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Abstract

One of the primary therapeutic goals of modern cardiology is to design strategies aimed at 

minimizing myocardial infarct size and optimizing cardiac function following acute myocardial 

infarction (AMI). Patients with AMI who underwent reperfusion therapy display dysfunction of 

the coronary endothelium. Consequently, ischemic endothelial cells become more permeable and 

weaken their natural anti-thrombotic and anti-inflammatory potential. Ischemia-reperfusion injury 

(IRI) is associated with activation of the humoral and cellular components of the hemostatic and 

innate immune system, and also with excessive production of reactive oxygen species (ROS), the 

inhibition of nitric oxide synthase, and with inflammatory processes. Given its essential role in the 

regulation of vascular homeostasis, involving platelets and leukocytes among others, dysfunctional 

endothelium can lead to increased risk of coronary vasospasm and thrombosis. Endothelial 

dysfunction can be prevented by ischemic conditioning with a protective intervention based on 

limited intermittent periods of ischemia and reperfusion. The molecular mechanisms and signal 
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transduction pathways underlying conditioning phenomena in the coronary endothelium have been 

described as involving less ROS production, reduced adhesion of neutrophils to endothelial cells 

and diminished inflammatory reactions. This review summarizes our current understanding of the 

cellular and molecular mechanisms regulating IRI-affected and -damaged coronary endothelium, 

and how ischemic conditioning may preserve its function.
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1. Introduction

The endothelium is defined as a cell monolayer covering the innermost apical surface of all 

blood and lymphatic vessels. Beyond its role as a physical and permeability barrier, 

endothelial cells (EC) can be anatomically divided into different phenotypes such as 

continuous, fenestrated and discontinuous endothelium, which are all functionally involved 

in a variety of tissue- and organ-specific functions contributing to vascular homeostasis 

(Kladakis and Nerem, 2004). Due to the specific expression of anti-inflammatory and anti-

aggregatory molecules, quiescent EC provide a non-thrombogenic luminal surface and also 

actively contribute to the regulation of vascular tone, inflammation, and metabolism (de 

Agostini et al., 1990; Preissner, 1990; van Hinsbergh, 1997; Kladakis and Nerem, 2004; 

Urbich and Dimmeler, 2004). At particular sites in the vascular tree, endothelium plays a 

central role in innate immunity as well, allowing monocyte and neutrophil rolling and 

diapedesis to occur (de Agostini et al., 1990; van Hinsbergh, 1997; Urbich and Dimmeler, 

2004; Rajendran et al., 2013). Stress-, damage- or metabolite-related dysfunctions of EC 

(Chavakis and Preissner, 2005) contribute to a variety of diseases in a wide range of organs 

such as heart, lung, liver or kidney (Rajendran et al., 2013). The most prominent naturally 

occurring endothelial dysfunction is the life-long exposure of non-laminar fluid shear stress 

to blood vessels at predestined sites (such as bifurcations) in the circulatory system. As a 

consequence, already at a very young age all individuals present early signs of 

atherogenesis, such as fatty streaks, that may develop into atherosclerotic plaques at a later 

age, depending on the person’s genetic make-up and lifestyle (Chatterjee, 2018).

Following the treatment of such atherosclerosis-related arterial occlusions in the context of 

myocardial infarction, the underlying process of ischemia-reperfusion (IR) induces 

deleterious effects not only on large vessels but also in the microcirculation of the heart. 

Several studies indicate that EC are more sensitive to IR than cardiomyocytes and are critical 

mediators of cardiac IR-injury (IRI) (Tsao et al., 1990; Lefer et al., 1991; Richard et al., 

1994; Singhal et al., 2010; Hausenloy and Yellon, 2016). In this context, endothelial 

dysfunction implies diminished production or availability of nitric oxide (NO), an imbalance 

in the contribution of endothelium-derived relaxing molecules (Michiels, 2003) and a 

deficiency of essential vasodilators to provide control of vascular tone and blood pressure, 

such as prostacyclin (PGI2) (Pearson, 2000). After summarizing some of the risk and 

initiation factors of endothelial dysfunction, this review will focus on the protective 
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endogenous strategy of ischemic conditioning and its potential beneficial effects on vascular 

homeostasis.

2. Endothelial dysfunction upon ischemia-reperfusion (IR)

Multiple mechanisms, including inflammation, increased occurrence of ROS, cellular 

apoptosis, increased vasoconstrictor but decreased vasodilator production and vascular 

remodeling are involved in the damage of EC during IR (Richard et al., 1994). Ischemia is 

characterized in general by the interruption of oxygen supply, either in a specific tissue or in 

a whole organ. Importantly, cardiovascular diseases are often initiated by ischemic episodes, 

contributing to the main cause of death in developed countries (Remme, 2000; Celermajer et 

al., 2012).

The endothelium seems to be particularly sensitive to conditions of ischemia and posterior 

reperfusion, because these conditions promote e.g. hypoxia-dependent changes in gene 

expression and permeability properties of EC, contributing to endothelial dysfunction 

(Harrison, 1997) and the pathogenesis of cardiovascular disorders including myocardial 

ischemia (Shimokawa and Yasuda, 2008). Other responses of dysfunctional EC include the 

chronic imbalance between ROS versus NO, the continued expression of adhesion receptors 

such as E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion 

molecule-1 (VCAM-1), and receptor for advanced glycation endproducts (RAGE) as well as 

the reduction of acetylcholine production (Gaboury et al., 1993; Chavakis et al., 2003; 

Quagliaro et al., 2005). Consequently, the imbalance in favor of adhesive and thrombogenic 

properties of the endothelium renders it more prone for dysregulated leukocyte attachment, 

increased oxidative stress, thereby triggering inflammatory, thrombotic and necrotic 

processes (Heitzer et al., 2001; Galle et al., 2003). As already indicated, a major irreversible 

outcome and consequence of dysfunctional endothelium is associated with atherosclerosis 

and vascular diseases (Poredos, 2002b, a; Widmer and Lerman, 2014).

2.1. Cytotoxicity caused by Ca2+ions.

The control of cellular Ca2+ levels in arterial EC and smooth muscle cells is an integral 

process for the control of vascular tone, including EC-dependent vasodilation activities 

(Lefer et al., 1991; Sandow et al., 2012). Several studies have shown that IRI leads to EC 

damage in coronary arteries by disturbance of Ca2+ homeostasis (Karasawa et al., 1991; 

Lefer et al., 1991; Lucchesi, 1993; Vinten-Johansen et al., 1999; Kimura et al., 2000; 

Ladilov et al., 2000; Symons and Schaefer, 2001; Kumar et al., 2007). A combination of 

anoxia with extracellular acidosis (pH 6.4) results in excessive accumulation of Ca2+ in the 

cytosol of EC mainly due to the leak of Ca2+ from the endoplasmic reticulum. The ischemic 

factors (low pH and lactate) leading to cytosolic acidosis cause intracellular Ca2+ overload in 

EC (Ladilov et al., 2000), while anoxia and glucose deprivation play only a minor role in 

this context (Lefer et al., 1991). Uncontrolled depletion of Ca2+ in the ER may lead to ER-

stress, followed by cleavage of ER-bound caspase-12 (Kumar et al., 2007) and caspase-3, 

and the activation of apoptosis through cytochrome-c (Ladilov et al., 2000; Borutaite et al., 

2003; Kumar et al., 2007). By increasing intracellular Ca2+ stores, store-operated Ca2+ entry 

(SOCE) mainly regulates the cytosolic Ca2+ concentration of EC (Putney, 1986). Following 
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ischemia, extracellular, but no intracellular, acidification alter EC dysfunction by 

suppressing SOCE (Asai et al., 2009). Additionally, unregulated influxes of Ca2+, secondary 

to plasma membrane damage and disruption of ion homeostasis, activate intracellular 

lipases, proteases and endonucleases that are important in the apoptotic signaling pathway. 

During reperfusion, EC increase their permeability, and an inflammatory signal transduction 

pathway, initiated by the oxidation of specific cellular modulators, alters the EC 

cytoskeleton and down-regulates natural antithrombotic and antiinflammatory processes, 

thus increasing membrane permeability (Higginson et al., 1982; Mullane et al., 1984; 

Hinshaw et al., 1989; Mertens et al., 1990; Geeraerts et al., 1991; Patel et al., 1991; 

Natarajan et al., 1993; Hastie et al., 1997; Ladilov et al., 2000; Kumar et al., 2007). 

Moreover, in in vitro studies with coronary EC, acidic preconditioning conferred protection 

against ischemia-apoptosis induction, associated with over-expression of the anti-apoptotic 

protein Bcl-XL (Kumar et al., 2008). Further investigations of Ca2+ fluxes in coronary EC 

may lead to the characterization of new therapeutic approaches for the treatment of chronic 

inflammation and coronary artery disease (Steppich et al., 2009; Stepien et al., 2012; Suades 

et al., 2015).

2.2 Oxidative stress.

Increased ROS levels have been generally attributed to IRI (Hinshaw et al., 1989; Lucchesi, 

1993; Gaboury et al., 1994; Szocs, 2004; Therade-Matharan et al., 2005; Hernandez-

Resendiz et al., 2018), whereby xanthine oxidase, NADPH oxidase, and the mitochondrial 

electron transport chain are the most frequently implicated sources of ROS in myocardium 

exposed to IR. The rapid burst of oxygen-derived free radicals during reperfusion coincides 

with the time course of progression in endothelial dysfunction (Karasawa et al., 1991). For 

example, exposure of EC for 6h to hypoxia followed by 45 min of reoxygenation increased 

the generation of superoxide anion (O2
•−) in EC (Tsao et al., 1990; Kimura et al., 2000), 

whereby cytosolic xanthine oxidase and the mitochondrial electron transport chain 

(complexes I and III) provide the primary sources of endothelial superoxide anion. Since 

NADPH oxidase (NOX) 4, one of the NOX isoforms, is present in EC and co-localizes with 

mitochondria, it may be considered as a source of ROS as well (Szocs, 2004; Dymkowska et 

al., 2014).

Moreover, as a result of an excess of superoxide anion, hydroxyl (OH−) and peroxynitrite 

anions (ONOO−) are also produced by EC, provoking NO inactivation. As a consequence, 

decreased vasorelaxation and eventually vasoconstriction are observed. Peroxynitrite is a 

free radical that mediates lipid peroxidation and uncoupling of NO synthase (NOS). Usually, 

O2
•− can be dismutated to H2O2, either spontaneously or by superoxide dismutase (SOD). 

The exposure of EC to high levels of H2O2 (<500 M) increases the intracellular Ca2+ 

concentration, the expression of the aforementioned adhesion receptors (Szocs, 2004; 

Therade-Matharan et al., 2005) as well as complement activation (Patel et al., 1991; 

Gaboury et al., 1994) that collectively induce neutrophil attachment to the dysfunctional 

vascular endothelium (Lucchesi, 1993). Needless to say, that the damage of EC by oxidative 

stress is reduced or prevented by ROS scavengers and antioxidants.

Hernández-Reséndiz et al. Page 4

Cond Med. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Activation of endothelial cells by oxidative stress thereby promotes inflammation: Following 

IRI, activated EC express P-Selectin, E-Selectin and intercellular adhesion molecules 

(ICAMs), boosting the recruitment of neutrophils and contributing to cytokine production as 

major inflammatory reactions (Winn et al., 1997). Oxidative stress also induces the 

activation of NF-kB, playing a key role in endothelial apoptosis via the down-regulation of 

Bcl-2, Bax translocation and p53 upregulation (Aoki et al., 2001).

2.3. Inhibition of nitric oxide synthase (NOS).

Both, decomposition of NO during reperfusion and inhibition of NO synthesis, can increase 

leukocyte adherence to the venular wall. Tetrahydrobiopterine (BH4) is a cofactor, which is 

critical for NO production by regulating endothelial NOS (eNOS) activity. During IR, free 

radicals can oxidize BH4, causing a fall in the BH4/eNOS ratio, thereby uncoupling eNOS. 

In such a scenario, uncoupled eNOS behaves like NADPH oxidase, increasing the 

production of O2
•−, H2O2 and OONO− to induce cytotoxicity and inflammation (Figure 1). 

In EC, eNOS competes with arginase for the substrate L-arginine, whereby the activity of 

arginase, the primary L-arginine-consuming enzyme, has been reported to become elevated 

following IRI (Hein et al., 2003). Since NO is a potent inhibitor of neutrophil activation and 

adhesion, the decreased levels of NO may lead to the development of an acute inflammatory 

response (Laude et al., 2001; Ong et al., 2018).

3. Endothelial dysfunction and inflammation

The stages of acute inflammation (as part of the innate immunity response) in a blood vessel 

are vasodilation, increased permeability of the microvasculature, and vascular stasis 

(Szmitko et al., 2003). As EC undergo cytoskeletal changes that disrupt junctions in venules 

and capillaries, a delayed cellular response is observed in this process, starting about 6h after 

the initial stimulus and lasting for some days. In response to risk factors, such as IR, the 

endogenous protection mechanisms (anti-oxidant, anti-inflammatory, etc.) of the coronary 

endothelium begin to break down. The already indicated production of ROS and the 

reduction of NO provoke the expression of inflammatory cytokines such as interleukin-6 

(IL-6) (Verma et al., 2002) or monocyte chemoattractant protein-1 (MCP-1) as well as the 

upregulation of VCAM-1 on EC. Upon EC activation, the first luminally expressed adhesion 

molecule is P-selectin (Vinten-Johansen et al., 1999), which is derived from degranulation of 

Weibel-Palade bodies, mediating the initial rolling of leukocytes along the vessel wall 

surface. After 4-6h of reperfusion, de novo expressed E-selectin, ICAM-1 and RAGE appear 

to induce the firm adhesion of leukocytes via there activated ß2-integrins, preparing these 

inflammatory cells for their transmigration across the dilated endothelium into the 

myocardium (Ma et al., 1992; Ampofo et al., 2017). Expression of endothelial ICAM-1, 

VCAM-1 and RAGE are considered as an essential process for providing firm adhesion and 

transmigration of neutrophils and monocytes to the subendothelial space in blood vessels, 

contributing to the initial steps of atherosclerotic lesion development as well (Ziche et al., 

1994; Deem and Cook-Mills, 2004; Nawroth et al., 2005; Lopez-Diez et al., 2016).

The expression of the aforementioned adhesion molecules is further induced by 

proinflammatory cytokines such as Interleukin-1 (IL-1) or tumor necrosis factor-α (TNF-α), 
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which have been reported to be expressed in IR within minutes (Cardozo et al., 2005; 

Schmidt et al., 2006). Once adhered to the inflamed endothelium, monocytes cross the 

arterial wall between EC and transmigrate into the neo-intimal space (Vinten-Johansen et al., 

1999).

It is well known that early after reperfusion, IR induces the accumulation of platelets via P-

selectin - ligand interactions on the dysfunctional (activated), but intact endothelium in the 

post-ischemic microvasculature (Coulter et al., 2000; Mirabet et al., 2002). The initial 

expression of P-selectin by the activated endothelium can be considered as an early 

biomarker for the IR-induced platelet-EC interactions (Massberg et al., 1998). The first 

attachment of platelets to the still intact but activated endothelium during IR is mediated by 

platelet glycoprotein Iba as a ligand for endothelial P-selectin and a receptor for von 

Willebrand factor, the latter being released from endothelial Weibel-Palade bodies as well 

(Massberg et al., 1998; Romo et al., 1999). Following adhesion, platelet activation is 

potentiated by the release of soluble platelet agonists at sites of EC injury, finally resulting in 

perpetuated granule release and the formation of platelet aggregates (Maiocchi et al., 2018). 

Among the platelet agonists are ROS as well as platelet granule products, including 

proinflammatory cytokines, chemokines, thromboxane A2, leukotrienes or proinflammatory 

lysolipids (Marcus, 1979; Leo et al., 1997). These events, combined with the release of 

vasoconstricting molecules from platelets, further exacerbate the physical obstruction of the 

microvasculature.

As an interventional strategy, NO was found to mediate a cardio-protective effect of a 

number of common clinical strategies, such as preconditioning, postconditioning and remote 

ischemic preconditioning, further supporting the concept that targeting of ROS, NOS and 

inflammatory response mechanisms may provide myocardial protection under conditions of 

IRI.

4. Influence of ischemic conditioning on the coronary endothelium

Brief non-lethal episodes of IR are known to protect against the deleterious effects of a 

sustained lethal time span of IR. This phenomenon is known as “ischemic conditioning” and 

has been observed in the heart and other organs (Thielmann et al., 2013; Meybohm et al., 

2015; Cabrera-Fuentes et al., 2016a; Cabrera-Fuentes et al., 2016b; Hausenloy et al., 2016). 

Although several interrelated molecular mechanisms are operative here, ischemic 

conditioning protects the heart against IRI via a culminating “reperfusion injury signaling 

kinase” (RISK) pathway. The RISK pathway has been extensively studied in cardiomyocytes 

(Frohlich et al., 2013) and hepatocytes (Carini et al., 2001; Teoh et al., 2003; Hausenloy and 

Yellon, 2004).

4.1. Ischemic preconditioning.

One of the most promising avenues of research into potential therapeutic treatments for IRI 

is ischemic preconditioning (IPC). Several studies have demonstrated that IPC has direct 

effects on tissue cells, making them resistant to ischemic damage but also preventing the 

characteristic vascular dysfunction at the arteriolar, venular and capillary levels (DeFily and 

Chilian, 1993; Bouchard and Lamontagne, 1996; Kaeffer et al., 1996; Thourani et al., 1999; 
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Kharbanda et al., 2001). Upon application of IPC, surgery studies in pediatric and adult 

patients revealed a significant reduction of tissue damage, indicated by decreased serum 

levels of troponin I and creatinine kinase KB (Botker et al., 2010). Likewise, other reports 

demonstrated a decrease of angina episodes, reduced ST deviation on the electrocardiogram 

and less severe arrhythmias following IPC (Jenkins et al., 1997; Sloth et al., 2014). However, 

specific mechanisms of IPC at the cellular and molecular level are not well understood, and 

most of the studies prior to or after preconditioning using a clinical approach are focused on 

cardiomyocyte pathophysiology.

Acute IP is operative if the time interval between a brief stimulus of preconditioning and the 

posterior ischemic insult lasts less than 2h (Korthuis and Gute, 1997). The second phase of 

protection named “delayed preconditioning” or “ischemic tolerance” becomes important if 

the time period between insults is longer than 24h (Korthuis and Gute, 1997). There are 

differences between both types of protection; the acute preconditioning is too short to be 

dependent on gene expression and cellular protein synthesis, while delayed preconditioning 

necessarily includes phenomena of de novo protein synthesis (Downey et al., 1994; Korthuis 

and Gute, 1997).

4.2. Cellular mechanisms in the acute preconditioning phase.

Upon the acute phase of IP, activation of PKC in cardiomyocytes induces phosphorylation of 

effector molecules that may contribute to cellular protection. These factors are associated 

with adenosine receptors via their pertussis-sensitive G proteins like ATP-sensitive 

potassium channels (KATP) and can contribute to protective effects of preconditioning by 

triggering the mKATP/ROS pathway (Heurteaux et al., 1995; Korthuis and Gute, 1997). The 

importance of KATP channels in this context is supported by experimental studies using 

respective agonists and antagonists. Although the protective effects involve KATP channels in 

both, plasma and mitochondrial membranes, the underlying mechanisms are still unclear 

(Auchampach and Gross, 1993; Jerome et al., 1995). In addition to its influence on KATP 

channels within the context of protective preconditioning, PKC can induce 5’ nucleotidase to 

increase adenosine levels during sustained ischemia. This process mobilizes cellular depots 

of EC metabolic energy and prevents leukocyte adherence and subsequent inflammatory 

reactions (Kitakaze et al., 1994).

4.3. Cellular responses upon delayed IP.

Cardiac protection can also be achieved if the ischemic episode occurs within 24h after the 

initial brief stimulus of ischemia or IP. This delayed response is more an adaptive response 

and a consequence of the induction of gene expression and de novo protein synthesis of 

metabolic enzymes and heat shock proteins following the first brief ischemic insult 

(Korthuis and Gute, 1997). In post-ischemic phases, induction of gene and protein 

expression in leukocytes and EC involves activation of PKC and other kinases that become 

translocated to the nucleus to regulate nuclear transcription factor activities (Kitakaze et al., 

1994; Korthuis and Gute, 1997). Here, the nuclear factor κB (NF-κB) is a central 

transcription factor in delayed responses of IP at least in EC and it is considered to be the 

key factor for the transcription of post-ischemic inflammatory mediators. Importantly, if NF-
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κB translocation is blocked, the delayed phase of IP is also inhibited (Yellon and Baxter, 

1995).

When EC and cardiomyocytes are exposed towards short ischemic episodes, they respond 

with an increased production of NO (Lu et al., 1993; Yamashita et al., 1994). NO also plays 

a central role during delayed responses due to a decrease in oxidative stress and cell 

adhesion (Korthuis and Gute, 1997). In an autocrine fashion, eNOS-produced NO is a 

mediator of EC protection upon delayed IP. Administration of the non-selective NOS 

inhibitor L-NAME prior to prolonged myocardial IR did abolish the protective effect of IPC 

on the coronary endothelium, indicating that NO corresponds with the EC-dependent 

reactions of delayed IPC (Laude et al., 2003). In addition to the influence of NO during 

oxidative stress, the delayed response of IP may enhance the activity of antioxidant enzymes 

such as SOD, catalase or glutathione peroxidase, thereby potentiating the initial protective 

effect of NO (Yellon and Baxter, 1995).

When arteries are subjected to IR, IPC has been shown to prevent endothelium-dependent 

relaxing responses to acetylcholine (Kaeffer et al., 1996). In most of such studies, the 

protection by IPC occurs during the reperfusion period, when arterioles are thought to be 

most vulnerable to dysfunction. IPC reduces the expression of EC adhesion molecules, 

resulting in reduced adhesion of neutrophils to the endothelium and hence, lowering the 

inflammatory reactions. In response to myocardial IR, circulating and heart-derived levels of 

TNF-α increase within minutes, mostly derived from macrophages, monocytes and mast 

cells. Moreover, IPC has been shown to decrease cardiac as well as circulating TNF-α levels 

during sustained ischemia and thereby reduces myocardial infarct size in rabbits (Meldrum 

et al., 1998; Belosjorow et al., 2003). In another report, IPC reduced the expression of ß2-

integrins on neutrophils in preconditioned human subjects, and this observation could be 

linked to decreased EC injury (Kharbanda et al., 2001).

Another adaptive mechanism upon IPC is the increased biosynthesis and liberation of heat 

shock proteins, whereby this family of intracellular proteins may normally control cell 

metabolism and maintain structure and function of important proteins during stress. 

Nevertheless, the underlying mechanisms and signaling pathways are poorly understood 

(Marber and Yellon, 1996; Gray et al., 1999). The possibility to reproduce this phenomenon 

in human subjects may allow the identification of related (circulating) biomarkers and 

pathophysiological parameters by testing pharmacological approaches to prevent IRI in 

cardiac patients.

4.4. Ischemic Postconditioning.

Ischemic postconditioning (IPost) was first reported in dogs, and it is performed after the 

onset of reperfusion. In anesthetized open-chest animals, the left anterior descending artery 

was occluded for 1h and reperfused for 3h. In controls, there was no intervention. In pre-

conditioning (precon), the LAD was occluded for 5 min and reperfused for 10 min before 

the prolonged occlusion. In post-conditioning (post-con), at the start of reperfusion, three 

cycles of 30-s reperfusion and 30-s LAD reocclusion preceded the 3h period of reperfusion. 

Infarct size was significantly less in the pre-con and post-con groups compared with controls 

(Zhao et al., 2003), however, hardly any differences were reported in the reduction of infarct 
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sizes between animals treated with precon or post-con protocols, respectively (Donato et al., 

2007). These results were confirmed in other vertebrate models such as rabbits, rats, pigs 

and mice (Schwartz and Lagranha, 2006; Gomez et al., 2007; Skyschally et al., 2009). Since 

the model algorithm is based on the delay at the first re-occlusion time point and the 

duration of the ischemic-reperfusion stimulus (Skyschally et al., 2009), caution should be 

taken for interpretation of the model algorithm used in IPost due to its high variability. 

Protection conferred by IPost is associated with the improvement of EC function, reduction 

of inflammation and necrosis (Engelman et al., 1995; Kin et al., 2004).

IPost can also protect EC from IRI via phosphatidylinositol 3-kinase (PI3K)/protein kinase 

B (Akt) activation (Zhang et al., 2007). Respective investigations of IRI in EC of human 

subjects confirmed that IPost inhibits the opening of the mitochondrial permeability 

transition pore (mPTP) by preventing KATP channel activation, leading to cellular protection 

from reperfusion injury (Okorie et al., 2011; Ong et al., 2015). The perturbations of coronary 

EC can be analyzed by brachial artery ultrasound (Lind et al., 2005), demonstrating that 

IPost may protect the coronary endothelium. Moreover, it has been shown that the 

vasodilation function of endothelium was improved in patients by IPost (Ma et al., 2006).

An important phenomenon for explaining IPost-associated protection is the increase in NO 

production and the reduction of the “no-reflow” phenomenon (Schwartz and Kloner, 2012). 

The no-reflow phenomenon is defined as the reperfusion failure at the microvascular level 

after primary percutaneos coronary intervention (PCI) in patients with ST-segment elevation 

myocardial infarction (STEMI) (Ramjane et al., 2008; Bouleti et al., 2015; Gupta and Gupta, 

2016). This mechanism is a partial limitation of microcirculatory blood flow after the onset 

of reperfusion, despite the elimination of vascular occlusion. No-reflow is caused by 

vascular spasms, EC damage, sarcolemmal bubbles in the endothelium and by smooth 

muscle migration (Rajendran et al., 2013). Histologic analysis of the no-reflow 

microvasculature area shows endothelial swelling with a general loss of pinocytotic vesicles, 

an evidence for endothelial disruption (Kloner, 2011). Applying long periods of 

preconditioning, capillary no-reflow is attenuated, by a mechanism involving KATP channels 

(Jerome et al., 1995). Some studies showed that IPost reduces no-reflow, thereby improving 

the blood flow in the microcirculation. Interestingly, hypercholesterolemia may significantly 

reduce this beneficial effect (Reffelmann and Kloner, 2006; Zhao et al., 2007).

4.5. Remote ischemic preconditioning (RIP).

After the discovery and the medical development of the indicated conditioning procedures to 

directly protect the target organ, it was demonstrated that the ischemic conditioning stimulus 

could be applied in a non-invasive way (such as by a blood pressure cuff) and distant from 

the organ to be targeted (Oxman et al., 1997). Against this background, in the first human 

study, endothelial IRI of the forearm was induced by 20 min of upper limb ischemia 

followed by reperfusion. Remote preconditioning was induced by three 5 min cycles of 

ischemia of the contralateral limb, whereby venous occlusion plethysmography was used to 

assess forearm blood flow in response to acetylcholine at baseline and 15 min after 

reperfusion. Interestingly, the response to acetylcholine was significantly attenuated in the 

control group after 15 min reperfusion, but remote preconditioning prevented this reduction 
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(Kharbanda et al., 2002). This procedure is designated as remote ischemic conditioning 

(RIC), whereby brief episodes of ischemia and reperfusion applied in a particular organ or 

vascular bed may confer protection in a remote tissue and organ exposed to IRI (Heusch et 

al., 2015).

According to two recent randomized trials, RIP improves long term clinical prognosis after 

primary percutaneous coronary intervention (PPCI) (Davies et al., 2013; Sloth et al., 2014). 

Nevertheless, a prospective randomized controlled clinical multi-centric trial named “Effect 

of Remote Ischemic Conditioning on Clinical Outcomes in STEMI Patients Undergoing 

PPCI” (CONDI2/ERIC-PPCI) is currently investigating whether RIC can reduce cardiac 

death and hospitalization for heart failure at 1 year in 5,200 patients, presenting with a ST-

elevation myocardial infarction (STEMI) and treated by percutaneous coronary intervention 

(PPCI). The trial is planned to be completed in December 2019 (online reference https://

clinicaltrials.gov/ct2/show/NCT02342522).

RIC prior to primary percutaneous coronary intervention significantly improves EC function 

in patients with AMI (Manchurov et al., 2014). Moreover, it has been demonstrated in 

animal studies that whole blood transfusion and transfer of coronary effluent from one 

organism to another is sufficient to transfer cardio-protection from one RIP-treated animal to 

a naive one. This phenomenon has been replicated in several species, supporting the role of 

humoral factors in RIC-mediated cardio-protection (Dickson et al., 1999). In particular, 

increased levels of adenosine in coronary effluent after RIC as well as neuro-humoral factors 

and other biochemical and electrical responses were made responsible for the RIP cardio-

protective signaling system (Patel et al., 2002; Weinbrenner et al., 2004; Gross et al., 2011; 

Donato et al., 2013). In RIP, the activation of peripheral sensory fibers appear to activate 

PKCγ in a similar fashion as was observed in other ischemic conditioning techniques (Gross 

et al., 2013).

Besides the non-invasive procedure used for inducing RIC, it is able to confer cardio-

protection when applied at different time points in relation to the induction of the main IR 

episode. This characteristic is also beneficial in terms of clinical outcomes (Sivaraman et al., 

2015). RIC could be used immediately or 12-24h before a long ischemic episode (RIP), after 

ischemia but before reperfusion, at the moment of reperfusion (RIP) or 15 min following 

reperfusion (delayed IPC) (Sivaraman et al., 2015).

Some recent studies in the context of RIC revealed the existence of an as yet uncharacterized 

humoral factor involved in cardio-protection (Serejo et al., 2007; Shimizu et al., 2009). This 

humoral factor likely has the nature of a protein with a size between 3.5 and 30 kDa, 

whereby the vasodilator peptide bradykinin could be excluded (Serejo et al., 2007; Shimizu 

et al., 2009). Some proteomic studies indicated differentially expressed proteins in plasma 

derived from patients exposed to RIC as compared to controls. Such putative proteins appear 

to be associated with inflammatory responses, hemostasis and lipid transport, supporting the 

hypothesis that complex interactions of molecular pathways contribute to RIC in cardio-

protection (Hepponstall et al., 2012). In particular, as in other types of conditioning 

procedures, an increase in adenosine levels as well as the contribution of the NOS system, of 

stromal cell-derived factor-1 α (SMC-1a), interleukin 10, or microRNA-144 were found 
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(Cai et al., 2012; Davidson et al., 2013; Li et al., 2014), whereby such molecules possibly 

play a role as local triggers of KATP channels and as NO effectors (Schmidt et al., 2007). 

Nevertheless, each of these factors alone is insufficient to promote the entire phenomenon of 

cardio-protection.

Recently, the role of the extracellular RNA (exRNA) / RNase1 system in cardiac I/R injury 

has achieved an increased attention (Cabrera-Fuentes et al., 2014; Cabrera-Fuentes et al., 

2016a; Cabrera-Fuentes et al., 2016b). exRNA induces vascular hyper-permeability by 

increasing intracellular calcium ions in EC (Balint et al., 2014), and interacts with VEGF to 

initiate VEGF-mediated signal transduction through neuropilin-1, VEGF-R2 

phosphorylation, activation of phospholipase C (PLC) and intracellular release of Ca2+ 

(Fischer et al., 2009). Vascular EC constitutively produce extracellular, circulating RNase1 

which has different functions in EC responses (Fischer et al., 2011). In a recent clinical 

study, it has been shown that plasma levels of RNase1 increased after cardiac surgery 

subjected to RIP, while there was a significant reduction of exRNA and the pro-

inflammatory mediator TNF-α, suggesting a role of vascular RNasel as a potential mediator 

of RIP for cardio-protection (Cabrera-Fuentes et al., 2015).

4.6. Methodology used to measure coronary EC function.

The methodologies to measure coronary EC dysfunction were designed to be non-invasive to 

achieve higher security margin and better acceptance from the patients. At the same time, 

determinations must reflect the actual state of EC function based on our knowledge of 

endothelial physiology and activation, described before.

Indirect assessment: Some studies have used the assessment of vasoconstriction in 

response to acetylcholine that consists in flow-mediated vasodilation in brachial artery by 

ultrasound to detect coronary artery EC dysfunction and coronary artery disease as a 

surrogated measure (Anderson et al., 1995; Corretti et al., 2002). One advantage of this 

technique is that observer can measure EC function in response to a stimulus, however, such 

effect is indirect and brachial condition is assumed to be the same as coronary artery which 

maybe be not necessarily accurate. Another disadvantage is the operator-dependent variation 

and the wide range of reported normal values (Berry et al., 2000). However, brachial 

function is proposed as a strong predictor of coronary function in statistically significant 

manner, showing that a positive predictive value of abnormal brachial dilation (<3%) in 

predicting coronary EC dysfunction is 95% (Anderson et al., 1995). Both approaches of 

indirect assessment are based in endothelium-dependent relaxation as a result mainly of NO 

bioavailability. Nevertheless, other vascular mediators can be involved such as bradykinin.

Direct assessment: Direct assessment is considered the “gold standard” and it 

determines the change in coronary artery diameter, coronary blood flow and coronary 

vascular resistance to an intracoronary infusion of acetylcholine (Hasdai and Lerman, 1999). 

In coronary arteries with a quiescent endothelium coverage, the response to intracoronary 

acetylcholine is epicardial and microvascular dilation results in an increase in coronary 

blood flow (Bonetti et al., 2003). When the EC lining is disrupted, activated or 

dysfunctional, intracoronary acetylcholine induces paradoxical responses, for example, 
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vasoconstriction and a decrease in coronary blood flow. The response to acetylcholine serves 

as a marker for the bioavailability of NO; an abnormal response suggests a lack of NO 

bioavailability such as for endothelial dysfunction.

Magnetic resonance imaging (MRI) has been used for the direct assessment of the coronary 

endothelial dysfunction (Bulluck et al., 2017) and allows to assess coronary endothelium 

responses to pharmacological stimuli. Patients need to be prepared for the imaging session 

through the administration of vasoactive medications, selected according to the respective 

study and the individual patient (Hays et al., 2012). Some authors have reported that MRI is 

performed after an angiography to localize vascular structures more accurately (Hays et al., 

2012; Bulluck et al., 2018).

5. Conclusions

A particular stimulus to mediate conditioning of organs such as the heart can act at different 

biological levels to engage molecular programs that produce durable (>24h) tolerance 

against ischemic injury. The cardio-protection conferred by ischemic conditioning is a 

complex system of successive events, and the mechanisms still remain to be resolved. 

However, we can enumerate three necessary steps to explain cellular responses after 

ischemic conditioning (Figure 2): (1) Generation of a cardio-protective signal in conditioned 

tissue with an anticipated role for EC signaling; (2) transport pathways via circulatory and 

nervous systems that confer the cardio-protective signal from the conditioned tissue to the 

heart; (3) activation of cellular signaling pathways in the heart to initiate protection. (1) and 

(2) involve interactions between neural and circulating factors, whereby the endothelium 

appears to play a crucial role in both steps (Sivaraman et al., 2015). The central role played 

by dysfunctional EC in promoting thrombus formation and inflammatory responses during 

IRI is well recognized. There is considerable progress in understanding the role of 

dysfunctional EC as a potential therapeutic target for myocardial protection as well. The 

development of approaches to control EC activation and focussing on the RISK pathway in 

EC may contribute to a better understanding of IRI and to provide new opportunities for its 

treatment or prevention.
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Figure 1: Overview of endothelial cell responses towards acute myocardial infarction.
This scheme depicts the reperfusion-induced damage of endothelial cells following acute 

myocardial infarction.
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Figure 2. Cardio-protective mediators and molecular mechanisms that are activated by ischemic 
conditioning in endothelial cells.
The illustration enumerates three necessary steps to explain cellular responses after ischemic 

conditioning induced cardioprotection.
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