 4. Correlation between the DTI B-A RATIOs of the 
number of fiber tracts and IIEF-2 B-A RATIOs (p < 0.05, τ 
= 0.35). B-A RATIOs = ratio before/after radical prostatec-
tomy. DTI, diffusion tensor imaging.

http://birpublications.org/bjr
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Figure 5. (a) Bland–Altman plots (with 95% confidence interval) of the two repeated DTI measurements of Observer 1 for the num-
ber, the FA values and the length of the fiber tracts before and after radical prostatectomy. x-axis = mean of first and second meas-
urement of Observer 1. y-axis = differences between first and second measurement of Observer 1. (b) Bland–Altman plots (with 
95% confidence interval) of the two repeated DTI measurements of Observer 2 for the number, the FA values and the length of the 
fiber tracts before and after radical prostatectomy. x-axis = mean of first measurement and second measurement of Observer 2. 
y-axis = differences between first and second measurement of Observer 2. DTI, diffusion tensor imaging; FA, fractional anisotropy.

http://birpublications.org/bjr
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DISCUSSION
The aim of the present study was to evaluate, if DTI is able 
to detect the changes of the PNFs before and after prosta-
tectomy, and if these changes are related to post-surgical 
complications, such as urinary incontinence and erectile  
dysfunction.

The total number of the fiber tracts was similar to other published 
studies performed by means of a 3  T scanner and endorectal 
coil,2,31 with 623 fiber tracts of our series vs 730 of Kitajima et al 
series and 875 of Finley et al series,2,31 decreasing from the base 
(152 for right side and 151 for left side) to midgland (115 and 
120) and apex (41 and 42), with slightly asymmetric distribution 
between the two sides in each patient.

In agreement with Kitajima et al2 in our study, the number of 
fiber tracts was significantly decreased after RP at base, midg-
land, and apex for both right and left side (p < 0.01), and this 
decrease showed a statistically significant correlation with the 
decrease of erectile function after RP (p < 0.05). This result indi-
cates that the decrease of the number of fiber tracts after RP may 
have a role in the post-surgical erectile dysfunction, as suggested 
by Kitajima et al series, in which the reduction of the number 
of the PNFs was higher in patients, who underwent non-nerve 
sparing prostatectomy in respect of patients who underwent 
nerve-sparing prostatectomy.2

Another interesting result of our study, which has not ever studied 
before was represented by the statistically significant decrease of 
the FA values at midgland after RP from 0.450 to 0.414 on right side 
and from 0.444 to 0.406 on left side (p < 0.05). This data suggest 
that the fibers after RP are less oriented and more disarranged, 
analogously to other published studies which have demonstrated 
a decrease of the FA values in several neurological diseases.40–42 
In our study, the lower FA values were associated with higher 
ADC values in each analyzed area (base, midgland and apex), 

probably because the decrease of the number of fiber tracts and 
their increased disarrangement induced a higher water molecules 
diffusion. Another possible factor which may concur to reduce the 
FA values of the PNFs is the traction performed on them during 
the surgical dissection of the prostate gland, a condition which is 
known as potential cause of the so called “neuroapraxia”.43

No correlations were found between the number, the FA values 
and the length of the fibers and urinary incontinence, prob-
ably because other factors in addition to neurovascular damage 
may concur to post-RP incontinence, such as the damage of the 
urethral sphincter during the apical dissection and the urethral 
length post-RP.44

A further important result of our study was represented by the 
high interobserver agreement values, demonstrating that DTI of 
the PNFs is reliable technique. Moreover, neither the bias nor 
limits of agreement between DTI output metrics across repeated 
assessments were not clinically important for either observer, 
suggesting the potential repeatability of the technique. However, 
repeated DTI acquisitions under the same conditions were not 
performed.

The main limitations of the present study were the lack of a 
gold-standard anatomical correlation, the potential miscount of 
nerve fibers because of the presence of linear non-nerve struc-
tures (fibromuscular tissue, arteries and veins) and the relatively 
small number of patient included in the study.

In conclusion, 1.5 T MRI DTI has demonstrated to be a useful 
and reproducible technique in detecting a statically significant 
decrease of the number (p < 0.01) and of the FA values (p < 0.05) 
of the PNFs after RP. The decrease of the number of PNFs after 
RP was statistically related to the decrease of post-surgical erec-
tile function (p < 0.05), suggesting that this could be an important 
factor related to the post-surgical erectile dysfunction.

Table 4. Mean difference, standard deviation, upper and lower limits of agreement of the repeated DTI measurements assessed by 
both observers via Bland–Altman analysis for number, FA and length of fiber tracts before and after prostatectomy

 
Number before  Number after  FA before  FA after  

Length before  Length after

 � Mean difference 1.1 0.5 −0.001 −0.001 0.1 0.0

 � Standard deviation 6.6 7.5 0.002 0.006 0.5 0.5

 � Lower limits −11.9 −14.1 −0.006 −0.013 −0.8 −1.0

 � Upper limits 14.2 15.2 0.004 0.011 1.0 1.1

 � Mean difference 2.2 0.9 0.000 −0.004 0.1 0.0

 � Standard deviation 6.9 6.4 0.002 0.007 0.5 0.5

 � Lower limits −11.3 −11.7 −0.003 −0.017 −0.9 −0.9

 � Upper limits 15.7 13.5 0.004 0.010 1.0 0.8

DTI, diffusion tensor imaging; FA, fractional anisotropy.
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