
The curcuminoid, EF-24, reduces cisplatin-mediated reactive 
oxygen species in zebrafish inner ear auditory and vestibular 
tissues

Jerry D. Monroea, Matthew H. Millaya, Blaine G. Pattya, and Michael E. Smitha,*

aDepartment of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, 
Bowling Green, KY 42101-1080, United States

Abstract

Cisplatin is a widely used chemotherapy drug that can damage auditory and vestibular tissue and 

cause hearing and balance loss through the intracellular release of reactive oxygen species (ROS). 

Curcumin has anticancer efficacy and can also counteract cisplatin’s damaging effect against 

sensory tissue by scavenging intracellular ROS, but curcumin’s applicability is limited due to its 

low bioavailability. EF-24 is a synthetic curcumin analog that is more bioavailable than curcumin 

and can target cancer, but its effects against cisplatin-mediated ROS in auditory and vestibular 

tissue is currently unknown. In this study, we employed a novel zebrafish inner ear tissue culture 

system to determine if EF-24 counteracted cisplatin-mediated ROS release in two sensory 

endorgans, the saccule and the utricle. The zebrafish saccule is associated with auditory function 

and the utricle with vestibular function. Trimmed endorgans were placed in tissue culture media 

with a fluorescent reactive oxygen species indicator dye, and intracellular ROS release was 

measured using a spectrophotometer. We found that cisplatin treatment significantly increased 

ROS compared to controls, but that EF-24 treatment did not alter or even decreased ROS. 

Importantly, when equimolar cisplatin and EF-24 treatments are combined, ROS did not increase 

compared to controls. This suggests that EF-24 may be able to prevent intracellular ROS caused 

by cisplatin treatment in inner ear tissue.
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1. Introduction

The platinum-based chemotherapy compound, cis-diamminedichloridoplatinum(II) 

(cisplatin) (Fig. 1), is a widely-prescribed FDA-approved drug that can produce several 

negative side-effects including damage to auditory and vestibular tissue resulting in hearing 
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and balance loss [1–9]. Curcumin, a naturally occurring plant compound, can act to prevent 

cisplatin-mediated damage to auditory tissue, although, its effects in vestibular tissue have 

not yet been characterized [4, 10]. However, curcumin exhibits poor solubility and 

bioavailability in mammals [11–12]. Therefore, there is considerable interest in discovering 

whether synthetic curcumin analogs (curcuminoids) with improved solubility and 

bioavailability can act like curcumin to prevent cisplatin-mediated damage to sensory tissue.

Cisplatin can induce ROS release in auditory and vestibular hair cells causing these sensory 

cells to undergo apoptosis [5–7, 13–16]. Unlike cisplatin, curcumin can scavenge ROS, but 

curcumin’s efficacy is limited due to its low bioavailability [10–11, 17–20]. However, some 

synthetic curcuminoid compounds do not exhibit limited bioavailability [14, 21–24] and 

could potentially counteract intracellular ROS release. (3E,5E)-3,5-bis[(2-fluorophenyl) 

methylene]-4-piperidinone (EF-24) (Fig. 1) is a curcuminoid with anti-cancer efficacy that 

prevents reactive oxygen species damage in some tissues [25–26] and can counteract 

chemically-induced ROS in cancer cells [14]. These results suggested to us that EF-24 might 

be able to reduce ROS release in auditory and vestibular tissue treated with cisplatin.

Most auditory studies conducted in zebrafish focus on the lateral line system due to its ease 

of access and manipulation [27–31]. ROS release has been successfully studied in lateral 

line hair cells [32]. However, lateral line hair cells exhibit some differences from their 

mammalian counterparts including requiring mechanotransduction for cisplatin uptake [33], 

and functionally the lateral line is restricted to low frequency sound detection [30]. Although 

the zebrafish inner ear model can be used in drug-related studies [34], and it is sensitive to a 

broader spectrum of sound frequencies than the lateral line system [30], its use until now has 

been hampered by its inaccessibility.

Here, we have employed a novel zebrafish inner ear tissue culture system to test the effects 

of cisplatin and EF-24 treatment on intracellular ROS release. Using a spectrophotometric 

ROS indicator dye assay [35–36], we were able to determine the effects of cisplatin, EF-24 

and combined cisplatin-EF-24 treatment on two zebrafish sensory endorgan tissues, the 

saccule and utricle (Fig. 2). The zebrafish saccule has primarily auditory function, and the 

utricle has primarily vestibular function [37–38]. We found that low (100 µM) and high (500 

µM) cisplatin treatments caused significantly increased ROS release in both endorgan tissues 

relative to controls, but both low (100 µM) and high (500 µM) molarity EF-24 treatment 

either did not alter reactive oxygen species release or reduced it compared to controls. 

Interestingly, we found that administering equimolar concentrations of cisplatin and EF-24 

did not change ROS release compared to controls, which indicates that EF-24 may 

counteract cisplatin-mediated ROS release in these zebrafish sensory tissues. Our results 

also suggest that the zebrafish inner ear tissue culture system may be a versatile new 

technique for assessing whether novel oto- and vestibuloprotective candidates, given in 

conjunction with known ototoxic therapies, modulate ROS release in sensory tissue.
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2. Material and methods

2.1. Zebrafish maintenance

Zebrafish (Danio rerio) used in this study were obtained from a commercial supplier 

(Segrest Farms, Gibsonton, FL) and maintained in the Western Kentucky University animal 

facility following protocols approved by the Institutional Animal Care and Use Committee. 

All zebrafish were a mix of male and female adult animals at least 6 months of age and were 

maintained according to standard methods [39].

2.2. Tissue sample preparation

Tissue samples were prepared according to established procedures [34, 40]. First, zebrafish 

were euthanized using an overdose of tricaine methanesulfonate (MS-222) (Argent, 

Redmond, WA) per American Veterinary Medical Association (AVMA) protocol. Then, 

saccules and utricles were carefully dissected out and trimmed, and set aside in filter-

sterilized phosphate buffer solution (LabChem, Pittsburgh, PA) for ROS analysis. A separate 

set of dissected and trimmed endorgans were photographed to provide illustrative samples of 

saccules and utricles used in the study (Fig. 2). These samples were first stained with Alexa 

Fluor 488-conjugated phalloidin (1:100; Life Technologies, Eugene, OR) for 30 minutes to 

label filamentous actin (F-actin). Tissue samples were then placed on glass slides and nuclei 

were labelled with Prolong Gold antifade reagent (4’,6-diamidino-2-phenylindole [DAPI], 

Life Technologies, Carlsbad, CA) and a cover-slip was placed over the samples. Saccules 

and utricles were subsequently viewed through the FITC and DAPI filters of a Zeiss 

Axioplan2 epifluorescence microscope (Carl Zeiss, Jena, Germany) at 5X and 10X 

magnification and photographed using an AxioCam MRm camera.

2.3. ROS measurement

Sets of 3–4 wells in black plastic 96-well plates (Nunclon, Roskilde, Denmark) were 

prepared for either experimental, control (tissue-media-dye; media-dye; DMSO-media-dye) 

or blank treatments. Experimentals consisted of either 100 µM cisplatin, 500 µM cisplatin, 

100 µM EF-24 or 500 µM EF-24 in L-15 media supplemented with 10 mM HEPES, 0.5% 

w/v bovine serum albumin fraction V, 10 nM retinoic acid, 0.4 mg/L amphotericine B 

(Fungizone), 200 U/ml penicillin and 200 µg/ml streptomycin, as well as 5 µM H2DCFDA 

indicator dye in phosphate-buffered saline (PBS). Tissue-media-dye and media-dye control 

treatments consisted of only L-15 media with supplementation and ROS indicator dye. 

DMSO-media-dye controls were prepared the same as the other controls except that DMSO 

concentrations equivalent to those introduced during the experiments were added. Blanks 

consisted of L-15 media prepared as before without dye. Stock solutions of EF-24 and 

H2DCFDA were initially solubilized in DMSO and then diluted 1:100 in media (EF-24) or 

PBS (H2DCFDA). Stock solutions of cisplatin were prepared in supplemented media. 

Trimmed saccule or utricle endorgans were then placed in experimental and tissue-media-

dye control wells and incubated at 28 °C in a Quincy Lab (Chicago, IL) model 12–140E 

incubator for 45 minutes. Next, the 96-well plates were placed in a BioTek Synergy 

(Winooski, VT) microplate reader and read using the fluorescent mode set at 495 nm 

(excitation) and 527 nm (emission) wavelengths (t = 0 hours). Plates were then immediately 

placed back into the incubator and read again using the same spectrophotometer settings at t 
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= 18 hours. For experiments where cisplatin and EF-24 treatments were combined, either 

100 or 500 µM cisplatin was initially placed in the wells and then tissue samples were 

introduced. This was followed by incubation for 45 minutes and then an initial (t = 0 hours) 

spectrophotometer reading as before. After 3 hours, equimolar to cisplatin concentrations of 

EF-24 (100 or 500 µM) were introduced. Plates were read a final time at t = 18 hours using 

the same excitation and emission wavelengths. ROS background measured in the media-dye 

control samples was subtracted from the experimental and tissue-media-control values to 

obtain final adjusted values which were then converted to a percent of control. Unless stated 

otherwise, reagents were purchased from Gibco (Gaithersburg, MD), Thermo Fisher 

(Waltham, MA) or Sigma-Aldrich (St. Louis, MO).

2.4. Statistical analysis

GraphPad Prism v6 (La Jolla, CA) was used for all statistical analysis. Data sets were 

analyzed using unpaired two-tailed t tests (p ≤ 0.05).

3. Results

A fluorescent spectrophotometric assay was used to measure ROS release within zebrafish 

saccules and utricles following cisplatin, EF-24 and cisplatin-EF-24 combination treatments. 

Our control results showed that DMSO and tissue only preparations did not exhibit altered 

ROS release compared to media-dye only controls (data not shown). However, samples 

treated with 100 µM of cisplatin exhibited a statistically significant higher ROS release in 

both saccules (169% of control; p < 0.001) and utricles (148% of control; p < 0.05) (Fig. 

3A). Tissue samples treated with a higher (500 µM) concentration of cisplatin had 

significantly higher ROS release than the 100 µM samples for both saccules (298% of 

control; p < 0.0001) and utricles (263% of control; p < 0.001) (Fig. 3B).

We then investigated the effect of EF-24 treatment on ROS release in the dissected sensory 

endorgans. When tissue samples were treated with 100 µM of EF-24, ROS release was 

essentially unchanged in saccular tissue (95% of control) (Fig. 4A). In utricles, application 

of a 100 µM concentration caused a statistically significant decrease in ROS release (71% of 

control; p < 0.01) (Fig. 4A). Our 500 µM EF-24 treatments decreased ROS release by non-

significant amounts in both saccules (71% of control) and utricles (87% of control) (Fig. 

4B).

As a final experiment, we treated auditory endorgan samples initially with cisplatin and then 

an equimolar concentration of EF-24 after 3 hours had elapsed. When equimolar 100 µM 

treatments were introduced, ROS release in tissues increased slightly, but this was not 

statistically different from controls in both saccules (112% of control) and utricles (114% of 

control) (Fig. 5A). Similarly, ROS release in tissues exposed to combined 500 µM equimolar 

treatments of cisplatin and EF-24 were not significantly different from controls with 

saccules being equivalent (100% of control) and utricles exhibiting a slight decline (87% of 

control) (Fig. 5B). Overall, these results suggest that equimolar EF-24 treatment can 

counteract cisplatin-induced ROS release in these two zebrafish sensory endorgans.
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4. Discussion

In this study, we used a novel zebrafish inner ear tissue culture method to determine if the 

curcuminoid, EF-24, prevents reactive oxygen species release in auditory and vestibular 

tissue treated with the chemotherapy compound and ototoxin, cisplatin. Once in cells, 

cisplatin enters the nucleus where it binds to DNA, causing apoptosis and increased ROS 

release that can damage auditory and vestibular cells [2, 4–9, 41]. As an initial step, we 

investigated whether cisplatin treatment caused ROS release in zebrafish saccular and 

utricular tissue samples and if release was concentration dependent. We found that ROS 

release in zebrafish saccular and utricular tissue is significantly higher than controls when 

treated with 100 µM cisplatin treatment (Fig. 3A). This concentration (100 µM) is 

approximately double that of reported cisplatin IC50 values in some cancer cell lines [42–43] 

and equivalent to or below IC50 values in some cisplatin resistant cell lines, e.g., A2780/

C30, MDA/CH [42–44]. Therefore, our tissue culture assay found statistically significant 

ROS release at cisplatin concentrations encountered in cancer cell culture experiments. 

Further, we found that ROS release is sharply elevated from the 100 µM result at a cisplatin 

concentration of 500 µM (Fig. 3B). As the H2DCFDA dye was prepared in DMSO, which 

can neutralize cisplatin [45], we diluted the dye 1:100 in PBS to prevent this effect. If the 

DMSO chemically affected cisplatin in these experiments, we would expect no or very 

minor changes in ROS release compared to control. However, our ROS yields with cisplatin 

treatment were extremely robust (148 to 169% of control at 100 µM and 263–298% of 

control at 500 µM), which strongly supports the interpretation that the cisplatin was intact 

throughout the experiments. Thus, our results suggest that the increased ROS release in the 

endorgan tissues was due solely from the cisplatin and follows a dosage-dependent profile.

EF-24 can act against cancer cells by increasing intracellular ROS release and enhance 

cisplatin’s effect against cancer [46–50]. However, EF-24 can also protect non-malignant 

cells from cisplatin-mediated damage [46]. The curcuminoid, 4-[3,5-bis(2-

chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid (CLEFMA), causes lung 

cancer cell death via increased intracellular reactive oxygen species release but doesn’t 

increase ROS release and cause damage in normal lung cells [51]. This suggested to us that 

EF-24 might not cause ROS release in non-cancerous auditory and vestibular tissue. We 

found that both lower (100 µM) and higher (500 µM) concentrations of EF-24 either did not 

change or even reduced ROS levels in either endorgan compared to controls (Fig. 4). This 

could mean that in cancer, EF-24 can signal through a mechanism that causes damaging 

ROS production, but that in normal sensory tissue, EF-24 does not activate a ROS-

generating pathway. Additionally, like curcumin in non-cancerous tissue [52–53], our results 

could suggest that EF-24 functions in our auditory and vestibular tissue culture as a ROS 

scavenger.

Cisplatin-mediated reactive oxygen species release in auditory and vestibular tissue could be 

counteracted by EF-24 if the curcuminoid acts through a different pathway, pathway 

component or as a ROS scavenger. EF-24 and cisplatin can affect distinct antiapoptosis 

genes in malignant and normal mesothelioma cells [46]. Similarly, EF-24’s ROS signaling in 

sensory tissue could be separate from cisplatin’s and might function to counteract signals 

sent through cellular pathways induced by the platinum compound. This interpretation could 
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explain why the equimolar (100 µM and 500 µM) concentrations of EF-24 and cisplatin 

together did not alter ROS release (Fig. 5). This result could also be explained if EF-24 and 

cisplatin target different components of the same ROS pathway. EF-24 can form an adduct 

with the antioxidant glutathione in cancer cells; whereas, cisplatin instead targets glutathione 

S-transferase, an enzyme that catalyzes the binding of glutathione to ROS [54]. Therefore, in 

auditory and vestibular tissue, EF-24 could act on a different ROS pathway component than 

cisplatin, and this might explain how EF-24 can prevent increased ROS generation after 

cisplatin treatment. The restoration of normal reactive oxygen species levels when EF-24 

and cisplatin are combined (Fig. 5) could also be explained by EF-24 neutralizing cisplatin-

generated ROS.

In summary, we used a fluorescent spectrophotometric assay and zebrafish sensory tissue 

culture to show that the curcuminoid, EF-24, can counteract ROS generation caused by the 

platinum-based chemotherapy compound, cisplatin. Additional work using zebrafish sensory 

tissue cultures in combination with a variety of fluorescent probes could elucidate if EF-24 

and other curcuminoids act as effective otoprotectants against platinum-based chemotherapy 

compounds that cause destructive reactive oxygen species release in auditory and vestibular 

hair cells.
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• Reactive oxygen species release increases in cisplatin-treated zebrafish 

endorgans

• Reactive oxygen species production in cisplatin only samples is dosage 

dependent

• Curcuminoid treatment does not increase endorgan reactive oxygen species

• Curcuminoid treatment counteracts cisplatin reactive oxygen species 

production
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Figure 1. 
The chemical structures of the platinum-based chemotherapy compound, cisplatin, and the 

curcuminoid, EF-24. Cisplatin treatment can cause intracellular ROS release that damages 

auditory and vestibular tissue. EF-24 can affect ROS release in cancer and non-cancer cells, 

but its effects on ROS in auditory and vestibular tissue is not known.
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Figure 2. 
Representative samples of dissected and trimmed zebrafish auditory and vestibular 

endorgans. A. Saccule (auditory endorgan) stained with the nuclear marker, DAPI, and the f-

actin labelling marker, Alexa Fluor 488. B. Utricle (vestibular endorgan) stained with DAPI 

and Alexa Fluor 488. Bar = 10 µm.
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Figure 3. 
Cisplatin treatment increased reactive oxygen species in zebrafish sensory endorgans. A.-B. 

Endorgan treatment labeling: saccule-cisplatin (S-C), saccule-vehicle (S-V), utricle-cisplatin 

(U-C), utricle-vehicle (U-V). A. 100 µM cisplatin (dark gray) treatment increased ROS in 

tissue samples compared to vehicle (white) treatment. B. 500 µM cisplatin (dark gray) 

treatment increased ROS in tissue samples compared to vehicle (white) treatment. RFU = 

relative fluorescence units. N = 3–6; “*”, p < 0.05; “***”, p < .001; “****”, p < 0.0001.
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Figure 4. 
Reactive oxygen species in zebrafish sensory endorgans is unchanged or reduced after EF-24 

treatment. A.-B. Endorgan treatment labelling: saccule-EF-24 (S-E), saccule-vehicle (S-V), 

utricle-EF-24 (U-E), utricle-vehicle (U-V). A. 100 µM EF-24 (light gray) treatment does not 

alter ROS in saccular tissue but decreases ROS in utricular tissue compared to vehicle 

(white) treatment. B. 500 µM EF-24 (light gray) treatment does not alter ROS in tissue 

samples compared to vehicle (white) control. RFU = relative fluorescence units. N = 3–4; p 
> 0.05; “**”, p < 0.01.
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Figure 5. 
EF-24 prevents reactive oxygen species in zebrafish sensory endorgan tissues treated with 

cisplatin. A.-B. Endorgan treatment labelling: saccule-cisplatin and EF-24 (S-C/E), saccule-

vehicle (S-V), utricle-cisplatin and EF-24 (U-C/E), utricle-vehicle (U-V). A. ROS is not 

significantly different than control (white) treatment when 100 µM EF-24 treatment follows 

100 µM cisplatin treatment (dotted gray). B. ROS is not significantly different than control 
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(white) treatment when 500 µM EF-24 treatment follows 500 µM cisplatin treatment (dotted 

gray). RFU = relative fluorescence units. N = 3; p > 0.05.
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