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Abstract

In this report we examine the effectiveness of WISER in identification of a chemical culprit during 

a chemical based Mass Casualty Incident (MCI). We also evaluate and compare Binary Decision 

Tree (BDT) and Artificial Neural Networks (ANN) using the same experimental conditions as 

WISER. The reverse engineered set of Signs/Symptoms from the WISER application was used as 

the training set and 31,100 simulated patient records were used as the testing set. Three sets of 

simulated patient records were generated by 5%, 10% and 15% perturbation of the Signs/

Symptoms of each chemical record. While all three methods achieved a 100% training accuracy, 

WISER, BDT and ANN produced performances in the range of: 1.8%-0%, 65%-26%, 67%-21% 

respectively. A preliminary investigation of dimensional reduction using ANN illustrated a 

dimensional collapse from 79 variables to 40 with little loss of classification performance.
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1 Introduction

Improvement of the healthcare system in the United States is the subject of great interest and 

debate in the social, political, and economical arenas of our society. One obvious approach 

in improving the overall healthcare system is by eliminating the existing inefficiencies that 

impede our system1–3. Removal of inefficiencies impacts our system of healthcare in two 

inherent ways: significant improvement of the patient outcome, and a reduction in the cost of 

healthcare. Although in principle it is clear that removal of inefficiencies is beneficial, in 

practice there has been little effort in removal of the existing inefficiencies. This lack of 

effort is rooted in the complexity of our healthcare system that has manifested itself as a lack 

of consensus on the method of removing the existing inefficiencies.

Integration of technological advances in our healthcare such as utilization of mobile devices, 

availability of broadband systems with high throughput, and embedded clinical decision 
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systems4–6 can be cited as some approaches that can reduce overall inefficiencies of our 

healthcare system. One branch of healthcare that can benefit from better streamlining of 

patient-care through integration of clinical decision support is in emergency care during a 

mass casualty incident7 (MCI). The rapid operational tempo of an Emergency Room (ER) 

serves as an ideal vehicle to study any existing inefficiencies while the resource-limited 

conditions of an MCI will help in clearly gauging the impact of any proposed improvements. 

MCI events clearly require rapid treatment of patients with minimum interruption for data 

collection, while optimal treatment of patients requires the hindering and cumbersome 

completion of detailed patient information to identify the culprit chemical substance. These 

two competing objectives have traditionally been a major impediment in optimizing the MCI 

treatment process with a natural priority extended to rapid treatment of patients. Therefore, 

there has been little advances in improving treatment of chemical MCI events. Research is 

needed to build a better understanding of the information and technological needs of the 

healthcare and public health workforce during emergency decision making8.

A limited set of clinical decision support software have been introduced by the larger 

community9. The National Library of Medicine has created the Wireless Information System 

for Emergency Responders10 (WISER), which allows emergency responders to identify a 

list of possible chemical substances based on the observed patient symptoms. The US 

Department of Health and Human Services has developed another software tool named the 

Chemical Hazards Emergency Medical Management-Intelligent Syndromes Tool11 

(CHEMM-IST). CHEMM-IST is a prototype that guides first-responders through a series of 

questions related to signs and symptoms that leads to a probabilistic diagnosis of four 

syndromes rather than a list of chemical hazards. Although such software make significant 

strides in assisting the process of emergency care, their efficacy have not been assessed 

during a chemical based MCI.

In this report we examine the effectiveness of WISER as the potential software for early 

identification of chemical material during an MCI event using simulated patient signs/

symptoms (SSx) that we have reverse engineered from WISER. We also report results from 

Binary Decision Tree and Artificial Neural Network applications to the same set of 

simulated patient data. We conclude by reporting results of our initial investigation aimed at 

dimensional reduction of SSx space. Our final objective is to challenge the paradigm that 

rapid patient treatment is in contrary to data gathering that will assist in early identification 

of culprit chemical. We contest that careful design of sophisticated clinical decision support 

tools can satisfy both competing objectives of rapid information gathering and accurate 

chemical identification processes.

2 Materials and Methods

Our general approach consists of creating signs and symptoms (SSx) for simulated patients 

using a reverse-engineered table of SSx from the WISER application. Using the simulated 

data, we then proceed to evaluate the successful identification of a culprit chemical using 

WISER, Binary Decision Tree (BDT), and Artificial Neural Network (ANN) machine 

learning approaches.
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2.1 WISER

Wireless Information System for Emergency Responders10 (WISER) is a free application 

available for Android and iOS, which can also be downloaded as a standalone application on 

a desktop computer. Developed by the National Library of Medicine (NLM), WISER is a 

system designed to assist emergency responders in hazardous material incidents. It provides 

a wide range of information on hazardous substances, including substance identification 

support, physical characteristics, human health information and containment and 

suppression advice. Its key features include rapid access to the most important information 

about a hazardous substance by an intelligent synopsis engine and display called “Key Info”, 

and access to NLM’s Hazardous Substances Data Bank (HSDB), which contains detailed 

peer-reviewed information on hazardous substances and comprehensive decision support.

The key feature in WISER most relevant to this work is the Substance ID Support (SIDS). 

This allows an emergency responder to input patient SSx, from which the SIDS will identify 

one or more likely hazardous chemicals causing those symptoms. WISER contains a 

checklist of 79 SSx, which are input for selected systems of the body through an interactive 

tool as seen in Figure 1A. As the signs and symptoms are entered (Figure 1B) the pre-

populated library of 438 hazardous substances is successively reduced. The user can view 

the list, select a substance and view toxicology information available in the HSDB, which 

contains data from the NLM Toxicology Data Network12 (TOXNET). The HSDB data file 

contains information on human exposure, industrial hygiene, emergency handling 

procedures, environmental fate, regulatory requirements and related area.

2.2 Reverse engineering and compression of WISER database

A thorough evaluation of WISER necessitated reverse engineering of all WISER’s 

substances with their associated SSx. This task was performed by manually reviewing 

NLM’s HSDB and parsing the SSx for each substance. An example of the resultant table of 

SSx is shown in Figure 2. Each of the 438 substances found in WISER is represented in the 

first column in this table, and the following 79 columns represent the corresponding SSx 

found in WISER for a given chemical. The presence or absence of each SSx is indicated by 

a 1 or a 0 respectively.

Examination of the created database revealed several substances with identical SSx profiles. 

In such instances, a cluster of chemicals was reduced to a single representative. The list of 

uniquely distinguishable chemicals was then reduced from 438 substances to 311 unique 

substances, which serves as the reverse-engineered list of unique chemicals.

2.3 Creation of Simulated Victims (Test Set)

Simulated patient-data were generated from the ideal database of 311 unique substances by 

perturbation of randomly selected Ssx. This was done to precisely control the amount of 

missing data. Signs and symptoms related to a real MCI would be ideal, however accurate 

patient records during these scenarios are limited and usually incomplete13, 14. Each 

substance was replicated 100 times to create a reasonably extensive testing set that consisted 

of 31,100 simulated victims. Three data-sets were created by random toggling of selected 

SSx at 5%, 10%, and 15% selection rates. To ensure the proper random selections, 
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probability density profiles were examined for the number of perturbed SSx across each of 

the simulated patient-data. An overview of the perturbed data-sets (shown in Figure 3) 

corroborates the intended rates of perturbation.

2.4 Overview of Machine Learning Approach

Our general work-flow for creating predictive models can be found in Figure 4. Supervised 

machine learning techniques were utilized in the Matlab 2015Rb environment to identify 

patterns and to develop predictive models. Our process began by importing the reverse-

engineered database of 311 unique substances followed by training of two types of 

classification models: Binary Decision Trees (BDT) and Artificial Neural Networks (ANN). 

After successful training of a given model, the known SSx profile for all 311 substances was 

tested on the trained model to establish proper learning (testing for memorization versus 

generalization is conducted in a different step). The model with the highest accuracy during 

the training was chosen as the final model. Evaluation of each trained model was then 

assessed using the SSx profiles of the 31,100 simulated victims. A prediction accuracy was 

calculated as shown in Equation 2. In this equation A represents the accuracy of the model 

(expressed in %), Nc indicates the number of correctly identified chemicals, and Ntotal 

represents the total number of trials (31,100 in this case). The next sections provide a more 

detailed description of the training and testing for each model.

A = Nc/NTotal · 100 (1)

2.5 Training and Testing of Classification Methods

We evaluated three common classification approaches in our investigation. The classification 

approaches consisted of: database look-up (as implemented by WISER), Binary Decision 

Trees, and Artificial Neural Networks. Details for each of the three approaches are described 

in the following sections.

2.5.1 Database look-up (WISER)—The interactive nature of WISER was the limiting 

factor in automated and batch evaluation of WISER for 31,100 patients each represented by 

79 SSx. This limitation served as one of our primary motivations in establishing a local 

database of WISER SSx. The first step in replicating a process identical to the WISER 

application was to understand its selection logic. WISER selects chemicals only based on 

the presence of a SSx and not its absence. Therefore, WISER will identify the entire library 

of 438 (or 311 unique) chemicals as the potential list of possible exposed chemicals for a 

patient exhibiting no apparent SSx. While this logic may appear questionable in our 

application, we proceeded with our evaluation of WISER in an exact fashion. Our initial 

evaluation of WISER consisted of a query-based search of our local database of chemicals 

using MySQL database engine housed on an Ubuntu LTS 14.04 server. This approach 

required a database look-up for SSx of all 31,100 simulated patients. Since the WISER 

approach may (and most likely will) return a list of potential chemicals, the database look-up 

step is followed by a search for existence of the right chemical in the list of returned 

chemicals. Although the time requirement of this evaluation mechanism was feasible (in the 

order of a week) for a list of 31,100 patients, it is an impractical approach for future 
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investigations with larger data-sets in order to establish a more thorough evaluation of the 

methods. Our most current approach consists of an in-house developed program to simulate 

this table look-up process. Our evolved approach returns the identical results that WISER 

would return while reducing the search time from months to seconds. Our testing process 

consisted of recording the number of times that the correct chemical was present in the list 

of returned chemicals similar to Equation 1.

Since WISER operates in a deterministic fashion, a statistical model of its performance can 

be developed. By assuming that every patient will undergo alteration of exactly n SSx, it can 

be argued that WISER's outcome should closely follow a success rate shown in Equation 2. 

This equation lists all of the possible perturbation of SSx that will result in removal of the 

correct chemical in WISER’s resultant list. This equation can be simplified using the 

Binomial theorem as shown in Equation 2. Based on binomial distribution modeling of the 

WISER's outcome, a success rate of 6.25%, 0.4% and 0.02% can be expected for the cases 

of 5%, 10% and 15% perturbation of SSx.

r = 1 − ∑
i = 1

n n
i

pi(1 − p)(n − i) = 1
2n (2)

2.5.2 Binary Decision Tree—A Binary Decision Tree (BDT) was trained using the 

reverse-engineered WISER database within the Matlab 2015Rb environment. A maximum 

deviance reduction was used as the split criterion with 350 maximum splits. Each of the 311 

chemicals was replicated 312 times to facilitate the construction of a complete tree and in 

consideration of Matlab's training algorithm. Under this training conditions, a classification 

rate of 100% was achieved.

Our adopted testing procedure consisted of observing the chemical identification accuracy of 

the trained network with the simulated patient-data. It is noteworthy that the trained BDT 

was based on ideal data while the testing was based on the perturbed data-sets (5%, 10% and 

15% perturbation).

2.5.3 Artificial Neural Network—An Artificial Neural Network (ANN) was trained 

through the Pattern Recognition toolbox of the Matlab 2015Rb using back-propagation 

learning algorithm15–17. The unique set of 311 ideal chemical SSx were used during the 

training of the ANNs. The training set consisted of 5 identical replicas for each of the unique 

311 chemicals (for a total of 1555 training patterns) in order to accommodate a random 

selection of the cross-validation and testing sets. The 1555 training patterns were randomly 

partitioned into 70% for training, 15% for cross-validation and 15% for testing. Numerous 

ANNs were trained and tested for selection of the optimal number of hidden neurons. Our 

investigation concluded 20 neurons as the optimal number of hidden neurons. The final 

trained ANN model exhibited cross-entropy results of: 4.4 for the training set, 12.7 for the 

cross-validation set, and 12.7 for the testing set. These outcomes correspond to: 0% error for 

the training set, 2.1% error for the validation set and 2.1% for the testing set.
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To test the performance of the network with unknown data, the 31,100 simulated patient-

data were used as inputs for the ANN trained with ideal chemical data.

3 Results and Discussion

3.1 Database look-up (WISER)

The results of WISER database look-up approach are shown in Table 1 and exhibit a 

reasonable correlation to the binary distribution model shown in Equation 2. The rapid decay 

in performance of WISER is easily expected. We use the results of WISER as the basis of 

comparison since it is the most prominent and existing mechanism.

3.2 Binary Decision Tree

Testing results for BDT are shown in Table 2. In this table the first columns represent the 

severity of the perturbation and the second column corresponds to the classification accuracy 

of the BDT. The third and fourth columns of Table 2 list the minimum and maximum 

performance across all of the 311 chemical substances. To better understand the 

performance of the BDT across the entire ensemble of 311 chemicals, a probability density 

function was created using the Kernel Density Estimation (KDE) technique15, 18. Figure 6 

illustrates the statistics for BDT classification behavior over the entire 100 representatives of 

each 311 chemicals. The nearly Gaussian distribution of the statics indicate a very well 

behaved system without any particular bias.

Another important factor to monitor during the construction of a BDT is thy topology of the 

final tree. Figure 7 illustrates the topology of the final tree (in the interest of simplicity the 

labels are omitted), which indicates a very well balanced tree of depth 9. This depth is in 

perfect theoretical agreement with the complexity of the problem, serving as another 

indication of a successful training session.

3.3 Artificial Neural Networks

The evaluation results of the ANN are shown in Table 3. Similar to the results of BDT, the 

first two columns of this table indicate the severity of perturbation and outcome accuracy, 

while columns three and four indicate the range of the outcomes across all 311 chemicals. 

Remarkably the accuracy of BDT and ANN appear to be similar, while the range of ANN's 

performance exhibit a larger variation. To better understand the statistics of ANN's results, 

probability density profiles were created for each of the experiment using KDE using the 

exact parameters as the BDT (identical kernels). Similar to BDT, the Gaussian nature of the 

outcomes indicate a well behaved and unbiased system. Visual inspection of Figure 8 

confirms the noted differences in variation of outcomes compared to the BDT results.

3.4 Dimensional reduction

To optimize the Artificial Neural Network model, we examined the number of hidden 

neurons being used during the training phase of the model development. 10 models were 

trained, each with a different number of hidden neurons starting with 10 hidden neurons, 

then incrementing by 10 and the final model using 100 hidden neurons. After the model was 

created, additional testing was performed using the 5% perturbed data-set and the amount of 
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error from the ANN was recorded. As seen in Figure 9, the results show that as we increase 

the number of hidden neurons, the amount of error from the ANN is reduced with the 

minimal amount of error being 15.4% at 100 hidden neurons. We then examined training the 

ANN with only the first 40 SSx instead of the complete database of 79 SSx. Again 10 

models were trained starting with 10 hidden neurons at increments of 10 to 100 hidden 

neurons. After training the ANN, additional testing was also performed using the 5% 

perturbed data-set and recording the ANN error. It can be seen in Figure 9, the results 

followed the same pattern as with 79 SSx with the minimal amount of error being 25.8% at 

40 hidden neurons. This indicates that using the first 40 SSx can reduce the amount of 

collected data with an acceptable reduction in the classification rate. This small reduction in 

classification can potentially be minimized through a more informed selection of SSx and 

analysis of the MCI over the entire cohort of victims.

4 Conclusion

Our overall approach consisted of evaluating WISER in application to MCI under more 

realistic conditions. We have used the results of WISER as the basis of comparison to 

highlight the advantages and disadvantages of BDT and ANN, two common classification 

approaches in machine learning. The summary of results shown in Figure 10 illustrates the 

significant improved chemical identification performance that can be obtained from BDT or 

ANN compared to WISER. Results reported in section 3.1 (also summarized in Figure 10) 

reflect the intolerance of WISER to erroneous and imperfect data; a condition that is very 

likely to occur during the chaos and confusion that occurs during an MCI. Furthermore, 

WISER operates with a luxury of reporting a potentially long list of unrelated chemicals that 

share a common list of present SSx. Presenting a long list of unrelated chemicals may 

provide additional confusion during an MCI. However, creating a list of chemicals affords 

the benefit of operating with fewer SSx. Therefore, WISER exhibits the advantage of using 

as many or as little number of SSx as are available while BDT and ANN require a fixed 

number of SSx in their successful deployment.

Results for BDT and ANN evaluations reported in sections 3.2 and 3.3 highlight the 

significant robustness of these more sophisticated approaches compared to WISER. In 

summary, BDT and ANN show promise when compared to WISER for quickly and 

accurately identifying a culprit chemical during a chemical MCI. This gain in robustness is 

achieved through the use of these machine-learning techniques' ability to generalize and not 

simply memorize. Furthermore, BDT provides the clear advantage of arriving at a single 

chemical with requiring only 9 SSx (based on the depth of the tree shown in Figure 7). ANN 

exhibited the same degree of robustness compared to the BDT but with the apparent 

disadvantage of requiring all 79 SSx during the process of substance identification. However 

our exploration of dimensional reduction and results shown in section 3.4 support the 

possibility of using only 40 of the 79 SSx with little reduction in performance.

Our future investigations will focus on further reduction of data dimensionality by the use of 

previously established methods such and Principal Component Analysis (PCA) or Linear 

Discriminant Analysis15 (LDA). AI tools employed during chemical MCIs could 

Boltin et al. Page 7

HIMS 2016 (2016). Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dramatically reduce the amount of information collected from patients resulting in increased 

accuracy, precision, and efficiency in identifying the chemical.
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Figure 1. 
Wireless Information System for Emergency Responders (WISER) for Android operating 

system. Panel (a) is the Interactive tool and panel (b) is the symptom selection interface. 

Panel (b) also shows the substance ID support in which an emergency responder can identify 

an unknown substance based on signs and symptoms of victims.
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Figure 2. 
WISER’s reconstructed database using NLM’s toxicology information stored in the 

Hazardous Substances Data Bank (HSDB).
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Figure 3. 
The Kernel Density Estimation of the 3 test data-sets. Test data were created by starting with 

the ideal table of symptoms from WISER and changing the symptoms by 5%, 10%, and 

15%.
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Figure 4. 
Work-flow for exploration of data, training models and predicting substances using 

supervised machine learning techniques
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Figure 5. 
The Kernel Density Estimations from testing WISER with 31,100 simulated patient-data 

perturbed at 5%, 10% and 15%
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Figure 6. 
The Kernel Density Estimations from testing the Binary Decision Tree (BDT) model with 

31,100 simulated patient-data perturbed at 5%, 10% and 15%.
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Figure 7. 
Static binary decision tree for 311 unique chemicals found in the National Library of 

Medicine’s Hazardous Substances Data Bank (HSDB).
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Figure 8. 
The Kernel Density Estimations from testing the Artificial Neural Network (ANN) model 

with 31,100 simulated patient-data perturbed at 5%, 10% and 15%.
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Figure 9. 
Optimizing the number of hidden neurons used in training the Artificial Neural Network. We 

used the 5% perturbed simulated patient-data for additional testing on the model.
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Figure 10. 
Overall prediction accuracy for each model tested with 31,100 simulated patient-data 

perturbed at 5%, 10% and 15%
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Table 1

Prediction accuracy results from WISER testing using 31,100 simulated patient-data perturbed at 5%, 10% 

and 15%.

Data-set Prediction
Accuracy

Max Min

5% Perturbed 1.8% 7% 0%

10% Perturbed 2.3×10−2% 1% 0%

15% Perturbed 0.0% 0% 0%
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Table 2

Prediction accuracy results for Binary Decision Tree (BDT) testing using 31,100 simulated patient-data 

perturbed at 5%, 10% and 15%.

Data-set Prediction
Accuracy

Max Min

5% Perturbed 64.9% 81% 53%

10% Perturbed 41.8% 54% 27%

15% Perturbed 25.6% 40% 13%

HIMS 2016 (2016). Author manuscript; available in PMC 2018 October 16.
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Table 3

Prediction accuracy results for the Artificial Neural Network (ANN) testing using 31,100 simulated patient-

data perturbed at 5%, 10% and 15%.

Data-set Prediction
Accuracy

Max Min

5% Perturbed 67.2% 96% 28%

10% Perturbed 38.4% 73% 10%

15% Perturbed 21.4% 49% 3%

HIMS 2016 (2016). Author manuscript; available in PMC 2018 October 16.
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