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Abstract

Complex cognitive processes, including language, rely on multiple mental operations that are 

carried out by several large-scale functional networks in the frontal, temporal, and parietal 

association cortices of the human brain. The central division of cognitive labor is between two 

fronto-parietal bilateral networks: (a) the multiple demand (MD) network, which supports 

executive processes, such as working memory and cognitive control, and is engaged by diverse 

task domains, including language, especially when comprehension gets difficult; and (b) the 

default mode network (DMN), which supports introspective processes, such as mind wandering, 

and is active when we are not engaged in processing external stimuli. These two networks are 

strongly dissociated in both their functional profiles and their patterns of activity fluctuations 

during naturalistic cognition. Here, we focus on the functional relationship between these two 

networks and a third network: (c) the fronto-temporal left-lateralized “core” language network, 

which is selectively recruited by linguistic processing. Is the language network distinct and 

dissociated from both the MD network and the DMN, or is it synchronized and integrated with one 

or both of them? Recent work has provided evidence for a dissociation between the language 

network and the MD network. However, the relationship between the language network and the 

DMN is less clear, with some evidence for coordinated activity patterns and similar response 

profiles, perhaps due to the role of both in semantic processing. Here we use a novel fMRI 

approach to examine the relationship among the three networks: we measure the strength of 

activations in different language, MD, and DMN regions to functional contrasts typically used to 

identify each network, and then test which regions co-vary in their contrast effect sizes across 60 

individuals. We find that effect sizes correlate strongly within each network (e.g., one language 

region and another language region, or one DMN region and another DMN region), but show little 

or no correlation for region pairs across networks (e.g., a language region and a DMN region). 
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Thus, using our novel method, we replicate the language/MD network dissociation discovered 

previously with other approaches, and also show that the language network is robustly dissociated 

from the DMN, overall suggesting that these three networks contribute to high-level cognition in 

different ways and, perhaps, support distinct computations. Inter individual differences in effect 

sizes therefore do not simply reflect general differences in vascularization or attention, but exhibit 

sensitivity to the functional architecture of the brain. The strength of activation in each network 

can thus be probed separately in studies that attempt to link neural variability to behavioral or 

genetic variability.
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Introduction

High-level cognition is supported by the frontal, temporal, and parietal association cortices, 

which have vastly expanded in the human brain compared to the brains of our closest 

primate relatives (e.g., Buckner & Krienen, 2013). These cortices are not organized into 

individual, “isolated” regions, but rather consist of multiple large-scale “networks”: sets of 

regions that share structural and functional properties (e.g., Fox et al., 2005; Golland et al., 

2007; Hagmann et al., 2008; Toro et al., 2008; Seeley et al., 2009; Power et al., 2011; 

Raznahan et al., 2011; van den Heuvel & Sporns, 2011; Vértes et al., 2012; Wu et al., 2011; 

Yeo et al., 2011; Bernard et al., 2012; Chen et al., 2012; de Pasquale et al., 2012; Kalcher et 

al., 2012; Konopka et al., 2012; Alexander-Bloch et al., 2013; Crossley et al., 2013; Zilles et 

al., 2015). How many such networks cover the association cortices, what the boundaries of 

each are, and which aspects of cognition each supports is still debated.

Most agree that the central division of cognitive labor is between two networks: (a) the 

fronto-parietal bilateral multiple demand (MD) network (e.g., Duncan & Owen, 2000; 

Duncan, 2010, 2013; see also Cabeza & Nyberg, 2000; Braver et al., 2003; Cole & 

Schneider, 2007; Dosenbach et al., 2007, among others), which supports diverse goal-

directed behaviors (e.g., Fox et al., 2005; Stiers et al., 2010) and is modulated by general 

cognitive effort (e.g., Duncan & Owen, 2000; Fedorenko et al., 2013; Hugdahl et al., 2015); 

and (b) the fronto-parietal bilateral default mode network (DMN; Raichle et al., 2001; 

Buckner et al., 2008; Andrews-Hanna et al., 2010; Humphreys et al., 2015), which supports 

more “restful”, internally-oriented, processes (e.g., Gusnard & Raichle, 2001; Raichle et al., 

2001) such as mind-wandering, reminiscing about the past, and imagining the future (e.g., 

Buckner et al., 2008; Spreng et al., 2009). The distinct and complementary functions of 

these two networks have long been recognized (e.g., Greicius et al., 2003; Fox et al., 2005; 

Fransson, 2005; Golland et al., 2007; Uddin et al., 2009), and each of them appears to have a 

homolog in non-human primates (MD: Mitchell et al., 2016; DMN: Mantini et al., 2011).

However, these networks are not the only contributors to complex cognition, at least in 

humans. In particular, in the human brain, a set of frontal and temporal regions appear to 

selectively support language processing (e.g., Fedorenko et al., 2011; Monti et al., 2012). 
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Here, we probe the relationship between this left-lateralized fronto-temporal “core” 

language network (e.g., Fedorenko et al., 2010; Fedorenko & Thompson-Schill, 2014) and 

the MD and default mode networks. Is the language network distinct and dissociated from 

the MD network and the DMN, or is it functionally integrated with one or both of them? 

One might hypothesize that the language network is integrated, to some extent, with the MD 

network given that language processing requires general attention, working memory, and 

cognitive control (e.g., Gibson, 1998; Hsu & Novick, 2016; Nozari & Novick, 2017; for 

reviews, see Novick et al., 2010; Fedorenko, 2014). And one might also hypothesize that the 

language network is integrated with the DMN given that a lot of our introspective processing 

plausibly draws on verbal resources (e.g., Vygotsky, 1962, 2012; Sokolov, 1972; Zivin, 

1979; Carruthers, 2002; Pleh, 2002; Schrauf, 2002; Morin & Michaud, 2007).

Until recently, researchers have actually not explicitly distinguished between the language 

and the MD networks, especially in the frontal lobes, where subsets of each network reside 

side by side within the region known as “Broca’s area” (Fedorenko et al., 2012). However, 

recent work has established that these networks are spatially and functionally distinct based 

on three converging lines of evidence. First, language and MD regions exhibit distinct 
functional profiles: whereas MD regions are recruited across many cognitive tasks, language 

regions respond selectively during language processing and are not engaged by a wide range 

of non-linguistic processes, including arithmetic, working memory, cognitive control, music 

perception, and action observation (e.g., Fedorenko et al., 2011; Monti et al., 2012; Pritchett 

et al., in press; for a review, see Fedorenko & Varley, 2016). Second, language and MD 

regions show distinct patterns of fluctuations in neural activity during naturalistic cognition. 

For example, Blank et al. (2014; replicated in Paunov et al., in revision) compared 

fluctuations in the fMRI BOLD signal across language and MD regions either during “rest” 

or while participants listened to stories. In both conditions, the average pairwise correlations 

among language regions (see also Hampson et al., 2002; Turken and Dronkers, 2011; Yue et 

al., 2013) and among MD regions (see also Dosenbach et al., 2007; Seeley et al., 2007; 

Hampshire et al., 2012) were significantly higher than correlations between pairs of regions 

straddling the two networks, which were close to zero. This dissociation was further 

supported by data-driven clustering of regional BOLD signal time-courses, which grouped 

language and MD regions separately. And third, damage to language vs. MD regions leads 

to distinct patterns of cognitive deficits (e.g., Woolgar et al., 2018). (Of course, it is 

important to keep in mind that this dissociation between the language and the MD networks 

does not imply that the two networks cannot or do not work together in the service of certain 

complex cognitive tasks. Indeed some complex language processing tasks engage regions of 

both networks (e.g., Stromswold et al., 1996; Stowe et al., 1998; Constable et al., 2004; 

Chen et al., 2006; Nieuwland et al., 2007; Novais-Santos et al., 2007; January et al., 2009; 

Ye & Zhou, 2009; Peelle et al., 2010; Sebastian et al., 20122; Barde et al., 2012; McMillan 

et al., 2012, 2013; Wild et al., 2012; Brownsett et al., 2013; de Bruin et al., 2014; 

Geranmayeh et al., 2014a,b; De Baene et al., 2015; Gauvin et al., 2016; Henderson et al., 

2016; Hsu et al., 2017). We return to this point in the discussion).

The relationship between the language network and the DMN remains less clear. For 

example, algorithms that cluster voxels across the brain based on similarities in their activity 

fluctuations during rest often produce a cluster whose topography resembles a union of the 
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language network and the DMN (e.g., Yeo et al., 2011). However, interpreting the resulting 

cluster in functional terms can be difficult (for a discussion see e.g., Blank et al., 2014; 

Blank & Fedorenko, 2017) and must rely on logically precarious “reverse inference” from 

anatomical coordinates back to cognitive processes (Poldrack, 2006, 2011). Furthermore, at 

least some of the language regions appear to deactivate during some demanding cognitive 

tasks (e.g., Fedorenko et al., 2011; see also Figure 1, top panel), which is one functional 

signature of the DMN—although, unlike DMN regions, language regions increase their 

activity during difficult language processing tasks (e.g., Blank et al., 2016). Finally, both 

language and DMN regions have been linked to semantic / conceptual processing (e.g., 

Binder et al., 2009; Wirth et al., 2011; Jackson et al., 2016; Mattheis et al., 2018). However, 

damage to each network produces distinct behavioral deficits: deficits in language 

comprehension and production for the language network (e.g., Bates et al., 2003; Ojemann 

et al., 2003; Mesulam et al., 2015; Mirman et al., 2015;), and deficits in e.g., 

autobiographical memory retrieval for the DMN (e.g., Damasio & Van Hoesen, 1983; 

Philippi et al., 2015).

To shed further light on the relationship among the language, multiple demand, and default 

mode networks, here we characterize and directly compare their functional properties using 

fMRI. We first examine the basic response profiles of language, MD, and DMN regions—

defined functionally in each of 60 individual participants—and show that the profiles are 

clearly distinct. We then use a novel approach to probe the relationship among the three 

networks, testing whether the strength of functional responses in these three networks co-
varies across participants. This approach is inspired by several recent findings. First, 

different language regions robustly co-vary across individuals in their respective effect sizes 

for a contrast between reading sentences and reading lists of nonwords (Mahowald & 

Fedorenko, 2016). Second, different MD regions co-vary across individuals in their 

respective effect sizes for a contrast between hard and easy spatial working memory task 

(Assem et al., in revision). Importantly, these effect sizes appear to be highly stable within 

participants across runs and scanning sessions, suggesting that they tap some time-invariant 

idiosyncratic properties of individual brains. Here, we extend this study of effect-size 

correlations from pairs of regions within a single network to pairs of regions across different 

networks. If these effect size measures reflect some highly general properties, like the degree 

of brain vascularization or fluid intelligence levels, then all three networks should co-vary in 

these measures across individuals. However, if these measures are sensitive tofunctional 

dissociations among distinct brain networks, we expect the language and MD networks to 

show little co-variation in these measures across participants, consistent with prior studies 

(e.g., Fedorenko et al., 2011; Fedorenko et al., 2012; Blank et al., 2014; Blank & Fedorenko, 

2017; Paunov et al., in revision). Critically, if effect size measures indeed respect such 

functional distinctions, then the degree to which the language and DMN regions co-vary 

across individuals could indicate the extent of functional association between these two 

networks. Toforeshadow our conclusions, these measures replicate the robust language-MD 

dissociation, and show that the language network and the DMN are also robustly dissociated.
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Methods

Participants

Sixty participants (41 females) between the ages of 19 and 45—students at MIT and 

members of the surrounding community—were paid for their participation. Participants 

were right-handed native speakers of English, naïve to the purposes of the study. All 

participants gave informed consent in accordance with the requirements of MIT’s 

Committee On the Use of Humans as Experimental Subjects (COUHES).

Design, materials, and procedure

Each participant performed two tasks that were designed to localize the functional networks 

of interest: a reading task for the language network (adapted from Fedorenko et al., 2010) 

and a spatial working memory (WM) task for the MD network and DMN (from Fedorenko 

et al., 2011). Some participants also completed one or two additional tasks for unrelated 

studies. The scanning session lasted approximately 2 hours.

Language localizer task

Participants read sentences (e.g., NOBODY COULD HAVE PREDICTED THE 
EARTHQUAKE IN THIS PART OF THE COUNTRY) and lists of unconnected, 

pronounceable nonwords (e.g., U BIZBY ACWORRILY MIDARAL MAPE LAS POME U 
TRINT WEPS WIBRON PUZ) in a blocked design. Each stimulus consisted of twelve 

words/nonwords. For details of how the language materials were constructed, see Fedorenko 

et al. (2010). The materials are available at http://web.mit.edu/evelina9/www/funcloc/

funcloc_localizers.html. The sentences > nonword-lists contrast has been previously shown 

to reliably activate high-level language processing regions and to be robust to the materials, 

task, and modality of presentation (Fedorenko et al., 2010; Fedorenko et al., 2011; 

Mahowald & Fedorenko, 2016; Scott et al., 2016). The brain regions activated by this 

contrast have been shown to be sensitive to both word-level meanings and combinatorial 

syntactic and semantic processing (e.g., Fedorenko et al., 2010, 2012; Menenti et al., 2010; 

Blank et al., 2016).

Stimuli were presented in the center of the screen, one word/nonword at a time, at the rate of 

450ms per word/nonword. Each stimulus was preceded by a 100ms blank screen and 

followed by a 400ms screen showing a picture of a finger pressing a button, and a blank 

screen for another 100ms, for a total trial duration of 6s. Participants were asked to press a 

button whenever they saw the picture of a finger pressing a button. This task was included to 

help participants stay alert and awake.

Condition order was counterbalanced across runs. Experimental blocks lasted 18s (with 3 

trials per block), and fixation blocks lasted 14s. Each run (consisting of 5 fixation blocks and 

16 experimental blocks) lasted 358s. Each participant completed 2 runs.

Spatial working memory task

Participants had to keep track of four (easy condition) or eight (hard condition) sequentially 

presented locations in a 3 × 4 grid (Fedorenko et al., 2011). In both conditions, participants 
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performed a two-alternative forced-choice task at the end of each trial to indicate the set of 

locations they just saw. The hard > easy contrast has been previously shown to robustly 

activate MD regions (Fedorenko et al., 2013; Blank et al., 2014), which also have been 

shown to respond to difficulty manipulations across many diverse tasks (e.g., Duncan & 

Owen, 2000; Fedorenko et al., 2013; Hugdahl et al., 2015). The reverse contrast, easy > 

hard, robustly activates DMN regions, in line with prior work using similar tasks and 

contrasts (McKiernan et al., 2003; Park et al., 2010; Leech et al., 2011).

Stimuli were presented in the center of the screen across four steps. Each of these steps 

lasted for 1000ms and presented one location on the grid in the easy condition, and two 

locations in the hard condition. Each stimulus was followed by a choice-selection step, 

which showed two grids side by side. One grid contained the locations shown on the 

previous four steps, while the other contained an incorrect set of locations. Participants were 

asked to press one of two buttons to choose the grid that showed the correct locations.

Condition order was counterbalanced across runs and participants. Experimental blocks 

lasted 32s (with 4 trials per block), and fixation blocks lasted 16s. Each run (consisting of 4 

fixation blocks and 12 experimental blocks) lasted 448s. Each participant completed 2 runs.

fMRI data acquisition

Structural and functional data were collected on the whole-body, 3 Tesla, Siemens Trio 

scanner with a 32-channel head coil, at the Athinoula A. Martinos Imaging Center at the 

McGovern Institute for Brain Research at MIT. T1-weighted structural images were 

collected in 176 sagittal slices with 1mm isotropic voxels (TR=2530ms, TE=3.48ms). 

Functional, blood oxygenation level dependent (BOLD), data were acquired using an EPI 

sequence (with a 90oflip angle and using GRAPPA with an acceleration factor of 2), with 

the following acquisition parameters: thirty-one 4mm thick near-axial slices acquired in the 

interleaved order (with 10% distance factor), 2.1mm × 2.1mm in-plane resolution, FoV in 

the phase encoding (A>>P) direction 200mm and matrix size 96mm × 96mm, TR=2000ms 

and TE=30ms. The first 10s of each run were excluded to allow for steady state 

magnetization.

fMRI data preprocessing

MRI data were analyzed using SPM5 and custom Matlab scripts (available in the form of an 

SPM toolbox from http://www.nitrc.org/projects/spm_ss). Each participant’s data were 

motion corrected and then normalized into a common brain space (the Montreal 

Neurological Institute (MNI) template) and resampled into 2mm isotropic voxels. The data 

were then smoothed with a 4mm FWHM Gaussian filter and high-pass filtered (at 200s). 

Effects were estimated using a General Linear Model (GLM) in which each experimental 

condition was modeled with a boxcar function (modeling entire blocks) convolved with the 

canonical hemodynamic response function (HRF).

Defining individual functional regions of interest (fROIs)

All the analyses described below were performed on the responses in regions of interest that 

were defined functionally in each individual participant (e.g., Saxe et al., 2006; Fedorenko et 
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al., 2010; Nieto-Castañón & Fedorenko, 2012). Three sets of functional regions of interest 

(fROIs) were defined, one set for each of the three networks. To do so, we used the Group-

constrained Subject-Specific (GSS) approach developed in Fedorenko et al. (2010; Julian et 

al., 2012). In particular, fROIs were constrained tofall within a set of “masks” which marked 

the expected gross locations of activations for the relevant contrast. For the language 

network, the masks were generated based on a group-level representation of data from 220 

participants (see Figure 1; these masks are similar to the masks originally reported in 

Fedorenko et al., 2010 based on 25 participants, except that the left anterior temporal and 

left mid-anterior temporal masks are grouped together, and the left mid-posterior temporal 

and left posterior temporal masks are grouped together). In addition, given that both the MD 

network and the DMN are bilateral, we defined the RH homologs of the LH language 

regions by transposing the LH masks onto the RH, as in Blank et al. (2014). fROIs were then 

defined in each RH mask, and were allowed the differ from their left homologues in their 

precise locations within these masks. For the MD and DMN networks, the masks were 

mostly anatomical regions from the Tzourio-Mazoyer et al. (2002) atlas, selected based on 

the prior literature (see Figure 1; the anatomical MD masks were the same as those used in 

Fedorenko et al., 2013 and Blank et al., 2014). The only exceptions are the bilateral 

Temporo-Parietal Junction masks for the DMN, which were created based on a random-

effects analysis for a functional contrast from a Theory of Mind localizer (false belief > false 

photograph) from 462 participants (Dufour et al., 2013).

For each participant, each set of masks was intersected with their individual activation map 

for the relevant contrast (i.e., sentences > nonwords for the language network, hard > easy 

spatial WM for the MD network, and easy > hard spatial WM for the DMN). Within each 

mask, the voxels were then sorted based on their t−values for the relevant contrast, and the 

top 10% of voxels were selected as that participant’s fROI. This top n% approach ensures 

that the fROIs can be defined in every participant—thus enabling us to generalize the results 

to the entire population (Nieto-Castañón & Fedorenko, 2012)—and that fROI sizes are the 

same across participants.

For the language network, twelve fROIs were defined in each participant, six in the left (L) 

hemisphere and six in the right (R) hemisphere. These included six fROIs on the lateral 

surface of the frontal cortex in the inferior frontal gyrus (L/R IFG) and its orbital part (L/R 

IFGorb) as well as in the middle frontal gyrus (L/R MFG); and six fROIs on the lateral 

surface of the temporal and parietal cortex, in the anterior temporal cortex (L/R AntTemp), 

posterior temporal cortex (L/R PostTemp), and angular gyrus (L/R AngG).

For the MD network, eighteen fROIs were defined in each participant, nine in each 

hemisphere. These included the opercular part of the inferior frontal gyrus (L/R IFGop), the 

middle frontal gyrus (L/R MFG) and its orbital part (L/R MFGorb), the precentral gyrus 

(L/R PrecG), the insular cortex (L/R Insula), the supplementary motor area (L/R SMA), the 

inferior parietal cortex (L/R InfPar), the superior parietal cortex (L/R SupPar), and the 

anterior cingulate cortex (L/R AntCing).

Finally, for the DMN, ten fROIs were defined in each participant, five in each hemisphere. 

These included the posterior cingulate cortex (L/R PostCing), four medial frontal regions 

Mineroff et al. Page 7

Neuropsychologia. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(L/R FrontMedOrb and L/R FrontMedSup), the precuneus (L/R Precuneus), and the 

temporoparietal junction (L/R TPJ).

Examining the functional response profiles of fROIs

To estimate the responses of the fROIs to the conditions used to define them, we used an 

across-runs cross-validation procedure. In particular, for each relevant contrast (sentences > 

nonwords for the language regions, hard > easy for the MD regions, and easy > hard for the 

DMN regions), fROIs were defined for each participant based on data from only the first 

run, and their responses were then estimated using data from the second run. This procedure 

was then repeated using the second run to define the fROIs and the first run to estimate the 

responses. Finally, the responses were averaged across these two iterations to derive a single 

response magnitude for each condition in a given fROI/participant. This cross-validation 

procedure allows one to use all of the data for defining the fROIs as well as for estimating 

their responses (for discussion, see Nieto-Castanon & Fedorenko, 2012), while ensuring the 

independence of the data used for fROI definition and for response estimation (e.g., 

Kriegeskorte et al., 2009).

In order to compare the functional profiles across the three networks, we also estimated the 

responses of the fROIs to conditions that were not used to define them (i.e., hard and easy 

WM for the language network, sentences and nonwords for the MD network and DMN). 

Here, we used all of the data from the localizer task (i.e., both runs) to define the fROIs, and 

all of the data from the other task to estimate their responses.

Second-level analyses (repeated measures t−tests) were performed on these extracted 

response magnitude values, using false discovery rate (FDR) correction (Benjamini & 

Yekutieli, 2001) for the number of fROIs in each network. Pairwise comparisons of localizer 

effects across networks were tested using linear, mixed-effects regression models 

implemented with the “lmer” toolbox in R (Bates et al., 2015). These models included a 

fixed effect for network, a random slope of network by participant, and a random intercept 

by fROI. The fixed effect estimates were contrasted to each other using the “multcomp” 

package. Because these analyses were carried out to replicate previous findings, hypotheses 

were one-tailed.

Examining inter-individual co-variation in effect sizes of the three networks

Descriptive statistics.—For each functional contrast (sentences > nonwords, hard > easy 

WM, easy > hard WM) we computed, across participants, the Pearson correlations in effect 

size for every pair of fROIs (40 fROIs in total: 12 language fROIs, 18 MD fROIs, and 10 

DMN fROIs) (the patterns of results reported below also obtained when using the non-

parametric Kendall τ correlation, and are thus robust to the choice of a particular correlation 

measure). Then, the correlation values within each network and hemisphere (e.g., all 

pairwise correlations for regions of the left hemispheric language network) were Fisher-

transformed and averaged together (this transformation reduces the bias in averaging 

correlations; see Silver & Dunlap, 1987). Correlations of fROIs with themselves, which 

were always equal to 1, were excluded from this step. Thus, we obtained: 3 networks × 2 

hemispheres = 6 average correlations. Following a similar procedure, we computed the 
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average inter-hemispheric correlation for each of the three networks (e.g., the average of all 

pairwise correlations between one left-hemisphere language region and one right-

hemisphere language region). Similarly, we also computed the average correlation across 

pairs of networks, within each hemisphere (e.g., the average of all pairwise correlations 

between one left-hemisphere language region and one left-hemisphere MD region). Here, 

we obtained: 3 network pairs × 2 hemispheres = 6 average correlations. In total, the number 

of average correlations (within-network, within-hemisphere; within-network, across-

hemispheres; and across-networks, within-hemispheres) was therefore 6+3+6 = 15.

For each of these 15 correlations we computed a 95% confidence interval via a 

bootstrapping procedure: first, we randomly sampled 5 × 104 sets of n=60 participants, with 

replacement, from the observed data. Then, for each set, we re-computed the 15 correlations 

as outlined above, yielding—across all sets—15 distributions of bootstrapped correlations. 

Finally, for each distribution, we found the interval that contained the middle 95% of values.

Significance tests.—To test whether fROIs within a certain network A were more 

strongly correlated among themselves than with fROIs of another network B, we used a 

permutation approach. Specifically, we randomly shuffled effect sizes across participants for 

each fROI in A. Under this shuffling, the expected correlations within network A as well as 

between networks A and B are practically 0. Consequently, the difference between the mean 

pairwise correlation within A and the mean pairwise correlation between A and B is also 

expected to be 0. The effect of this shuffling procedure therefore corresponds to the null 

hypothesis that within-network correlations are no different from between-network 

correlations. Thus, to generate an empirical null distribution, shuffling is repeated many 

times (here, 5 × 10–4) and, for each repetition, the mean correlation between A and B is 

subtracted from the mean correlation within A. The resulting distribution is approximately 

normal, because of both the Fisher-transformation on pairwise correlations and the 

averaging of these correlations within / across networks. To test the probability that the 

observed data would be sampled under the null hypothesis, we fit a Gaussian to the null 

distribution and used its mean and standard deviation to z−score the observed data.

We used the same permutation approach to test the laterality of correlations in effect size 

between fROIs. Namely, we address three questions: (i) whether, for each network, 

correlations in effect size within each hemisphere are stronger than those across 

hemispheres; (ii) whether the size of this laterality effect differs across networks; and (iii) 

whether across-network correlations are also lateralized, such that fROIs in one network are 

differentially correlated with LH vs. RH fROIs in another network. The results of all of our 

tests are FDR-corrected for multiple comparisons (Benjamini & Yekutieli, 2001).

Hierarchical clustering.—The permutation approach described above was used to test 

hypotheses-driven predictions regarding a tri-partite dissociation among the language, MD 

and default-mode networks. To use a more data-driven approach for examining our results, 

we searched for a partition of the 40 fROIs based solely on their pairwise correlations in 

effect size, ignoring their a-priori network labels. To this end, we first used a hierarchical 

clustering algorithm (Hartigan, 1975) to gradually connect all fROIs into a binary tree 

structure: this algorithm starts by joining the most correlated pair of fROIs into a node, and 
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proceeds to join other pairs of fROIs and/or higher tree nodes in decreasing order of 

correlation (correlations between tree nodes are defined as the average pairwise correlation 

between their respective, constituent fROIs). Following the method of Blank et al. (2014), 

we then used a modularity-optimization approach tofind the level at which the tree can be 

“ideally” partitioned into separate branches, each representing a group of fROIs; here, the 

“ideal” partition is one that maximizes within-branch correlations and minimizes across-

branch correlations (a measure of “modularity”; see Newman and Girvan, 2004; Gómez et 

al., 2009).

Results

Behavioral data

Behavioral performance on the spatial working memory task was as expected: participants 

were more accurate and faster on the easy trials (accuracy=92.65±1.47%; reaction time (RT) 

=1.19±0.22s) than the hard trials (accuracy=79.81±2.39%, t(59)=−11.50, p<10−16, Cohen’s 

d=1.48; RT=1.47±0.27s, t(59)=14.19, p<10−20, d=1.83).

Functional response profiles of the fROIs in the three networks

Replicating previous work, we find robust responses for all localizer contrasts using across-

runs cross-validation (Figure 1). In the language network, the sentences > nonwords effect 

was highly reliable in each of the LH fROIs (ts>10.7, ps<0.0001, ds>1.38) and in each of the 

RH fROIs (ts>4.1, ps<0.0001, ds>0.53). In the MD network, the hard > easy effect was 

highly reliable in each fROI (ts>10.1, ps<0.0001, ds>1.30). And in the DMN network, the 

easy > hard effect was highly reliable in each fROI (ts>7.1, ps<0.0001, ds>0.92). Next, we 

examined the relationship between the language network and each of the other two 

networks:

Language vs. MD.—Replicating prior work (Fedorenko, et al., 2011), we find no 

response to the spatial WM task in the language fROIs. None of the fROIs, except for the 

LMFG fROI, respond above baseline to either the hard spatial WM condition or the easy 

spatial WM condition (for both conditions, all ts<1, n.s., d<0.13). The LMFG fROI shows 

above baseline responses to both conditions, in line with what was reported in Fedorenko et 

al. (2011), and shows a slightly stronger response to the hard than the easy condition, which 

is not significant after an FDR correction for multiple comparisons (t(59)=1.84, n.s., d=0.24). 

In both hemispheres, the MD fROIs show an overall higher value for the hard > easy 

contrast than the language fROIs do (across-network contrast in LH: 0.74, z=7.8, p<10−13; 

RH: 0.66, z=5.47, p<10−7).

Replicating Fedorenko et al. (2013), we find that the MD fROIs respond to the language 

localizer conditions in a manner opposite to the language fROIs. In particular, they respond 

more to the meaningless and unstructured nonword lists than to the sentence condition 

(ts>2.1, ps<0.02, ds>0.27). (Interestingly, this pattern holds even though the task in the 

current version of the language localizer is passive reading (cf. a memory probe task in 

Fedorenko et al., 2013; see alsofedorenko, 2014).)
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Language vs. DMN.—In line with much prior work (e.g., Gusnard & Raichle, 2001; 

Raichle et al., 2001), we find that the DMN fROIs de-activate to the spatial WM task, with 

both the hard and the easy condition eliciting a response reliably below the fixation baseline 

(hard: ts>7.1, ps<10−9, ds>0.92; easy: ts>4.2, ps<10−4, ds>0.54). Critically, in sharp contrast 

with the language fROIs, none of the DMN fROIs, except for the LTPJ fROI, respond above 

baseline to sentence comprehension (sentence condition: ts<1.1, n.s., ds<0.14). The LTPJ 

fROI responds above baseline to the sentence condition (t(59)=4.56, p<10−4, d=0.59) and 

reliably more to sentences than nonwords (t(59)=5.14, p<10−5, d=0.66). Directly comparing 

the overall response to the sentence condition across the language network and DMN 

showed that the responses in the former are significantly higher (across-network contrast in 

LH: 1.31, z=7.99, p<10−14; RH: 0.67, z=5.08, p<10−6). Therefore, although several 

language fROIs show a hint of the DMN signature (deactivation to the demanding executive 

function task, with stronger deactivation to the harder condition, replicating Fedorenko et al., 

2011), the functional response in (most of) the DMN fROIs is clearly distinct from that in 

the language fROIs: language, but not DMN, fROIs respond robustly during language 

comprehension.

Nevertheless, the fact that the functional profile of the DMN fROI in the LTPJ is similar to 

that of the language fROI in the LAngG suggests that the two networks may overlap slightly 

near the junction of left temporal and parietal lobes (see also Deen et al., 2015). Evidence is 

accumulating that the AngG fROI functionally differs from the rest of the language network 

based on both functional correlation data (Blank et al., 2014; Chai et al., 2016) and 

differential responses to linguistic (e.g., Blank et al., 2016) and non-linguistic (e.g., Amit et 

al., 2017; Pritchett et al., in press) manipulations. Still, we include both the left and right 

AngG language fROIs in the analyses below because it is conservative with respect to the 

hypothesis that the three networks are functionally dissociated.

Within- vs. between-network correlations in effect size

The correlations of effect sizes for all pairs of fROIs are shown in Figure 2. Even before 

performing any statistical analysis, the dissociation among the language, MD, and default 

mode networks is visually apparent; the correlations are much higher for pairs of regions 

within each network than for pairs of regions across networks. A quantitative summary of 

the effect-size correlations is shown in Figure 3.

In line with previous work, we find a dissociation between the language and MD networks. 

In the left hemisphere, the average correlation between the sentences > nonwords effect size 

in one language region and the sentences > nonwords effect size in another language region 

is 0.54 (95% confidence interval (CI) = [0.39, 0.67]), similar to what was reported in 

Mahowald & Fedorenko (2016). In other words, individuals who show a bigger (smaller) 

sentences > nonwords effect in a given language region also tend to show bigger (smaller) 

effects in other language regions. Similarly, the average correlation between the hard > easy 

effect size in one MD region and the hard > easy effect size in another MD region is 0.66 

(CI95%=[0.55, 0.76]), similar to what was reported in Assem et al. (in revision). However, 

the average correlation between the sentence > nonwords effect size in a language region 

and the hard > easy effect size in a MD region is 0.18 (CI95%=[0.03, 0.31]), significantly 
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lower than both the within-language (p<10−13) and within-MD (p≈0) correlations. In other 

words, individual differences in the size of the sentences > nonwords effect in the language 

network and the size of the hard > easy effect in the MD network are less predictive of one 

another, relative to individual differences among fROIs within each network.

Critically, in line with the distinct functional profiles reported above, we also observe a clear 

dissociation between the language network and the DMN. The average correlation between 

the sentences > nonwords effect size in a language region and the easy > hard effect size in a 

DMN region is 0.09 (CI95%=[−0.08, 0.26]). This is significantly lower than the within-

language correlations (p≈0) and the within-DMN correlations (0.66, CI95%=[0.58, 0.74]; 

p≈0). The DMN is also dissociated from the MD network, with between-network 

correlations in effect size (0.26, CI95%=[0.08, 0.43]) significantly lower than those within 

each network (both p≈0).

A similar dissociation among the three networks obtains in the right hemisphere, as shown 

in Figures 2 and 3: the mean pairwise correlations within the language network (0.47, 

CI95%=[0.36, 0.58]) and within the MD network (0.65, CI95%=[0.54, 0.75]) are stronger 

than the mean language-MD pairwise correlation (−0.05, CI95%=[−0.18, 0.11]; both p≈0); 

the correlations within the language network and within the DMN (0.64, CI95%=[0.54, 

0.74]) are stronger than language-DMN correlations (0.04, CI95%=[−0.10, 0.17]; both p ≈ 
0); and the correlations within the MD network and within the DMN are stronger than MD-

DMN correlations (0.25, CI95%=[0.09, 0.40]; p≈0 and p<10−13, respectively).

Furthermore, the language network shows a robust lateralization effect in this novel 

measure, such that LH language fROIs are more correlated among themselves than they are 

with RH language fROIs (mean inter-hemispheric correlation: 0.22, CI95%=[0.03, 0.40]; 

p<10−12), and the same is true for correlations among RH language fROIs (p<10−6). These 

findings are in line with prior functional correlation studies (e.g., Gotts et al., 2013; Blank et 

al., 2014) and dynamic network modeling studies (e.g., Chai et al., 2016). In contrast, this 

laterality effect is not observed in either the MD network (mean inter-hemispheric pairwise 

correlation: 0.62, CI95%=[0.50, 0.73]; compared to LH correlations, p=0.40; compared to 

RH correlations, p=0.97) or the DMN (mean inter-hemispheric correlation: 0.68, 

CI95%=[0.58, 0.76]; compared to LH correlations, p=1; compared to RH correlations, 

p=0.72). A direct comparison of laterality effects across networks further confirms that they 

are stronger in the language network than in either the MD or the DMN, for both the LH 

(both p<10−5) and the RH (MD: p=0.001; DMN: p<10−5). A related, potentially interesting 

observation is that both LH and RH MD fROIs are more correlated with the LH language 

fROIs than they are with the RH homologues (LH MD fROIs: p=0.01; RH MD fROIs: 

p=0.003). In all other cases, across-network correlations in effect-size do not show such 

laterality.

These findings, based on hypothesis-driven tests in which sets of fROIs are compared to 

each other based on a pre-determined division into functional networks, are also supported 

by a hypothesis-neutral, data-driven analysis (Figure 4). Namely, hierarchically clustering all 

fROIs into a tree structure based on their pairwise correlations in effect size—without a-

priori information on their network assignments—recovered the dissociation among 
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language, MD and DMN fROIs as well as the associated laterality patterns. Specifically, the 

tree obtained from this clustering contained four branches precisely corresponding to the LH 

language, RH language, bilateral MD, and bilateral DMN networks. This partition had the 

highest modularity value compared to all other partitions, both finer and grosser, that were 

licensed by the tree—indicating that it was the overarching organizing principle in our data. 

In contrast to the branching of language fROIs by hemisphere, the MD and DMN branches 

were overall organized by inter-hemispheric homology such that many fROIs clustered with 

their respective contra-lateral homologues before forming larger clusters with one another. 

Furthermore and interestingly, in spite of the functional similarity between the LTPJ DMN 

fROI and the LAngG language fROI, as discussed above, they got assigned to their 

respective networks suggesting that at least in this measure the LTPJ DMN fROI is more 

similar to other DMN fROIs, and the LAngG language fROI is more similar to other 

language fROIs.

The results reported above are all based on correlations between effect sizes from the 

language localizer task (in language fROIs) and effect sizes from the spatial working-

memory task (in MD and DMN fROIs). Differences between these two tasks might therefore 

trivially account for the functional dissociation among the three networks (or at least 

between the language network and each of the other two networks). In order to reject this 

account, we recomputed our critical measure—i.e., inter-region correlations in effect size 

across participants—based on data from a single localizer contrast across all fROIs. 

Specifically, we measured the sentences > nonwords effect size in each language, MD and 

DMN fROI and, then, compared the average inter-regional correlation within the language 

network to the average language-MD correlation and the average language-DMN 

correlation. Similarly, we measured the hard > easy (or easy > hard) effect size in each fROI 

and, then, compared the average interregional correlation within the MD (DMN) network to 

the corresponding inter-network correlations. The results of this analysis are presented in 

Table 1. Consistent with our main analysis, they indicate a clear tri-partite dissociation 

across the three networks.

Discussion

The current study examined the relationship among three large-scale functional networks 

that support high-level cognitive processes: the language network, the multiple demand 

(MD) network, and the default mode network (DMN). To do so, we (a) characterized the 

functional response profiles of each network, and (b) employed a novel analytic approach 

that tested, across participants, the correlations in response magnitude among the fROIs 

within each network vs. between networks. Using both analyses, we replicate the 

dissociation between the language and MD networks (e.g., Fedorenko et al., 2011; 

Fedorenko et al., 2013; Blank et al., 2014; Paunov et al., in revision), as well as the well-

established dissociation between the MD network and the DMN. Critically, we further 

demonstrate that the language network is also robustly dissociable from the DMN: the 

former, but not the latter responds strongly during language processing and, whereas 

regional effect sizes strongly co-vary across individuals within each network, the correlation 

between the two networks is much weaker. In other words, if an individual shows a strong 

response to language processing (the functional signature of the language system) in one 
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language region, they are also likely to show a strong response in other language regions. 

Similarly, if an individual shows strong deactivation to a demanding task (the functional 

signature of the DMN) in one DMN region, they are also likely to show strong deactivation 

in other DMN regions. However, the strength of the response to language processing in a 

language region bears much less information about how much a DMN region will deactivate 

(or how much a region of the MD network will respond) to a demanding task.

These results have three implications. The first one is methodological: inter-individual 

differences in effect sizes do not simply reflect variability in overall brain properties (e.g., 

vascularization affecting the fMRI BOLD signal) or in behavioral/cognitive states (e.g., 

attention). If this were the case, we would expect effect sizes in different brain regions to 

strongly co-vary across individuals, regardless of their functional profiles. Instead, such 

inter-individual differences appear to be sensitive to the functional architecture of the brain, 

respecting its division into distinct, large-scale neural networks. Thus, inter-region 

correlation in effect size across individuals is a powerful new measure for discovering 

functional dissociations among neural systems and, possibly, even at a finer grain within 

each system.

The second implication is theoretical. The prior literature has left the relationship between 

the language network and the DMN ambiguous. In particular, methods that cluster voxels 

across the brain based on their respective activity time-courses sometimes recover a network 

that looks like a combination of the language network and the DMN (e.g., Yeo et al., 2011); 

this result appears to depend, in part, on the pre-specified number of clusters that such 

analyses are constrained to produce. Further, although the language regions show no 

response to non-linguistic demanding tasks (and are thus clearly dissociable from the 

domain-general MD network), they sometimes show deactivation to such tasks, much like 

the DMN (e.g., Fedorenko et al., 2011; see also Figure 1, top panel). Finally, both the 

language and the DMN regions have been linked to semantic / conceptual processing (e.g., 

Binder et al., 2009; Wirth et al., 2011;Jackson et al., 2016; Mattheis et al., 2018). However, 

we find a clear and robust functional dissociation between the language network and the 

DMN. This finding suggests that, in spite of some functional similarities between these two 

networks, and in spite of the fact that some of their regions lie in close proximity to one 

another, these two networks are functionally dissociable.

The third implication has to do with an important goal of cognitive neuroscience, to 

understand how inter-individual variability in brain structure and function relates to behavior 

and cognition in both healthy individuals and individuals with developmental disorders or 

mental illness. Although the current study does not inform these questions directly, it makes 

an important contribution: the dissociation we observed among the three networks suggests 

that the response strength in each network can be used as a specific neural marker, to be 

related to behavioral (or genetic) variability (e.g., Dubois & Adolphs, 2016; Mahowald & 

Fedorenko, 2016; Seghier & Price, 2018; Assem et al., in revision).

Finally, two points are worth clarifying with respect to the functional dissociations among 

the three networks examined here (or any other brain regions / networks, for that matter). 

First, simply because two regions or networks are functionally distinct (in whatever 
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measure) does not imply that these regions / networks cannot “collaborate” with one another 

in the service of some task that requires both processes. For example, recognizing an 

individual presumably engages a number of distinct mechanisms, from face recognition, to 

voice recognition, to recognizing gait and other characteristic biological motion patterns, etc. 

Similarly, a demanding linguistic task may engage both the core language network and the 

domain-general MD network (e.g., Stromswold et al., 1996; Stowe et al., 1998; Constable et 

al., 2004; Chen et al., 2006; Nieuwland et al., 2007; Novais-Santos et al., 2007; January et 

al., 2009; Ye & Zhou, 2009; Peelle et al., 2010; Sebastian et al., 20122; Barde et al., 2012; 

McMillan et al., 2012, 2013; Wild et al., 2012; Brownsett et al., 2013; de Bruin et al., 2014; 

Geranmayeh et al., 2014a,b; De Baene et al., 2015; Gauvin et al., 2016; Henderson et al., 

2016; Hsu et al., 2017); and recalling a past experience may engage both the DMN and the 

language network, if the experience contains verbal content. However, knowing that two 

brain regions that both contribute to the same complex task are functionally distinct (e.g., 

respond in different ways during other manipulations) is critical to understanding the precise 

nature of their contribution to the task in question. For example, even if the language 

network and DMN both support some aspects of conceptual processing (e.g., Binder et al., 

2009), they plausibly differ in their respective contributions and should be probed separately 

when evaluating future hypotheses about semantic processing. How exactly inter-region or 

inter-network interactions are implemented in the brain is a topic of active research (e.g., 

Roelfsema et al., 1997; Canolty et al., 2010; Zalesky et al., 2014; Antzoulatos et al., 2016; 

Voloh & Womelsdorf, 2016; Quax et al., 2017; Tang et al., 2017; Lundqvist et al., 2018; for 

reviews, see: Singer & Gray, 1995; Tononi et al., 1998; Bressler & Kelso, 2001; Varela et al., 

2001; Fries, 2009; Canolty & Knight, 2010; Siegel et al., 2012; Turk-Browne, 2013; 

Saalmann, 2014; Bastos et al., 2015; Luczak et al., 2015; Bell & Shine, 2016; Nakajima & 

Halassa, 2017).

Second, although functional dissociations between regions or networks may imply distinct 

computations (e.g., Blank & Fedorenko, 2017), the latter does not necessarily follow. In fact, 

neural circuits across the cortex share many core properties (e.g., Douglas et al. 1989; 

Douglas & Martin 2004; Harris & Shepherd 2015), suggesting that the basic computations 

may be the same or at least similar across different cortical areas even if they store or 

process different kinds of domain-specific representations. In addition to the kinds of 

analyses used here and discussed above, multivariate analyses, especially ones that relate 

neural activity patterns to cognitive models (e.g., Kriegeskorte et al., 2008) may help inform 

the representational content of different networks.
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Highlights:

• Is the language network dissociable from multiple-demand and default mode 

networks?

• Novel test: do individual differences in effect size (ES) correlate across 

regions?

• Individual differences co-vary within networks much more than between 

networks

• Data-driven support for a triple language/multiple-demand/default mode 

dissociation

• Individual differences in regional ES respect the brain’s functional 

organization
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Figure 1. 
Responses to the conditions of the localizer tasks in each functional ROI. Broad masks used 

to constrain the selection of subject-specific fROIs are shown on the left (the size of fROIs is 

10% of the size of the masks). Language fROIs (top) are defined by the sentences > 

nonwords contrast; MD fROIs (middle) are defined by the hard > easy spatial working 

memory contrast; and DMN fROIs (bottom) are defined by the easy > hard spatial working 

memory contrast. Responses to the conditions used for defining the fROIs are estimated 

using across-runs cross-validation, to ensure independence. Left: left-hemispheric fROIs (L 

prefix). Right: right-hemispheric fROIs (R prefix). Significant effects (after an FDR-

correction for multiple comparisons within each network) are marked with an asterisk. IFG: 

inferior frontal gyrus; IFGorb: IFG pars orbitalis; MFG: middle frontal gyrus; AntTemp: 

anterior temporal cortex; PostTemp: posterior temporal cortex; AngG: angular gyrus; IFGop: 

IFG pars opercularis; MFGorb: MFG, orbital part; PrecG: precentral gyrus; SMA: 

supplementary motor area; InfPar: inferior parietal cortex; SupPar: superior parietal cortex; 

AntCing: anterior cingulate cortex; FrontMedOrb: medial frontal cortex, orbital part; 

FrontMedSup: medial frontal cortex, superior part; PostCing: posterior cingulate cortex; 

TPJ: temporoparietal junction.
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Figure 2. 
Pearson correlations, across 60 participants, for effect sizes of localizer contrasts across pairs 

of fROIs. For each fROI, the effect size is for the contrast used to define that fROI (but 

estimated in independent data): for the 12 language regions (labeled in red font), the 

sentences > nonwords contrast from the language localizer task was used; for the MD 

regions (blue font), the hard > easy spatial WM contrast was used; and for the DMN regions 

(green font), the easy > hard spatial WM contrast was used.
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Figure 3. 
Correlations in effect sizes across participants, computed either within networks (strong 

colors) or between networks (faint colors). Each point is a pairwise correlation between the 

effect sizes of two fROIs, one from the network/hemisphere denoted on the x−axis, and one 

from the network/hemisphere denoted by the subplot titles (top: language; middle: MD; 

bottom: DMN; left: left hemisphere; right: right hemisphere). Horizontal lines show 

averages across these pairwise correlations.
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Figure 4. 
Hierarchical clustering results. In the binary tree shown, branch length (i.e., horizontal lines) 

corresponds to the similarity between fROIs (or sets of fROIs). Above the tree, modularity is 

plotted for all fROI partitions licensed by the tree. Each point on the modularity plot 

corresponds to a partition generated by drawing an imaginary vertical line from that point 

through the tree and clustering together only those fROIs that are merged to the left of this 

line (fROIs that are merged to the right of the line remain in separate clusters). A sample 

vertical line is drawn for the maximal modularity.
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Table 1.

Mean inter-regional correlations in contrast-specific effect sizes across participantsa

r

Localizer contrast LH RH

Reading: Sentences > Nonwords

 Within language 0.54 0.47

 Language vs. MD 0.10 0.16

 Language vs. DMN 0.30 0.09

Spatial WM: Hard > Easy

 Within MD 0.66 0.65

 MD vs. language 0.10 0.13

 MD vs. DMN −0.26 −0.25

Spatial WM: Easy > Hard

 Within DMN 0.66 0.64

 DMN vs. language 0.38 0.25

 DMN vs. MD −0.26 −0.25

a
All within-network correlations are stronger than their respective across-network correlations at p<10−7
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