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Abstract

Dynamic treatment regimens (DTRs) are sequential treatment decisions tailored by patient’s 

evolving features and intermediate outcomes at each treatment stage. Patient heterogeneity and the 

complexity and chronicity of many diseases call for learning optimal DTRs that can best tailor 

treatment according to each individual’s time-varying characteristics (eg, intermediate response 

over time). In this paper, we propose a robust and efficient approach referred to as Augmented 

Outcome-weighted Learning (AOL) to identify optimal DTRs from sequential multiple 

assignment randomized trials. We improve previously proposed outcome-weighted learning to 

allow for negative weights. Furthermore, to reduce the variability of weights for numeric stability 

and improve estimation accuracy, in AOL, we propose a robust augmentation to the weights by 

making use of predicted pseudooutcomes from regression models for Q-functions. We show that 

AOL still yields Fisher-consistent DTRs even if the regression models are misspecified and that an 

appropriate choice of the augmentation guarantees smaller stochastic errors in value function 

estimation for AOL than the previous outcome-weighted learning. Finally, we establish the 

convergence rates for AOL. The comparative advantage of AOL over existing methods is 

demonstrated through extensive simulation studies and an application to a sequential multiple 

assignment randomized trial for major depressive disorder.
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1 | INTRODUCTION

Technology advances are revolutionizing medical research by collecting rich data from 

individual patient (eg, clinical assessments, genomic data, and electronic health records) for 

clinical researchers to meet the promise of individualized treatment and health care. The 
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availability of comprehensive data sources provides new opportunities to deeply tailor 

treatment in the presence of patient heterogeneity and the complexity and chronicity of 

many diseases. Dynamic treatment regimens (DTRs),1 also known as adaptive treatment 

strategies,1 multistage treatment strategies,2 or treatment policies,3 are a sequence of 

treatment decisions adapted to the time-varying clinical status of a patient. Moreover, DTRs 

are necessary to treat complex chronic disorders such as major depressive disorder (MDD) 

when some patients fail to achieve remission with a first-line treatment.4

Sequential multiple assignment randomized trials (SMARTs), in which randomization is 

implemented at each treatment stage, have been advocated5 to evaluate any DTR with causal 

interpretation. Using data collected from SMARTs, numerous methods have recently been 

developed to estimate optimal DTRs.6–13 See also the works of Chakraborty and Moodie14 

and Kosorok and Moodie15 for a detailed review of the current literature. Of all the methods, 

machine learning methods have received attention because of their robustness and 

computational advantages. For example, Q-learning16 was used to analyze SMART data by 

Zhao et al9 and Murphy et al.17 In this learning algorithm, the optimal treatment at each 

stage is derived from a backward induction by maximizing the so-called Q-function (“Q” 

stands for “quality of action”), which is estimated via a regression model. To avoid model 

misspecification in Q-learning, Zhao et al10 proposed outcome-weighted learning (OWL) to 

estimate the optimal treatment rules by directly optimizing the expected clinical outcome in 

a single-stage trial. They demonstrated in numerical studies that OWL outperforms Q-

learning in small sample-size settings with many tailoring variables. Later, Zhao et al18 

generalized OWL to estimating optimal DTRs in a multiple-stage trial and demonstrated the 

superior performance to existing methods. However, in the aforementioned work,18 since the 

weights at each stage of the estimation must be the optimal outcome increment in the future 

stages, only patients whose later treatments are optimal can be used for estimation. 

Consequently, a proportion of data have to be discarded from one stage to another in their 

backward learning algorithm, resulting in significant information loss and thus large 

variability of the estimated DTRs.

In this paper, we propose a hybrid approach, namely Augmented Outcome-weighted 

Learning (AOL), to integrate OWL and regression models for Q-functions for estimating the 

optimal DTRs. Similar to OWL, the proposed method relies on weighted machine learning 

algorithms in a backward induction. However, the weights used in AOL are constructed by 

augmenting optimal outcomes for all patients, including those whose later stage treatments 

are nonoptimal. The augmentation is obtained using prediction from the regression models 

for Q-functions. Thus, AOL performs augmented outcome-weighted learning using the 

regression models for Q-functions as augmentation.

There are several novel contributions in this work as compared with previous works.10,18 

First, for single-stage randomized trials, AOL generalizes OWL to allow for negative 

outcome values instead of adding an arbitrarily large constant, which may lead to numeric 

instability. Second, by using weights based on residuals after removing prognostic effects 

that are obtained from the observed outcomes, AOL reduces the variability of weights in 

OWL to achieve less variable DTR estimation. Third, AOL simultaneously takes advantage 

of the robustness of nonparametric OWL and makes use of model-based approaches to 
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utilize data from all subjects. Fourth, AOL is theoretically shown to yield the same 

asymptotic bias as OWL but smaller stochastic variability because of a better weighting 

scheme and thus guarantees efficiency gain. Moreover, AOL is proved to yield the correct 

optimal DTRs even if the regression models assumed in the augmentation are incorrect and 

thus maintains the robustness of OWL.

The rest of this paper is organized as follows. In Section 2, we review some concepts for 

DTR, Q-learning, and OWL and introduce AOL for single-stage and multiple-stage studies. 

The last part of Section 2 presents theoretical properties of AOL. In particular, we provide 

stochastic error bounds for AOL and demonstrate its smaller stochastic variability when 

compared with OWL; we further derive a fast convergence rate for AOL. Section 3 shows 

the results of extensive simulation studies to examine the performance of AOL compared 

with Q-learning and OWL. In Section 4, we present real data analysis results from the 

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial4 for MDD. Lastly, 

we conclude with a few remarks in Section 5.

2 | METHODOLOGIES

2.1 | Dynamic treatment regimes and outcome weighted learning

We start by introducing notation for a K-stage DTR. For k = 1, 2, … , K, denote Xk as the 

observed subject-specific tailoring variables collected just prior to the treatment assignment 

at stage k. Denote Ak as the treatment assignment taking values in { −1, 1}, and Rk as the 

clinical outcome (also known as the “reward”) post the kth-stage treatment. Larger rewards 

may correspond to better functioning or fewer symptoms depending on the clinical setting. 

A DTR is a sequence of decision functions, 𝒟 = 𝒟1, 𝒟2, …, 𝒟K , where 𝒟K maps the 

domain of patient health history information, Hk = (X1, A1, R1, … , Ak−1, Rk−1, Xk), to the 

treatment choices in {−1, 1}. Corresponding to each 𝒟, a value function, denoted by 𝒱 𝒟 , 

is defined as the expected reward given that the treatment assignments follow regimen 𝒟.12 

Mathematically, 𝒱 𝒟 = E𝒟 ∑k = 1
K Rk = ∫ ∑k = 1

K RkdP𝒟, where 𝒫𝒟 is the probability 

measure generated by random variables (X1, A1, R1, … , XK,AK, RK) given that 

Ak = 𝒟k Hk  and E𝒟 is the expectation with respect to this measure. Hence, the goal of 

personalized DTRs is to find the optimal DTRs that maximize the value function.

To evaluate the value function of a DTR in a SMART, a potential outcome framework in 

causal inference literature is used. The potential outcome in our context is defined as the 

outcome of a subject had he or she followed a particular treatment regimen, possibly 

different from the observed regimen in the actual trial. Several assumptions are required to 

infer the value function of a DTR, including the standard stable unit treatment value 

assumption and the no unmeasured confounders assumption.6,19 In a SMART, the no 

unmeasured confounders assumption is automatically satisfied because of the virtue of 

sequential randomization. Furthermore, we need the following positivity assumption: let 

𝜋k(a, h) denote the treatment assignment probability, P(Ak = a|Hk = h), which is given by 

design so known to investigators in a SMART. We assume that, for k = 1, … , K and any a ∈ 
{−1, 1} and hk in the support of Hk, 𝜋k(a, hk) = P(Ak = a|Hk = hk) ∈ [c,c̃], where 0 < c ≤ c̃ < 
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1 are two constants. That is, the positivity assumption requires that each DTR has a positive 

chance of being observed.

Under these assumptions, if we let P denote the probability measure generated by (Xk,Ak, 

Rk) for k = 1, … , K, then according to the work of Qian and Murphy,12 it can be shown that 

P𝒟 is dominated by P and

𝒱 𝒟 = E
∏k = 1

K I Ak = 𝒟k Hk ∑
k = 1

K
Rk

∏
k = 1

K
πk Ak, Hk

. (1)

Consequently, the goal is to find the optimal treatment rule 𝒟∗ = 𝒟1
∗, …, 𝒟K

∗  that 

maximizes the above expectation. Note that 𝒟k is usually given as the sign of some decision 

function fk. Without confusion, we sometimes express the value function as 𝒱 f 1, …, f K  to 

emphasize its dependence on the decision functions.

Denote data collected from n i.i.d. subjects in a SMART at stage k as (Aik, Hik, Rik) for i = 

1, … , n, k = 1, … , K. Recently, outcome-weighted learning (Zhao et al), abbreviated as 

OWL, was proposed to estimate the optimal treatment regimes. Specifically, Zhao et al 

proposed a backward induction to implement OWL, where at stage k, they used only the 

subjects who followed the estimated optimal treatment regimens after stage k in the 

optimization algorithm. That is, the optimal rule 𝒟k Hk = sign f k Hk  solves a weighted 

support vector machine problem

min
f ∈ ℋ

1
n ∑

i = 1

n
ϕ Aik f k Hik

∑ j = k
K Ri j
πik

I Ai, k + 1 = 𝒟k + 1 Hi, k + 1 , …, AiK = 𝒟K HiK

∏ j > k πi j
+ λn

∥ f k ∥2 ,

(2)

where Ø(x) = max(0, 1 − x) is the hinge loss πi j = π j Ai j, Hi j , 𝒟 j Hi j  is the estimated 

optimal rule at stage j from the backward learning algorithm, and ∥f∥ is some norm defined 

in a given metric space, ℋ, usually a reproducing kernel Hilbert space (RKHS), for f. 
However, as discussed before, the use of only those subjects who followed the optimal 

regimen in future stages may result in information loss, especially when K is not small. 

Furthermore, the work of Zhao et al10 suggests to subtract a constant from Rik to ensure a 
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positive weight in the optimization algorithm, where the choice of constant is arbitrary and 

can be numerically influential in the above optimization.

2.2 | AOL with K = 1 stage

We first describe the proposed method, namely AOL, under the single-stage randomized trial 

setting (K = 1). The main idea of AOL is to improve OWL by replacing R1 in (1) by some 

surrogate variable, which should give the same optimal decision rule but with less variability 

in the empirical estimation of (2).

Note that, for any integrable function s(H1) and for 𝒟 H1 = sign f k Hk , it holds that

𝒱 𝒟 = E
I A1 f H1 > 0 R1

π1 A1, H1

= E
I A1 f H1 > 0 R1 − s H1

π1 A1, H1
+ E s H1

= E
R1 − s H1
π1 A1, H1

I A1sign R1 − s H1 f H1 > 0 + E s H1 − E
R1 − s H1

−

π1 A1, H1
,

where x− = −min(0, x). Therefore, maximizing V(D) is equivalent to maximizing

E
R1 − s H1
π1 A1, H1

I A1sign R1 − s H1 f H1 > 0 .

This suggests that, if we choose a surrogate variable, R1 = R1 − s H1 , to replace R1 and 

solve a similar problem to (2), where the weights are changed to Ri1 /πi1 and the class labels 

become Ai1sign Ri1 , then we expect to still obtain a consistent estimator of the optimal DTR.

Specifically, the proposed AOL for the K = 1 stage consists of the following two steps.

Step 1. Use data (Ri1,Hi1) to obtain an estimator s H1 = γ0 + γ1
TH1 by fitting a least squares 

regression or a penalized least squares regression if Hi1 is high dimensional.

Step 2. Obtain Ri1 = Ri1 − s Hi1  for each subject and fit a weighted support vector machine 

(SVM) to estimate the decision function f1, where the weights are Ri1 /πi1 and the class 

labels are Ai1sign Ri1 . That is, the estimated decision function, denoted by f 1, minimizes

n−1 ∑
i = 1

n Ri1
πi1

ϕ(Ai1sign(Ri1) f 1(Hi1)) + λn ∥ f 1 ∥ .

The function class for f1 is from an RKHS with either a linear kernel or a Gaussian kernel, 

which are the most popular choices in practice, although the proposed method can be 
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applied with any kernels. Computationally, this minimization can be carried out using 

quadratic programming.20 Finally, the optimal DTR, 𝒟1
∗, is estimated as 

𝒟1 H1 = sign f 1 H1 .

Remark 1. A heuristic interpretation of AOL is the following: first, learning DTR is essential 

to learn the qualitative interaction between A1 and H1, so the removal of any main effects 

s(H1) from R1 has no influence; second, for a subject with large observed value of |R1 − 

s(H1)|, the above maximization implies that the optimal treatment assignment should be 

likely to remain the same as the actual treatment he/she is observed to receive in a trial if R1 

− s(H1) is positive but should be the opposite if negative. Furthermore, there are intuitive 

advantages to use R1 to replace R1 and use R1 /π1 A1, H1  as the new weight. When s(H1) is 

chosen appropriately, the resulting R1 is less variable, so we expect that it may lead to a less 

variable DTR estimator using empirical observations. Moreover, since the proposed new 

weights are nonnegative, this guarantees a convex optimization problem when solving (2). In 

contrast, in the original OWL, when the weights in (2) are negative, they suggested 

subtracting an arbitrarily small constant from the weights to make it positive. This shifting of 

negative weights has been demonstrated to be unstable in numerical studies.

2.3 | AOL with K = 2 stages

Next, we consider K = 2. Because DTRs aim to maximize the expected cumulative rewards 

across all stages, the optimal treatment decision rule at the current stage must depend on 

subsequent decision rules and future clinical outcomes or rewards under those rules. This 

observation motivates us to use a backward procedure similar to the backward induction in 

Q-learning and OWL in the work of Zhao et al.18 To estimate the optimal treatment rule at 

stage 2, AOL has the same two steps as in Section 2.2.

Step 2–1. Use data (Ri2, Hi2) to obtain an estimator s2 H2 = γ0 + γ1
TH2 by fitting a least 

squares regression or a penalized least squares regression if Hi2 is high dimensional.

Step 2–2. Obtain Ri2 = Ri2 − s2 Hi2  for each subject and fit a weighted SVM to estimate the 

decision function f2, where the weights are Ri2 /πi2, and the class labels are Ai2sign Ri2 . That 

is, the estimated function, denoted by f 2, minimizes

n−1 ∑
i = 1

n Ri2
πi2

ϕ(Ai2sign(Ri2) f (Hi2)) + λn ∥ f ∥ .

Thus, the estimated optimal DTR at stage 2 is given by 𝒟2 H2 = sign f 2 H2 .

Now, we consider the estimation of the optimal stage 1 treatment rule. For this purpose, a 

key outcome variable is the so-called Q-function, denoted by Q2, which is the future reward 

increment at future stages if a subject is assigned to the optimal treatment in those stages. If 

Q2 were observed for each subject, then the optimal treatment rule at stage 1 would be 
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estimated using OWL with R1 + Q2 as the outcome part of the weight. For the subjects 

whose treatment assignments at stage 2 are the same as the optimal treatment rule 𝒟2
∗, it is 

clear that Q2 = R2, and thus, their weights are observed; however, for subjects whose 

treatment assignments at stage 2 are not optimal (ie, not the same as 𝒟2
∗), Q2 is not observed. 

Moreover, OWL uses only those subjects whose Q2’s are observed and multiplies by the 

inverse probability of treatment assignment.

However, if we treat missing Q2 as a missing data problem, it is well known that the use of 

only complete data for estimation may not be the most efficient method; instead, one can use 

auxiliary information prior to stage 2, namely H2, to predict Q2 through augmentation for 

those subjects with missing Q2 (ie, for those subjects whose treatment assignments at stage 2 

are not the same as the optimal treatment rule 𝒟2
∗). Define m22(H2) as an approximation to 

the optimal reward increment for subjects who receive nonoptimal treatment at stage 2. 

Following the missing data literature,21 such an augmented Q2 can be defined as

I A2 = 𝒟2
∗ H2

π2 A2, H2
R2 −

I A2 = 𝒟2
∗ H2

π2 A2, H2
− 1 m22 H2 .

Ideally, we want to choose m22(H2) as close as possible to E[Q2|H2]; however, in practice, 

because the latter is unknown, and H2 can be high dimensional, we will estimate m22(H2) as 

a linear function of H2 using a weighed least squares regression for subjects who are treated 

optimally in stage 2 as described below. To estimate the optimal stage 1 treatment rule, AOL 

has the following steps.

Step 1–1. Recall 𝒟2 H2 = sign f 2 H2 . Estimate m22(H2) = β0 + βTH2 by a weighted least 

squares regression minimizing

n−1 ∑
i = 1

n I Ai2 = 𝒟2 Hi2
πi2

1 − πi2
πi2

Ri2 − m22 Hi2
2,

and denote the resulting estimator as m22.

Step 1–2. For subject i, compute

Qi2 =
I Ai2 = D2 Hi2

πi2
Ri2 −

I Ai2 = D2 Hi2
πi2

− 1 m22 Hi2 .

Step 1–3. Obtain an estimator s1 H1  for s1(H1) = α0+αTH1 using a least squares regression 

that minimizes
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∑
i = 1

n
Ri1 + Qi2 − s1 Hi1

2

and denote Ri1 = Ri1 + Qi2 − s1 Hi1 .

Step 1–4. Finally, obtain f 1 by fitting a weighted SVM with weights Ri1 /πi1 and class labels 

Ai1sign Ri1 . The optimal DTR at stage 1 is then 𝒟1 H1 = sign f 1 H1 .

Note that the last two steps (Steps 1–3 and 1–4) essentially repeat the same procedure as in 

the K = 1 stage except that the outcome is the augmented outcome variable Ri1 + Qi2 As a 

remark, when Hi2 or Hi1 is of high dimension, we recommend that a penalized least squares 

regression such as Lasso be used in Step 1–1 or Step 1–3 in practice.

Remark 2. The key idea of our proposed approach for two-stage problem is to use prediction 

models for the Q-function at stage 2 to “impute” the future reward increments for the 

subjects whose actual treatments received in the second stage are not the optimal because 

their the observed outcomes cannot be used to estimate the optimal future reward 

increments. The missingness mechanism is due to the randomization of the treatments in 

stage 2; thus, it is completely known. The proposed augmented weights in stage 1 are 

guaranteed to yield the correct optimal treatment rules. Furthermore, if the “imputation” is 

sufficiently close to the underlying true model, we expect to obtain better accuracy in 

finding the optimal rule because of using more observations.

2.4 | Generalization to more than 2 stages

When there are more than two stages, the same backward learning as in K = 2 can be 

applied, but the augmentation for those subjects with missing future optimal reward 

increments becomes more complex. First, to estimate the optimal treatment rule at stage K, 

we perform the same stage 2 steps as AOL with K = 2 (ie, Steps 2–1 and 2–2 in Section 2.3) 

but with (R2, A2, H2) replaced by (RK, AK, HK). Denote the resulting estimated decision 

function at this stage as f K HK  and denote the corresponding treatment rule as 

𝒟K HK = sign f K HK .

We then continue to estimate the optimal treatment rules at stage K − 1, K − 2, … in turn. 

Specifically, to estimate the optimal (k − 1)th-stage treatment rule, we let Mi, k
k − 1 = 1, and 

for j ≥ k, let Mik
j = I Aik = 𝒟k* Hik , …, Ai j = 𝒟 j* Hi j  denote whether subject i follows the 

optimal treatment regimens from stage k to j. From the theory of Robins8, also seen in 

Tsiatis21 and Zhang et al22, Qik, the optimal reward increment for patient i if she/he follows 

the estimated optimal rule from stage k to K, has the following expression:

Qik =
Mik

K Rik + … + RiK

∏l = k
K πil

− ∑
j = k

K Mik
j − 1

∏l = k
j − 1πil

I Ai j = 𝒟 j
∗ Hi j

πi j
− 1 mk j Hi j ,
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where mkj(Hij) is the optimal reward increment for subjects who receive optimal treatments 

up to stage (j − 1), ie, E Qik Hi j,Mik
j − 1 = 1 .

To implement AOL, at stage k − 1, assume that we have already obtained the estimated 

optimal rules after this stage, denoted by 𝒟k, …𝒟K. Define

Mik
j = I Aik = 𝒟k Hik , …, Ai j = 𝒟 j Hi j .

Then, the augmentation term for Qik is estimated by

Mik
K Rik + … + RiK

∏l = k
K πil

− ∑
j = k

K Mik
j − 1

∏l = k
j − 1πil

I Ai j = 𝒟 j Hi j
πi j

− 1 mk j Hi j , (3)

where mk j H j  is estimated as a linear function of Hj by the weighted least squares

n−1 ∑
i = 1

n Mik
K

∏l = k
K πik

1 − πi j
∏k ≤ l ≤ jπil

∑
l = k

K
Ril −mk j Hi j

2
.

We define Ri, k − 1 = Ri, k − 1 + Qi, k − sk − 1 Hk − 1 , where sk − 1 Hk − 1  is estimated via a 

least squares regression that minimizes ∑i = 1
n Ri, k − 1 + Qik − sk − 1 Hi, k − 1

2
 for 

sk − 1 Hk − 1 = α0 + αTHk − 1. Then, we will estimate f k − 1. by fitng a weighted SVM with 

weights Ri, k − 1 /πi, k − 1 and class labels Ai, k − 1sign Ri, k − 1 , ie, f k − 1 minimizes

n−1 ∑
i = 1

n Ri, k − 1
πi, k − 1

ϕ(Ai, k − 1sign(Ri, k − 1) f k − 1(Hi, k − 1)) + λn ∥ f k − 1 ∥ .

One important fact for AOL is that the estimated treatment rules are invariant even if we 

shift Rk by any constant ck for k = 1, … , K. This is because under constant translation, mkj 

will be shifted by ∑l = k
K cl so Qik becomes Qik + ∑l = k

K cl. Therefore, Ri, k − 1 which is the 

residual after regressing Ri, k − 1 + ck − 1 + Qik on 1 and Hi,k−1, remains unchanged, so the 

estimated treatment rule is the same as before. Finally, when Hj’s dimension is large, a 

penalized least square regression such as Lasso is recommended in the above procedure to 

obtain mk j H j .

2.5 | Software

We provide an R-package “DTRlearn” https://cran.r-project.org/web/packages/DTRlearn/

index.html on CRAN for the single- and multiple-stage implementation of our proposed 
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method (AOL) and Q-learning and O-learning as compared in the following simulation 

results and real data implementation.

2.6 | Summary of theoretical results

In the supplementary material, we provide theoretical justification for the proposed methods. 

Theorem A.1 provides an error bound for single stage AOL. We formally prove that using 

this new surrogate weight on the basis of the residuals of R1, the value loss due to using the 

estimated treatment rule f 1 has the same deterministic error bound as using the original R1; 

however, the error bound due to data randomness is smaller. In this sense, the value function 

for AOL has the same approximation bias as OWL but a smaller stochastic error 

asymptotically. Thus, AOL requires fewer observations than OWL to achieve a similar 

performance.

Theorem A.2 in the supplementary material provides the improved risk bound for multiple 

stage AOL. We formally show that the above data augmentation method using a surrogate 

function m22(H2) for subjects with missing Q2 values will not increase the approximation 

bias of the value function estimation based on f 1; furthermore, we show that compared with 

OWL, the estimation of m22(H2) from a weighted least squares in Step 1–1 always leads to a 

smaller stochastic error bound of the value function estimation. Finally, Theorem A.3 gives a 

fast convergence rate of AOL under some regularity conditions.

The key idea behind the proofs is to decompose the value function associated with the 

estimated DTR into two parts: one is the bias due to considering the decision functions fk at 

each stage from an RKHS; the other part is the stochastic error due to both the empirical 

approximation of the value function in terms of the augmented weights in the optimization. 

The former can be characterized in terms of the richness of the Hilbert space, whereas the 

latter depends on both the complexity of the function classes in the Hilbert space and, more 

importantly, the variability of the weights used in our proposed weighted SVM methods. 

The less variable the weights are, the smaller the stochastic error is. Therefore, the proposed 

method, which relies on the augmentation, tends to bring more information to reduce the 

variability in the weights.

3 | SIMULATION STUDIES

We conducted extensive simulation studies to compare AOL with existing approaches using 

the value function (reward) of the estimated optimal treatment rules. We compared three 

methods: (i) Q-learning based on linear regression models with a Lasso penalty; (ii) OWL as 

in the works of Zhao et al10,18; (iii) AOL as described in Section 2.

3.1 | Simulation settings

We simulated single-stage, two-stage, and four-stage randomized trials. In this section, we 

present the results of four-stage settings. In the supplementary material, we provide 

additional results of the single-stage (Section B.1) and two-stage (Section B.2) settings.
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In the first four-stage scenario, we simulated a vector of baseline feature variables of 

dimension 20, X1 = (X1,1, … , X1,20), from a multivariate normal distribution, where the 

first 10 variables had a pairwise correlation of 0.2, the remaining 10 variables were 

uncorrelated among one another and were also independent of the first 10 X’s, and the 

variance for X1,j was 1 for j = 1, … , 20. The reward functions were generated as follows:

R1 = X1, 1A1 + 𝒩 0, 1 ; R2 = R1 + X1, 2
2 + X1, 3

2 − 0.8 A2 + 𝒩 0, 1 ;

R3 = 2 R2 + X1, 4 A3 + X1, 5
2 + X1, 6 + 𝒩 0, 1 ; R4 = R3 − 0.5 A4 + 𝒩 0, 1 .

The randomization probabilities of treatment assignment at each stage were allowed to 

depend on the feature variables through

P A1 = 1 H1 = 1
1 + exp −0.5X1, 1

;P A2 = 1 H2 = 1
1 + exp 0.1R1

;P A3 = 1 H3 = 1
1 + exp 0.2X1, 3

;

P A4 = 1 H4 = 1
1 + exp 0.2X1, 4

.

Patient’s health history information matrix at stage k, Hk, was defined recursively by (Hk−1, 

Ak−1, Ak−1Hk−1, Rk−1), and at the first stage, it only contains the baseline feature variables, 

ie, H1 = X1. Therefore, there were p = 20 features for OWL and AOL in the first stage, 2p 
+ 2 for the second stage, and 8p + 14 variables for the fourth stage. To handle high 

dimensionality of the feature space, especially when k increases, weighted least squares with 

a Lasso penalty was used to estimate mk j, and ordinary least squares with Lasso penalty was 

used to estimate ŝk. When estimating conditional expectations in Q-learning, (Hk, Ak) was 

included in the linear regression models (the number of predictors approximately doubles 

compared to OWL and AOL), and a Lasso penalty was imposed for better fitting.

In the second four-stage scenario, we imitated a real-world scenario of treating chronic 

mental disorders,4 where the patient population consisted of several subgroups that respond 

to DTRs differently. However, because of unknown and complex treatment mechanisms, 

instead of directly observing subgroup memberships, only group-informative feature 

variables (such as clinical symptomatology measures or neuroimaging biomarkers) were 

observed. Specifically, we created 10 subgroups of equal size and let G = 1, … , 10 denote 

group. For group G = l, the optimal DTRs across 4 stages were

A jl* = 2 l/ 2 j − 1 mod2 − 1, j = 1, 2, 3, 4.

To simulate data from a SMART, we randomly generated their treatment assignments with 

equal probabilities at each stage, and for a subject in group G = l, we generated their reward 

outcomes as R1 = R2 = R3 = 0 and R4 = ∑ j = 1
4 A jA jl* + N 0, 1 . Furthermore, we generated 

potentially group-informative baseline feature variables, X1 = (X1,1, … , X1,30), from a 

multivariate normal distribution with means depending on group membership: for patients in 

group G = l, the center of X1,1, … , X1,10 had a group-specific mean value μl, which was 
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generated from μl ~ N(0, 5), while the means of the remaining feature variables, X1,11, … , 

X1,30, were all zero. The first 10 features had a pairwise correlation of 0.2, and the 

remaining 20 variables were uncorrelated. Therefore, only X1,1, … , X1,10 were informative 

of the patient subgroup (and thus the optimal DTRs), and the remaining variables were 

noise. Since the group membership was not observed, the available data for our analysis 

consisted of (X1, A1, A2, A3, A4, R4). For each data set, we applied Q-learning, OWL, and 

AOL to estimate the optimal rule. For OWL, we implemented the same algorithm as in the 

work of Zhao et al,18 and the minimal value of the reward outcome was subtracted from the 

outcome to ensure the weights to be positive. In this setting, the clusters and optimal 

decision boundaries are fixed for each replication but different across replications. Thus, the 

results do not depend on the specific cluster arrangements. The decision boundaries are not 

explicitly determined by the observed predictors, but they are determined by the underlying 

latent classes, which confer information from the observed predictors.

At each stage k, Hk contained baseline feature variables X1, previous stage treatment 

assignments, and products between X1 and previous stage treatments. We varied sample 

sizes in the simulations. Cross-validation was used to choose the tuning parameter in Lasso 

regressions and was used to choose the tuning parameter of the SVM (from a grid of 2−15 to 

215). The linear kernel was used for OWL and AOL. To compare all the methods, we 

calculated the value function of the corresponding estimated optimal rule using expression 

(1) as the empirical average of a large independent test data set with a sample size of 20 000.

3.2 | Simulation results

The results from 500 replicates are presented in Figures 1 and 2 and Table 1. In both 

simulation settings and for all sample sizes, AOL shows a significant advantage over OWL 

in terms of a higher value function because of augmentation and other improvements 

highlighted in previous sections. In the first setting, we observe that Q-learning has a higher 

value function than AOL but also a higher variability with a smaller sample size (n = 50, n = 

100, and n = 200). With a large sample size (n = 400), Q-learning has an empirical standard 

deviation smaller than AOL. The value function for both Q-learning and AOL increases with 

the sample size, where the former increases at a faster rate. In this setting, the linear 

regression model is a good approximation for the Q-function since the rewards were 

generated from a linear model. Therefore, Q-learning may achieve the theoretical optimal 

value faster than AOL when n increases. Comparing with OWL, AOL achieves a much 

larger value and a smaller standard deviation for all sample sizes. In the second simulation 

setting, the optimal treatment boundaries were more complicated and highly nonlinear; 

therefore, Q-learning performed the worst among the three method at all sample sizes. For 

example, it only achieves a median value of 0.717 when n = 400 compared with the true 

optimal value of 4. For a proportion of the 500 replications, no treatment by covariate 

interaction terms were selected by Lasso regression in at least one step of Q-learning. In this 

case, the optimal treatment was selected randomly to compute the value function using the 

test data. Moreover, AOL outperforms OWL and Q-learning in all cases and achieves a 

median value of 3.211 with a sample size of 400.
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For the previous two simulation scenarios, we also implemented AOL with Gaussian kernel 

with four-fold cross validation to choose the bandwidth and compared with OWL with 

Gaussian kernel. Moreover, AOL with Gaussian kernel performed similarly with linear 

kernel for AOL in the second scenario, which achieved a median of 0.851, 1.453, 2.427, 

3.400 and for the sample size of 50, 100, 200, and 400, respectively. For the first scenario, 

AOL with Gaussian kernel has a slightly worse performance than linear kernel, with a 

median value function of 4.965, 5.496, 6.295, 6.905 for sample sizes ranging from 50 to 

400. Comparatively, OWL with Gaussian kernel has the median values of 2.529, 2.952, 

3.459, 4.288 in the first scenario and 0.804, 1.043, 1.356, 1.743 in the second scenario, so 

AOL is still superior to OWL. Since the computational burden for the Gaussian kernel is 

heavier, we conclude that using a linear kernel for AOL is sufficient in these simulation 

settings. Additional simulations of the single-stage and two-stage settings are reported in the 

supplementary material (Section B). Similar comparative performances are observed.

In summary, in simulation scenario 1, the data were generated such that a linear function is 

an adequate approximation for the true cumulative rewards. Thus, Q-learning outperformed 

OWL and AOL. In simulation scenario 2, the data were generated such that the cumulative 

rewards cannot be approximated adequately by the linear models. Thus, OWL and AOL 

outperformed the value-based learning method Q-learning. Nevertheless, in all the presented 

simulation scenarios, AOL outperformed OWL, which demonstrates that the proposed AOL 

improves OWL.

4 | REAL DATA APPLICATION

We applied the proposed method to data from the STAR*D trial,4 which was a phase-IV 

multisite, prospective, multistage, randomized clinical trial to compare various treatment 

regimes for patients with nonpsychotic MDD.4 The detail of the study design is given in the 

supplementary. The aim of STAR∗D was to find the best subsequent treatment for subjects 

who failed to achieve adequate response to an initial antidepressant treatment (citalopram). 

The primary outcome was measured by the Quick Inventory of Depressive Symptomatology 

(QIDS) score ranging from 0 to 26 in the sample. Participants with a total clinician-rated 

QIDS score under 5 were considered as having a clinically meaningful response to the 

treatment and therefore in remission. Remitted patients were not eligible for any future 

treatments and entered a follow-up phase.

Following the works of Chakraborty and Moodie14 and Pineau et al,23 we focused on a two-

stage decision-making problem by combining study levels 2 and 2A as the first stage and 

treating study level 3 as the second stage. Additionally, different drugs were combined as 

one class of drugs involving selective serotonin reuptake inhibitors (SSRI) and the other 

class of drugs without SSRI. Thus, at each stage, treatment (Ak), reward outcome (Rk), and 

feature variables (Hk) were defined as follows:

A1: 1 if SSRI drugs are used and −1 SSRI drugs are not used at level 2 and 2A (stage 

1);

A2: 1 if SSRI drugs are used and −1 SSRI drugs are not used at at level 3 (stage 2);
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R1: -QIDS score at the end of first stage if remission was achieved, −½ QIDS score at 

the end of first stage if remission was not achieved;

R2: −½ QIDS score at the end of second stage;

H1: baseline QIDS score (at the beginning of the trial), the rate of change of QIDS 

score from baseline to stage 1 randomization (level 1 to level 2), participant 

preference (taking values −1, 0, or 1), and QIDS at the beginning of stage 1 

randomization;

H2: H1, the rate of change of QIDS score during stage 1, participant preference at 

stage 2 randomization, A1, and its interactions with the previous variables.

There were 1381 participants with complete feature variables for the first stage analysis, 

among whom 516 achieved remission at the end of the first stage. Among 865 nonremitted 

participants, 364 of them had entered the second stage and have complete information on the 

feature variables and outcomes. In the analysis, the patients who had remission in stage 1 

were treated as if they would have received the optimal treatments at stage 2; thus, we only 

analyzed patients who had entered stage 2 in order to estimate the optimal rule at stage 2.

To implement AOL, we followed the steps in Section 2.3, where the first-stage 

randomization probability π1 was calculated as the frequency of SSRI and non-SSRI given 

patient preference at stage 1 and the second stage randomization probability π2 was 

computed as the similar frequency and further multiplied by the nondropout proportions to 

account for missingness in this stage. More specifically, Lasso regression was implemented 

in Step 2–1, and a weighted Lasso was used for Step 2–1. For comparison, we also 

implemented Q-learning and OWL, where Lasso was used in the regression in each stage of 

Q-learning; the same π1 and π2 were used. Both gaussian and linear kernels were 

implemented for AOL and OWL. Comparison of all the methods were based on 1000 

repetitions of two-fold cross-validation: for each cross-validation, one-half data were used 

for training, and the other half were used to compute the value functions for the estimated 

DTRs. For each replication, the testing value function was computed as the empirical 

estimation following Equation (1), which is the weighted average of the cumulative rewards 

for all patients whose observed treatments agree with the estimated optimal treatments in all 

stages.

Q-learning, OWL, and AOL were compared in Figure 3. The mean baseline clinician-rated 

QIDS score in the sample was 16.71, and the mean QIDS at the start of stage 1 

randomization was 12.37. The average testing QIDS score for the optimal DTR obtained by 

AOL with Gaussian kernel was 6.733 points (sd=4.08), which outperformed Q-learning 

(7.93, sd=2.38) and OWL with Gaussian kernel (10.85, sd=1.11). Gaussian kernel yielded 

better testing value than linear kernel for both AOL and OWL; AOL with linear kernel had 

an average testing value of 8.38 (sd=3.10), which was still better than OWL with linear 

kernel (10.85, sd=0.99). Moreover, AOL-estimated rule also outperformed the one-size-fits-

all rules (eg, all subjects receive SSRI in both stages, all subjects received SSRI in the first 

stage and non-SSRI in the second and so on).
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Furthermore, we examine the coefficients of AOL fitted by a linear kernel using the 

standardized feature variables. We present the normalized effects for the optimal DTR 

obtained by AOL in Figure 4. We normalized the effect of each tailoring variable through 

dividing by the L2 norm of all coefficients of the decision rule. The baseline variables at first 

stage with strongest effects were baseline QIDS score, rate of change of QIDS in the 

previous period, and patient preference. The strongest second-stage tailoring variables were 

intermediate outcome after stage 1 treatment, starting QIDS at stage 1, and patient 

preference for the second-stage treatment.

In conclusion, the STAR∗D example demonstrates that AOL outperforms the alternative 

methods in maximizing the clinical benefits, and it also yields some insights on combining 

tailoring variables for deep tailoring and forming new treatment rules.

5 | DISCUSSION

In this work, we propose a new machine learning method, AOL, to estimate optimal DTRs 

through robust and efficient augmentation to OWL. We theoretically prove that AOL 

guarantees efficiency improvement over OWL for both K = 1 and K > 1 stages. The 

theoretical results show that AOL has the same approximation bias but a smaller stochastic 

error. Moreover, AOL achieves efficiency gain by properly constructing surrogate outcomes 

with smaller second moments. In an earlier version of this paper (https://arxiv.org/abs/

1611.02314), we provided an additional application to a SMART of children affected by 

attention deficit and hyperactive disorder. A recent publication by Zhang and Zhang24 

considered similar augmented outcomes as weights in multiple-stage estimation but used 

genetic algorithm for estimating optimal treatments. In comparison, our proposed method 

used computationally more stable large margin loss, and we rigorously justified the 

advantage of the proposed method in terms of the risk bound for the value function.

In real-world studies, it may be difficult to identify a priori which variables may serve as 

tailoring variables for treatment response. In our simulation studies, AOL has shown to be 

superior in such settings with non-treatment-differentiating noise variables and unknown 

treatment mechanisms. In addition, using a more sophisticated prediction method (eg, 

random forest) to incorporate nonlinear interactions between health history variables Hk to 

predict sk(Hk) in the step of taking residuals may be beneficial, although theoretically, a 

linear model will guarantee improved efficiency of AOL over OWL.

Clinicians may be interested in ranking the most important variables to predict patient 

heterogeneity to treatment. Biomarkers that could signal patients’ heterogeneous responses 

to various interventions are especially useful as tailoring variables. This information can be 

used to design new intervention arms in future confirmatory trials and facilitate discovering 

new knowledge in medical research. Variable selection may help construct a less noisy rule 

and avoid over-fitting. Although AOL leads to a sparse DTR in the STAR∗D example, a 

future research topic is to investigate methods that perform automatic variable selection in 

the outcome-weighted learning framework. Additionally, our current framework can easily 

handle nonlinear decision functions by using nonlinear kernels, which may improve 

performance for high-dimensional correlated tailoring variables. It is also of interest to 
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consider other kinds of decision functions such as decision trees to construct DTRs that are 

highly interpretable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Simulation setting 1 with four-stage design (optimal value = 10.1). AOL, Augmented 

Outcome-weighted Learning. OWL, outcome-weighted learning [Colour figure can be 

viewed at wileyonlinelibrary.com]
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FIGURE 2. 
Simulation setting 2 with four-stage design (optimal value = 4.0). AOL, Augmented 

Outcome-weighted Learning; OWL, outcome-weighted learning [Colour figure can be 

viewed at wileyonlinelibrary.com]
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FIGURE 3. 
Mean and standard error of the value function (depression symptom score, Quick Inventory 

of Depressive Symptomatology) based on 1000 repetitions of two-fold cross validation for 

Sequenced Treatment Alternatives to Relieve Depression data (lower score desirable)
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FIGURE 4. 
Normalized coefficients of the stage 1 tailoring variables (left panel) and stage 2 tailoring 

variables (right panel) obtained by Augmented Outcome-weighted Learning. QIDS, Quick 

Inventory of Depressive Symptomatology
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TABLE 1

Mean and median of the empirical value function for two simulation scenarios evaluated with an independent 

test data set

n

Simulation Setting 1 (Optimal Value 10.1)

Q-learning OWL AOL

Mean (SD) Median Mean (SD) Median Mean (SD) Median

50 6.786(1.119) 6.753 2.604(1.502) 2.561 6.042(0.951) 6.078

100 7.711(1.016) 6.996 3.049(1.448) 2.957 6.436(0.859) 6.415

200 8.475(0.843) 8.874 3.593(1.461) 3.486 6.865(0.756) 6.949

400 8.934(0.398) 9.034 4.566(1.265) 4.603 7.467(0.632) 7.593

n

Simulation Setting 2 (Optimal Value 4)

Q-learning OWL AOL

Mean (SD) Median Mean (SD) Median Mean (SD) Median

50 0.042(0.182) 0.003 0.764(0.522) 0.773 1.105(0.522) 1.097

100 0.103(0.281) 0.011 0.966(0.484) 0.944 1.696(0.595) 1.698

200 0.291(0.404) 0.062 1.281(0.492) 1.284 2.519(0.518) 2.568

400 0.635(0.355) 0.717 1.638(0.446) 1.626 3.177(0.421) 3.211

Abbreviations: AOL, Augmented Outcome-weighted Learning; OWL, outcome-weighted learning.
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