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Abstract

Introduction: The outcome for patients with glioblastoma (GBM) remains poor, and there is an 

urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric 

antigen receptor (CARs) hold the promise to improve outcomes since they recognize and kill cells 

through different mechanisms than conventional therapeutics.

Areas covered: This article reviews CAR design, tumor associated antigens expressed by 

GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR 

T cells, and genetic approaches to enhance their effector function.

Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity 

of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited 

benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a 

significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical 

testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in 

GBM patients.
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1. Introduction

Glioblastoma (GBM) is the most common type of primary malignant brain tumor.[1] 

Despite aggressive multimodal therapy including surgery, radiation, and chemotherapy 

outcomes remain poor with median survival rate of 12 to 15 months.[1] Therefore new 
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therapies are needed to improve outcomes. Immunotherapy has the potential to meet this 

challenge since it does not rely on the cytotoxic mechanism of conventional therapies.

Adoptive cell therapy with T cells, engineered to express chimeric antigen receptors (CARs) 

specific for CD19, had remarkable success for B-cell lineage acute lymphoblastic leukemia 

(ALL) and diffuse large B-cell lymphoma (DLBCL),[2–12] resulting in their FDA approval 

in 2017. Despite the success of CAR T-cell therapies for CD19-positive hematological 

malignancies, early phase clinical testing of CAR T cells for solid tumors and brain tumors 

has been less promising.[13–16] While administration of CAR T cells in general has been 

safe, only few complete responses have been observed. This lack of efficacy is most likely 

due to several factors, including (1) low level and/or heterogeneous expression of targeted 

antigens, (2) limited CAR T-cell expansion and persistence, (3) inefficient homing to tumor 

sites, and (4) the immunosuppressive tumor microenvironment (TME),[17, 18] a hallmark of 

solid tumors and brain tumors including GBM. In this article we will review CAR design, 

GBM targets for CAR T-cell therapy, summarize preclinical and clinical studies conducted 

so far, and discuss additional genetic modification of CAR T cells to enhance their effector 

function.

2. CAR Design

CARs are synthetic molecules that are designed to combine the properties of an antibody 

with T-cell receptor (TCR) signaling upon antigen binding.[19–21] The major components 

of CARs include an ectodomain and endodomain, which are connected by a spacer region 

and transmembrane (TM) domain (Figure 1A). The ectodomain or antigen recognition 

domain typically consists of a single chain variable fragment (scFv) of a monoclonal 

antibody (MAb) specific for a tumor associated antigen (TAA) that is expressed on the cell 

surface of cancer cells. Alternatively, it can also contain a ligand, if the TAA is a cell surface 

receptor. Efforts are also underway to generate universal CARs in which the ectodomain 

consist of a universal docking protein that can be combined with a range of targeting 

moieties (for example avidin in combination with biotinylated MAbs).[22] Lastly, CAR 

ectodomains can also be engineered to target intracellular TAAs using scFvs, which 

recognize a peptide derived from an intracellular protein in the context of a human leukocyte 

antigen (HLA) molecule.[23]

The CAR endodomain consists of signaling domains derived from CD3ζ and costimulatory 

molecules such as CD28, 41BB, and/or OX40. CARs are classified as 1st, 2nd, and 3rd 

generation CARs based on the presence of costimulatory endodomain, being none, one, or 

two respectively (Figure 1B). Signaling domains derived from CD28 and 41BB are the most 

commonly used costimulatory domains thus far. While CD28 and 41BB CARs have never 

been directly compared in individual patients, results of clinical studies with CD19.41BB.ζ 
or CD19.CD28.ζ CAR T cells indicate that 41BB.ζ CAR T cells persist longer. However, 

this has not translated in significant differences in clinical outcome.[2–12] A recent 

preclinical study directly comparing CD19.41BB.ζ and CD19.CD28.ζ CAR T cells has 

highlighted significant differences between CD28 and 41BB costimulation in CAR T cells.

[24] While CD28 signaling induced effector memory differentiation, and glycolytic 

metabolism, 41BB signaling preserved a central memory phenotype and induced 
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mitochondrial biogenesis, resulting in an increase of oxidative metabolism and spare 

respiratory capacity. Whether or not the combination of CD28 and 41BB costimulation 

results in enhanced effector function of CAR T cells remains controversial and model 

dependent. However, one study suggests that expressing 41BBL on the cell surface of 

CD28.ζ CAR T cells results in superior effector function in comparison to CD28.ζ or 

41BB.ζ CAR T cells by activating the IFN regulator factor 7 (IRF7) pathway.[25] For GBM, 

preclinical and clinical studies have been conducted with ζ, CD28.ζ and 41BB.ζ CAR T 

cells. [26–38]

While initially the CAR spacer region and transmembrane domain were only considered a 

structural component of the CAR, several studies have highlighted their critical contribution 

to CAR function.[39, 40] The most frequently used spacers are derived from IgG1 hinge 

(12aa), or the CH2CH3 domain of IgG 1 or 4 (hinge and Fc domain, 229aa).[41, 42] Studies 

have demonstrated that the Fc domain interacts with cells expressing Fc gamma receptors 

(FcγR) in vivo, resulting in off-target activation and/or killing of CAR T cells by FcγR-

positive innate immune cells.[40, 41, 43] In addition, a CH2CH3-based spacer can cause 

baseline (aka tonic) CAR signaling without cognate antigen stimulation, resulting in 

phosphorylation of the CD3ζ chain, IFNγ production, and T-cell exhaustion.[30, 40]

Most commonly used TM domains in CARs are derived from the TM region of CD3ζ, CD4, 

CD8, or CD28. TM domains have been shown to influence CAR cell surface expression and 

function. For example, the cell surface expression of CARs containing CD3ζ TM domains is 

lower than CARs with CD28 TM domains.[39] In addition, TM domains can influence were 

CARs are located on the plasma membrane. For example, CARs with CD3ζ TM domains 

are incorporated into TCR complexes, which resulted in improved functionality in one 

published report.[44]

In summary, at present there is no universal formula for optimal CAR design. Many studies 

have shown that there is an intricate interplay between epitope location, scFv, signaling 

domains, and structural components of CARs. Thus, CARs have to be optimized for every 

targeted antigen. Other factors that have to be considered for CAR design include the gene 

delivery system that is used to insert CARs into T cells, the promoter that is used to drive 

CAR expression, and the targeted T-cell populations. For example, retroviral vectors 

encoding CARs with 41BB.ζ endodomains carry the risk of inducing T-cell apoptosis since 

they are expressed at higher levels in comparison to CARs delivered by lentiviral vectors.

[45] In addition, expressing CARs under the control of physiological promoters, such as the 

TCRα promoter, has been shown to enhance CAR T-cell function.[46] Lastly, several 

studies have highlighted that CAR T cells derived from stem cell memory T cells have 

superior effector function than CAR T cells generated from unselected T-cell populations.

[47]

3. GBM targets for CAR T-cell Therapy

An ideal CAR T-cell target is defined by (1) high expression on the tumor cell surface, (2) 

high degree of homogeneity of expression per tumor, (3) being essential for the malignant 

phenotype to prevent the development of antigen loss variants, (4) no or limited expression 
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on normal tissues to avoid on-target/off-tumor toxicity, and (5) being ‘not patient specific’, 

so that one CAR can be used to treat multiple patients. Cluster of differentiation 70 (CD70), 

epidermal growth factor receptor (EGFR), epidermal growth factor receptor variant 3 

(EGFRvIII), ephrin type-A receptor 2 (EphA2), human epidermal growth factor receptor 2 

(HER2), and interleukin 13 receptor alpha 2 (IL13Rα2) have been targeted with CAR T 

cells, and are described in more detail below.

3.1. CD70

CD70 is a type I glycoprotein and a member of the TNF receptor family. It is expressed by 

activated B and T cells and plays a role in T-cell activation and generation of cytolytic T 

cells. While CD70 is mainly expressed by cells of the lymphoid lineage, subsets of 

hematologic and solid tumors, and gliomas overexpress CD70.[48, 49] In the brain, CD70 is 

expressed by neoplastic glial cells and CD70 expression is induced by irradiation of glioma 

cells.[49] A screen of human glioma cell lines demonstrated that about 92% of tested cell 

lines expressed CD70 at mRNA and protein level.[49] However, an in-depth evaluation of 

CD70 protein expression in a larger patient cohort needs to be performed. CD70 expression 

in high-grade gliomas can cause immunosuppression by inducing T-cell dysfunction and 

apoptosis, [50] and is associated with significant increase in tumor-associated macrophages.

[51] Lastly, a recent study suggests that CD70 expression is involved in mediating tumor 

aggressiveness and immunosuppression through recruitment of tumor-associated 

macrophages.[52]

3.2. ZEGFR and EGFRvIII

EGFR is a transmembrane protein that is a receptor for members of the epidermal growth 

factor family (EGF family). It is overexpressed in primary (63%) and secondary (10%) 

glioblastomas.[53] EGFR influences the migration of neural stem cells during development, 

and promotes cellular proliferation through activation of MAPK and PI3K-Akt pathways.

[54] As for expression in normal tissue, EGFR is expressed in tissues of epithelial, 

mesenchymal and neuronal origin and plays a major role in normal cellular processes such 

as proliferation and differentiation. In GBM, EGFR expression frequently involves 

amplifications or alterations of the EGFR gene which results in expression of various 

mutations. The most common EGFR mutant variant found in GBM is EGFR variant 3 

(EGFRvIII). It arises from mutated/gene amplified EGFR causing deletion of exon 2–7, 

which results in a functional membrane protein with an extracellular domain mutation. 

Published data suggest that expression of EGFRvIII on GBMs enhances cell tumorigenicity, 

invasiveness and therapeutic resistance, [53, 55], however one recent study suggests that 

EGFRvIII is not a prognostic factor for GBM and its aggressiveness might be related to 

other proteins rather than EGFRvIII.[56]

3.3. EphA2

EphA2 or epithelial cell receptor protein tyrosine kinase, is strongly overexpressed in 60% 

of GBMs and expressed at a moderate or strong levels in 90–98% of GBM specimens. [57, 

58] Expression is detected at low levels on adult proliferating epithelial cells as well as brain 

tissue and enriched within sites of cell-cell adhesion in normal epithelial cells.[57] As for its 
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role in the malignant phenotype of GBMs, EphA2 is an important regulator of tumor 

initiation, neo-vascularization, tumor cell migration, invasion and angiogenesis.

3.4. HER2

HER2 is a transmembrane tyrosine/kinase receptor also known as erbB-2. It is well-

characterized tumor antigen which is important for the regulation of cancer growth. For 

example, it is a prognostic marker in metastatic breast carcinoma, and its overexpression is 

also associated with a poor prognosis in GBM. HER2 expression level increases with the 

degree of poor glial cell structural differentiation and other anaplastic related features.[59, 

60] In a retrospective study, HER2 expression was detected in 76% of primary GBM cell 

lines [61]. HER2 expression in pediatric brain tumors was detected in 54% of cases as 

judged by mRNA/gene profiling analysis.[62]

3.5. IL13Ra2

IL13Rα2 is overexpressed in about 76% of GBMs at a moderate or strong level.[58, 63, 64] 

A slightly higher percentage (up to 83%) has been reported for pediatric brain tumors, and 

overexpression is associated with poor prognosis.[62, 65–67] Two studies have also 

evaluated the expression of IL13Rα2 in diffuse intrinsic pontine gliomas (DIPGs).[62, 66] 

In the first study 10 out of 15 DIPGs were positive for IL13Rα2, and in the second study 17 

of 28 respectively.

GBM CAR targets explored so far, do not meet all the ‘ideal target criteria’ outlined in the 

beginning of this section. Thus, there is a continued need to discover additional GBM 

antigens that can be targeted with CAR T cells. Genetic engineering approaches that restrict 

full CAR T-cell activation to site at which two antigens are expressed could potentially 

increase the pool of targeted antigens.[68] Lastly, the recent development of CARs that 

allow the targeting of HLA/peptide complexes, containing peptides derived from 

intracellular proteins, should also increase the array of potential antigens including BIRC5 

(survivin) and/or mutated IDH1.

4. Pre-clinical studies with CAR T cells

The majority of preclinical studies have used xenograft models. Initial studies focused on 

targeting IL13Ra2-positive glioma with T cells expressing a first-generation CAR that used 

a mutated IL13 (IL13 mutein) as an antigen-binding domain.[26] IL13Ra2-CAR T cells had 

potent anti-glioma activity in vitro and in vivo. Subsequently, 2nd generation IL13 mutein-

based CARs were developed, which showed improved anti-glioma activity,[27] and a CAR 

with a 41BB.ζ endomain is currently undergoing clinical evaluation. IL13Rα2-specific 

CARs have also been developed that take advantage of an IL13Rα2-specific scFv as an 

antigen-binding domain.[30] Use of a scFv-based IL13Rα2-CAR might be advantageous 

since these CARs do not recognize IL13Rα1, a broadly expressed molecule that has been 

reported to be recognized by some of the designed IL13 mutein-based CARs.[31]

Since the pioneering studies with IL13 mutein-based CARs, other CARs have been 

developed to target GBMs. T cells expressing a 2nd generation HER2-specific CAR with a 

CD28.ζ endodomain demonstrated potent antiglioma activity not only in xenograft models, 

Prinzing et al. Page 5

Expert Rev Anticancer Ther. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



but also in patient-derived xenograft (PDX) models in which patient-derived GBMs were 

treated with autologous HER2-CAR T cells.[28] In addition, this study highlighted that 

CAR T cells can kill glioma initiating cells, which was subsequently confirmed in studies 

targeting other GBM-associated antigens.[29, 34, 69] Besides targeting IL13Rα2 and HER2, 

CARs targeting other glioma-associated antigens such as EphA2, EGFR, EGVRvIII, and 

CD70 have been developed.[29, 32–38] All CARs were scFv-based except for CARs 

targeting CD70, which contained the receptor ectodomain of CD70 (CD27) as a binding 

domain. [37, 38] Since there are on target/off cancer toxicity concerns with targeting EphA2 

and EGFR, investigators either used a scFv that recognizes a conformational epitope 

(EphA2),[29, 70, 71] or a scFv with reduced affinity (EGFR) to mitigate this risk.[32]

Xenograft studies with HER2- or IL13Rα2-CAR T cells have highlighted the risk of an 

antigen loss variants when a single antigen is targeted.[72–74] Investigators have shown that 

targeting two antigens, HER2 and IL13Rα2, simultaneously can prevent immune escape.

[74] How to best target two antigens remains controversial and several strategies are 

currently being explored, including infusing (1) two T-cell populations expressing each a 

single CAR, (2) T cells expressing two CARs, or (3) T cells expressing a single CAR with 

two antigen-binding domains.[73–75] Lastly, the expression of three CARs in a single T 

cells has been reported to prevent immune escape.[76]

In an effort to more closely mimic the interactions of the infused CAR T cells with resident 

immune cells, investigators have also started to explore the use of immune competent animal 

models to evaluate GBM-targeted CAR T cells. Murine EGFRvIII-CAR T cells were 

evaluated in an immune competent syngeneic model in which glioma cells were genetically 

modified to express EGFRvIII.[77] The anti-glioma activity of EGFRvIII-CAR T cells was 

dependent on lymphodepletion mice prior to T-cell infusion. In addition, glioma-bearing 

mice that were cured by EGFRvIII-CAR T cells were resistant to re-challenge with parental, 

EGFRvIII-negative glioma cells, indicating the development of host immunity against other 

glioma-associated antigens.[77] CD70-CAR T cells have also demonstrated potent anti-

tumor activity in an immune competent syngeneic mouse model of glioma.[38]

In summary, preclinical studies with CAR T cells targeting GBMs have shown significant 

anti-glioma activity, which led to Phase 1 testing of IL13Rα2- (NCT02208362), HER2- 

(NCT02442297, NCT01109095, NCT02713984), EGFRvIII- (NCT01454596, 

NCT02209376, NCT02664363, NCT02844062), and EphA2-CAR (NCT02575261) T cells. 

Studies with IL13Rα2-, HER2-, and EGFRvIII-CAR T cells have been published and will 

be reviewed in the next section.

5. Clinical studies with CAR T cells

The first clinical study used autologous CD8-positive T-cell clones that were genetically 

modified to express a first generation IL13Rα2-CAR with an IL13 mutein as an antigen 

binding domain, the hygromycin gene for selection, and the Herpes Simplex Virus 

thymidine kinase (HSV-tk) gene as a suicide switch and to allow positron emission 

tomography (PET)-based imaging.[15, 78] Three patients received up to 12 local infusions 

of CAR T cells into the GBM resection cavity. Infusions were well tolerated at a cell dose of 
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1×107 and 5×107, however at the highest cell dose tested (1×108 CAR T cells), 2/3 

developed Grade 3 headaches. MRI imaging revealed inflammation, and MR spectroscopy 

in one patient was consistent with tumor necrosis. Lastly, one tumor showed decreased 

IL13Rα2 expression in comparison to a pre-infusion sample, suggestive of in vivo killing of 

IL13Rα2-positive glioma cells.

Two additional patients that received autologous CD8-positive IL13Rα2-CAR T-cell clones, 

and four that received allogeneic CD8-positive IL13Rα2-CAR T-cell clones were 

subsequently reported.[79] This publication focused on the utility of using the HSV-tk gene 

for non-invasive PET imaging of infused CAR T cells. Investigators could demonstrate that 

9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG) imaging of infused CAR T 

cells is feasible, safe, and allows for the longitudinal in vivo imaging of CAR T cells 

expressing HSV-tk.

Subsequently, the same group of investigators developed a 2nd generation mutein-based 

IL13Rα2-CAR with a 41BB.ζ endodomain.[27] A study evaluating the safety and efficacy 

of intracranially infused autologous, polyclonal, lentiviral transduced IL13Rα2-CAR T cells 

is in process. One patient had a remarkable clinical response, with regression of intracranial 

and spinal tumors, which continued for 7.5 months,[80] demonstrating that CAR T cells can 

have significant antitumor activity against highly aggressive tumors such as GBM.

The other two clinical studies infused CAR T cells intravenously. One study utilized a 

HER2-CAR.CD28.ζ T-cell product in which genetically modified T cells were enriched for 

T cells that recognized Cytomegalovirus (CMV), Epstein Barr Virus (EBV) or Adenovirus 

(Adv).[14] These CAR T cells not only provide anti-tumor activity through their CAR, but 

may also receive stimulation following their endogenous T-cell receptor by cells that present 

viral antigens. In addition, they might have anti-glioma activity through endogenous T-cell 

receptor since several studies have suggested that GBMs are CMV positive.[81] Seventeen 

patients with recurrent/refractory GBM received up to 1×108/m2 autologous HER2-CAR T 

cells. Infusions were well tolerated, and of 16 evaluable patients one patient had a partial 

response, seven had stable disease for 8 weeks to 29 months, and eight progressed after T-

cell infusion. Correlative studies were limited to tracking CAR T cells in the peripheral 

blood, and while CAR T cells could be detected six weeks post infusion, no significant in 
vivo expansion of infused CAR T cells was observed.

The last published study, infused up to 5×108 EGFRvIII-CAR.41BB.ζ CAR T cells into 10 

patients with recurrent/refractory GBM.[13] Seven of 10 patients had their tumor resected 

post infusion, allowing the investigators to perform comprehensive correlative studies. CAR 

T cells were detected in resected GBMs, and 5/7 GBMs expressed decreased levels of 

EGFRvIII in comparison to pre-infusion samples, suggestive for on-target CAR T-cell 

activity. In addition, there was an increase in inhibitory molecules such as indoleamine 2,3 

dioxygenase (IDO) and IL-10, and influx of regulatory T cells in post-infusion GBMs, 

highlighting the ability of GBMs to actively suppress effector T cells at tumor sites. 

Although progression-free survival could not be evaluated since the majority of patients had 

their GBM removed post CAR T-cell therapy, the median overall survival was 251 days. At 
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the time of the study’s publication, one patient had achieved a lasting response and was alive 

and well 18 months post infusion.

In conclusion, initial clinical experience with locally or systemically injected CAR T cells 

targeting IL13Rα2, HER2, and EGFRvIII has demonstrated their safety and antitumor 

activity in subsets of patients; however, only few durable responses were observed. Lack of 

efficacy is most likely multifactorial, including heterogeneous antigen expression, limited T-

cell homing to GBM sites, and the immunosuppressive TME. Among these, the 

immunosuppressive TME is considered a major impediment,[17, 18] and we will therefore 

focus on it in the next section.

6. Improving CAR T cell therapy for GBM

A major hurdle to the efficacy of CAR T-cell therapy for GBM is its immunosuppressive 

TME as the tumor and surrounding cells foster a toxic environment not conducive to T-cell 

survival or effector function.[17, 18] Within the TME, T cells encounter ligands for 

inhibitory T-cell receptors such as programmed cell death protein 1 (PD-1), engagement of 

which negatively regulates T-cell activation in the presence of antigen and can promote 

anergy or apoptosis.[82–84] Immunosuppressive cytokines such as TGFβ, IL-4, and IL-10 

also inhibit anti-tumor activity by suppressing T-cell proliferation and cytolytic function.[85] 

Additionally, the high metabolic activity of the tumor cells depletes the TME of glucose and 

oxygen and produces high amounts of lactic acid.[86] This combined with the production of 

enzymes such as IDO, which breaks down tryptophan, hampers T-cell metabolism and 

results in nutrient deprivation.[86] Improving the therapeutic benefit of CAR T cells for 

brain tumors will most likely require additional modifications to strengthen them against this 

hazardous environment (Figure 2). Several genetic modifications have been explored to 

make CAR T cells less susceptible to TME-mediated immunosuppression, which we 

describe in detail below. Specifically, we will focus on (1) transgenic expression of 

cytokines and cytokine receptors, (2) dominant negative and chimeric switch receptors, and 

(3) genetic approaches to overcome checkpoint blockade.

6.1. Transgenic expression of cytokines and/or cytokine receptors

Providing CAR T cells with pro-survival cytokines can fortify them against the 

immunosuppressive microenvironment. Transgenic expression of IL-7, IL-12, IL-15, and 

IL18 have been explored with promising results. CAR T cells can be engineered to express 

cytokines that are either tethered to the cell membrane or secreted.[87, 88] Both approaches 

have shown to be effective for IL-15, with membrane-bound IL-15 promoting a stem-cell 

memory subset and improving the antitumor activity of CD19-CAR T cells,[87] while 

secreted IL-15 provided improved persistence and anti-tumor activity of IL13Rα2-CAR T 

cells in an orthotopic model of glioma.[72] Transgenic expression of IL-12 by CAR T cells 

has also yielded improvements in persistence and antitumor activity.[89, 90] IL-12 secreting 

T cells influenced nearby cells as well, with one group reporting the induction of anti-tumor 

activity by innate macrophages,[91] and another group reporting depletion of 

immunosuppressive M2 tumor-associated macrophages.[90] Secretion of IL-18 has been 

shown to enhance the proliferation and anti-tumor of CD19-CAR T cells in both xenograft 
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and immune-competent mouse models.[92] Given the safety concerns associated with 

systemic administration of IL-12 and IL-18, both cytokines have been evaluated as part of an 

NFAT-inducible system to selectively produce their respective cytokine at the tumor site.[92, 

93]

Constitutively active cytokine receptors can also enhance T cell survival. The expression of 

IL-7 tethered to IL-7Rα produced constitutive STAT5 signaling and enhances T-cell viability 

and proliferation.[94] Another group completely circumnavigated the necessity of providing 

a pro-survival cytokine and expressed a constitutively active IL-7 receptor (C7R) that 

homodimerizes without its ligand IL-7, once again producing constitutive STAT5 activation.

[95, 96] Combining C7R with EphA2-CAR T cells in an orthotopic model of glioma 

resulted in complete responses in all mice with no recurrences at a T-cell dose at which 

unmodified EphA2-CAR T cells were ineffective.[96]

6.2. Dominant negative and chimeric switch receptors

In addition to providing pro-survival cytokines, removing immunosuppressive cytokine 

signaling can also improve T-cell effector function. Glioma cells produce several cytokines 

that directly inhibit T-cell function, one of the most well studied being transforming growth 

factor β (TGFβ). Not normally expressed in healthy brain tissue, TGFβ expression is 

associated with worse outcomes in high grade glioma and directly suppresses T-cell 

cytolytic function by inhibiting the expression of perforin, granzyme A, granzyme B, Fas 

ligand, and interferon gamma.[85, 97] Expressing a dominant negative TGFβ receptor 

(DNR) that binds the cytokine but does not signal has been shown to enhance the antitumor 

activity of adoptive T cell therapy.[98, 99]

While dominant negative receptors, can only block inhibitory cytokines, receptors have also 

been developed that convert/invert an inhibitory into a positive signal. These receptors have 

been called chimeric switch receptors, chimeric cytokine receptors, inverted cytokine 

receptors, or switch receptors. For example, fusing the ectodomain of the IL-4 receptor to 

the transmembrane domain and endodomain of the IL-2 or IL-7 receptors resulted in 

chimeric receptors that converted the immunosuppressive effects of the TH2 cytokine IL-4 

into the pro-survival signaling pathways associated with IL-2 or IL-7.[100, 101] In addition, 

the above described DNR was converted into a chimeric switch receptor by adding the 

signaling domain of TLR4 as a cytoplasmic endodomain.[102] Clearly, this approach could 

be extended to other inhibitory cytokines present in the TME of GBMs such as IL-10.

6.3. Genetic approaches to overcome checkpoint blockade

The immune check point programmed cell death protein ligand 1 (PD-L1) is expressed in 

the majority of GBMs, with higher expression correlating with glioma grade.[103–105] 

Checkpoint antibodies conferred a T cell-dependent survival advantage in an orthotopic 

mouse model of glioma.[106] However, the clinical experience with checkpoint blockade for 

GBM has been disappointing unless the GBM is deficient in mismatched mismatch repair 

(MMR) genes.[107, 108] While lack of efficacy of checkpoint blockade monotherapy is 

multifactorial, the blood brain barrier (BBB) is most likely a contributing factor based on the 
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experience with other GBM-targeted MAb therapies. Genetic modification of T cells to 

render them resistant to checkpoint inhibition might be one strategy to address this problem.

Several T-cell intrinsic methods of disrupting the PD-1/PD-L1 axis have been shown to 

enhance CAR T-cell efficacy, including genetic disruption of PD-1 using CRISPR/Cas9,

[109] secretion of a PD-1 antibody,[110] expression of a dominant negative PD-1 receptor,

[111] or expression of a chimeric switch receptor that combines the extracellular domain of 

PD-1 with the intracellular signaling domain of CD28 in order to convert an inhibitory 

signal into a co-stimulatory one.[112, 113] Each of these approaches yielded increased 

survival times compared with adoptive T-cell transfer where PD-1-mediated 

immunosuppression was not inhibited.

In conclusion, genetic approaches to enhance CAR T-cell function have shown promising 

results in preclinical studies, but so far have not been tested in clinical studies. Clearly, while 

we have here focused on describing three strategies, others are being actively explored. In 

addition, the highlighted approaches, like CRISPR/Cas9 gene editing could be applied to 

other targets.

7. Conclusions

The first preclinical CAR T-cell therapy study targeting IL13Rα2-positive GBM was 

published in 2004. Since then there has been a dramatic expansion in preclinical studies 

targeting additional GBM antigens, and exploring additional genetic modification strategies 

to enhance CAR T-cell effector function. Initial clinical studies with CAR T cells targeting 

IL13Rα2, HER2, and EGFRvIII has demonstrated safety, however anti-GBM activity was 

limited. Clinical studies are now in the planning phase to target additional antigens, and/or 

testing CAR T cells that are further genetically modified to enhance their effector function.

8. Expert commentary

CAR T cells have anti-tumor activity in vitro and in vivo in pre-clinical GBM models. 

However, in the clinical setting, CAR T cells currently have suboptimal activity against 

GBM for the majority of patients. Several roadblocks have emerged including heterogeneous 

antigen expression, and immune escape due to antigen loss variants, and the 

immunosuppressive tumor microenvironment. Thus, there is a continued need to discover 

new antigens, model the immunosuppressive tumor microenvironment in preclinical models, 

and devise strategies to render T cells resistant to it.

Novel antigens are continued to be discovered. For example, since the original submission of 

this manuscript, targeting chondroitin sulfate proteoglycan 4 with CAR T cells for glioma 

has been described.[114] In addition to antigen discovery it will be critical to refine current 

strategies to target multiple antigens. This will be important not only to prevent antigen loss 

variants, but also to allow targeting of ‘antigen patterns’ present on glioma cells, potentially 

increasing the repertoire of targetable antigens. However, the repertoire of ‘common shared 

antigens’ is most likely limited. One approach to ‘tap into private neoantigens’ expressed by 

glioma[115] is to optimize the ability of CAR T cells to induce antigen spreading. Antigen 

spreading, the induction of immune responses against ‘non-targeted antigens’, correlates 
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with the clinical activity of cancer vaccines,[116] and also has been demonstrated post cell 

transfer of a single T-cell clone.[117] Lastly, besides targeting glioma cells with CAR T 

cells, we believe that it might be critical to target supporting stromal cells with CAR T cells 

for their optimal clinical efficacy.[118]

As for solid tumor CAR T-cell therapy, the immunosuppressive tumor microenvironment is a 

significant hurdle. Current preclinical studies have mainly focused on xenograft models, 

which do not recapitulate the immunosuppressive tumor microenvironment. For example, 

transgenic expression of cytokines enhance the anti-glioma activity of CAR T cells.[72] 

However, it will be critical to evaluate this and other approaches in immune competent 

glioma models. Besides immune competent animal models, evaluating CAR T-cell therapies 

in patient derived xenograft (pdx) model should become part of preclinical evaluation of 

CAR T cell therapies, since these models more closely mimic patients’ glioma. While at 

present not readily accessible, studying CAR T-cell therapy in large animal glioma 

models[119] holds the promise to improve our ability to realistically model human glioma 

preclinically.

In addition, to optimizing glioma cell recognition, and improving CAR T-cell function 

within the hostile glioma microenvironment, the optimal route of CAR T-cell delivery needs 

to be further refined. Currently, intravenous, intratumoral, and intraventricular routes are 

being explored. While the best of route delivery most likely depends on the clinical scenario, 

genetic engineering of T cells has the potential to improve T-cell migration to tumor sites,

[120, 121] penetration of tumor masses,[122] and/or migration through the blood brain 

barrier.

Besides ‘preclinlcal optimization’ of CAR T-cell therapies, it will critical to improve our 

ability to track T cells post infusion, and monitor their antiglioma activity in glioma patients. 

While proof-of-principle studies with PET imaging have shown promise, these studies have 

relied on genetically modifying T cells with HSV-tk, an immunogenic protein.[79, 123] 

Thus, there is an urgent need to develop novel approaches that would enable us to track 

CAR T cells post infusion. Assessment of the anti-glioma activity of immunotherapies by 

imaging using standard response criteria is difficult. In this regard, the Response Assessment 

for Neuro-Oncology working group published their recommendation for immunotherapy 

studies.[124] However, these criteria were developed based on results of vaccine studies, and 

at present it is not clear if these criteria require further modifications for CAR T-cell 

therapies. Besides imaging, the use of circulating biomarkers hold the promise to improve 

our ability to assess the anti-glioma activity of CAR T cells.[125] In addition, these 

biomarkers might also shed light if CAR T cells are able to reverse the immunosuppressive 

environment induced by glioma.

Cancer therapeutics rely on combinatorial strategies. Thus, combining CAR T-cell therapies 

with other therapeutic approaches will most likely be key for their success. Besides other 

immunotherapeutic approaches such as checkpoint blockade and vaccines, epigenetic 

modifiers, radiation, oncolytics, and drugs that alter the metabolism of cancer cells should be 

explored.
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In conclusion, we believe that immunotherapy for GBM holds the promise to improve 

outcomes for patients affected by this devastating disease. While this review has focused on 

cell therapy with genetically modified T cells, other approaches are actively being explored 

including cell therapies with (1) conventional T cells,[126] (2) T cells that are genetically 

modified to express TCRs,[127] and (3) other cellular platforms including unmodified or 

genetically-engineered gamma delta T cells, natural killed (NK), invariant NKT, or NK-92 

cells.[128–132] Lastly, multiple preclinical and clinical studies remain focused on GBM 

vaccines.[133, 134]

9. 5-year view

Over the next 5 years we are optimistic that CAR T-cell therapies will have an impact on the 

outcome of GBM patients. To benefit GBM patients, CAR T cells most likely need to be 

further genetically modified to enhance their effector function, or combined with other 

targeted approaches including vaccines, MAbs, or small molecules. Critical for advancing 

this field will be the development of preclinical animal models that allow us to study the 

interactions on adoptive transferred CAR T cells, tumor cells, and resident immune cells. 

Lastly, performing carefully crafted correlative studies in early phase clinical studies will be 

the key to advance the field of CAR T-cell therapy for GBM.
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Key issues

• Currently, there is a limited array of targetable GBM antigens and their 

expression is heterogeneous

• CAR design is empiric requiring careful optimization for the targeted antigens

• Selection of the appropriate T-cell subset for genetic modification is critical 

for optimal CAR function

• The GBM microenvironment is immunosuppressive and actively inhibits 

CAR T cells

• Carefully planned correlative studies are needed on ongoing and future CAR 

T-cell therapies for GBM to get mechanistic insights into successes and 

failures

• The complexity and cost of evaluating CAR T cells in the clinic has the 

potential to impede progress
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Figure 1. 
CAR design. (a) CARs consist of an ectodomain, spacer region, transmembrane domain, and 

endodomain. (b) Depending on the presence of costimulatory domains, CARs are designated 

as being 1st, 2nd, or 3rd generation. For additional details see text. TCR: T-cell receptor, 

CAR: chimeric antigen receptor, scFv: single chain variable fragment, MAb: monoclonal 

antibody, costim: costimulatory.
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Figure 2. 
Engineered T cells to counteract the immunosuppressive GBM microenvironment. Major 

immunosuppressive cell populations and molecules are depicted. For additional details see 

text. MDSCs: myeloid derived suppressor cells, DCs: dendritic cells, Tregs: regulatory T 

cells, PD-L1: programmed cell death protein ligand 1,

IDO: indoleamine 2,3 dioxygenase, ARG: arginase, TGFβ: transforming growth factor β. 

DNR: dominant negative receptor, k/o: knockout.
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