
Voltage-sensitive dye delivery through the 
blood brain barrier using adenosine receptor 
agonist regadenoson 

REBECCA W. PAK,1,* JEEUN KANG,2 HEATHER VALENTINE,2 LESLIE M. 
LOEW,3 DANIEL L. J. THOREK,2 EMAD M. BOCTOR,2 DEAN F. WONG,2 AND

JIN U. KANG
4 

1Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 
2Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 
USA 
3R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 
Farmington, CT, USA 
4Electrical and Computer Engineering, Johns Hopkins University Whiting School of Engineering, 
Baltimore, MD, USA 
*rpak2@jhmi.edu

Abstract: Optical imaging of brain activity has mostly employed genetically manipulated 
mice, which cannot be translated to clinical human usage. Observation of brain activity 
directly is challenging due to the difficulty in delivering dyes and other agents through the 
blood brain barrier (BBB). Using fluorescence imaging, we have demonstrated the feasibility 
of delivering the near-infrared voltage-sensitive dye (VSD) IR-780 perchlorate to the brain 
tissue through pharmacological techniques, via an adenosine agonist (regadenoson). 
Comparison of VSD fluorescence of mouse brains without and with regadenoson showed 
significantly increased residence time of the fluorescence signal in the latter case, indicative 
of VSD diffusion into the brain tissue. Dose and timing of regadenoson were varied to 
optimize BBB permeability for VSD delivery. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (170.2520) Fluorescence microscopy; (170.2655) Functional monitoring and imaging; (170.3880) 
Medical and biological imaging. 
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Introduction 

It is established that cellular activity in the brain forms the basis for animal behavior. Yet the 
complexity of neuronal architecture and the privileged anatomical location of the brain 
represent long standing impediments to understanding the brain and how best to treat 
neurological disorders. Current non-invasive techniques rely on bulk effects and thus, do not 
give cellular resolution. There have been a number of optical imaging approaches to directly 
monitor brain activity with high spatial and temporal resolution. These include one-photon 
fluorescence microendoscopy, two-photon confocal microscopy, and endoscopic fiber 
imaging [1–3]. To visualize brain activity without genetic manipulation, functional 
fluorescent dyes have been employed, with one of the most widely used types being voltage-
sensitive dyes (VSDs) [4]. While VSDs enable individual neuron monitoring with fast time 
responses and have the ability to operate without modification of the subject, drawbacks 
include potential toxicity and lower signal-to-noise ratio compared to genetically encoded 
indicators [5]. Many common VSDs also operate within the visible wavelength range, leading 
to shallow imaging depth due to absorption. Another challenging aspect of using VSDs is the 
delivery of dye to the brain. 

A variety of methods have been investigated for drug and dye delivery through the blood 
brain barrier (BBB), a highly-selective semipermeable membrane separating the blood from 
the brain tissue and extracellular fluid. Osmotic opening of the BBB in which a solution of 
arabinose or mannitol is infused into the brain has been used for therapeutic applications, but 
is invasive and causes transient brain edema and gradual dehydration that likely affect 
neurological activity [6]. Nanocages and nanoparticles have also been considered, but pose 
the risk of potential toxicity due to their persistence in the body [7]. Additionally, many 
factors influence the release of contents from nanocages and the mechanisms depend on 
diffusion, osmosis, and degradation that must be tuned [8]. Without proper delivery of the 
VSD to the brain tissue, there would be no VSD fluorescence reporting neural activity. 
Focused-ultrasound (FUS) was considered as well, but often requires incorporation of the 
drugs into nanoparticles or microbubbles [9]. There is also some evidence that FUS is 
accompanied by neuromodulation [10] and since it creates mechanical stress on the cell 
junctions, risks include hemorrhage and neuron damage [11]. Alternatively, studies have 
shown that activation of adenosine receptors increases BBB permeability [12–15]. Thus, to 
address the delivery obstacle while also facilitating deeper brain imaging, we evaluated the 
effectiveness as well as the optimal timing and dose of the FDA-approved adenosine receptor 
agonist regadenoson (tradename Lexiscan) injected with near-infrared (NIR) VSD IR-780. 
With the increased BBB permeability due to regadenoson, the VSD was able to diffuse into 
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the brain tissue, facilitating the monitoring of neuronal cell activity minimally invasively 
through the intact skull. 

Methods 

In this study, IR-780 perchlorate, an NIR cyanine VSD was used to study the effectiveness of 
regadenoson. The use of an NIR VSD increased imaging depth and provided the opportunity 
to image the brain through the intact skull. Due to the delocalized positive charge of the dye, 
hyperpolarization led to uptake of the dye into the neurons, whereas depolarization resulted in 
dye leaving the cells [16]. Cyanine dye molecules (i.e. the commonly used indocyanine green 
and variants such as IR-780 perchlorate) have a history of being used for voltage sensing [16–
20] since they form non-fluorescent aggregates when in high concentrations, thus leading to
quenched fluorescence at the resting membrane potential [21]. On the other hand, action
potential firing releases the dye into the extracellular space to cause an increase in the
fluorescence signal. Thus, fluorescence imaging of VSDs provides an effective method for
monitoring neuron activity. However, VSDs must be delivered to the brain, which can be
challenging due to the brain’s immune privilege and BBB.

Fig. 1. (a) In vivo experimental protocol, (b) NIR fluorescence system setup: AS = aspheric 
lens, SP = shortpass filter, M = mirror, DM = dichroic mirror, LP = longpass filter, ZL = zoom 
lens, and (c) VSD spectral characteristics. 

To test the effects of regadenoson (Astellas Pharma US, Inc.) on IR-780 perchlorate 
(576409, Sigma-Aldrich Corp., OS) VSD diffusion, 35-50 g CD1 mice (Charles Rivers 
Laboratory, Inc., MA, N = 7) were anesthetized with a 50:1 solution of ketamine:xylazine. 
24G x ¾” intravenous (iv) tail vein catheters (Terumo Corporation) were placed for injection 
consistency. To demonstrate the potential for non-invasive procedures, only the scalp skin 
was removed for the first 3 mice. These mice received iv tail vein injections according to the 
through-skull imaging validation protocol in Fig. 1(a). 
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To verify and quantify dye diffusion, a craniotomy was performed on each of the 
remaining mice so scattering from the skull could be distinguished from diffusion into the 
tissue. A head fixation mount was fastened to the skull using dental cement. A dental drill 
was used to create a 6 x 7 mm2 cranial window. The skull piece was removed and replaced by 
a #1 thick (130-160 μm) glass coverslip cut to size, also secured using dental cement. After 
recovering from the craniotomy procedures for at least a week, the mice received tail vein 
injections in a similar schedule as before. However, the monitoring time for each injection 
was shortened since the first study with intact skulls showed the fluorescence intensity 
reaching a steady state around 15-20 min after VSD injection. The craniotomy study 
injections followed the optimization protocol in Fig. 1(a). 

NIR fluorescence imaging was used to assess dye diffusion, particularly to evaluate 
optimal injection time and dose of regadenoson for best dye diffusion into the brain tissue. A 
typical fluorescence imaging setup (Fig. 1(b)) was employed with an 800 mW LED light 
source, operating at a center wavelength of 780 nm and an achromatic lens as a condenser. A 
dichroic mirror at 805 nm separated the excitation and emission light. Additional filtration 
was accomplished with excitation and emission filters. This high-sensitivity imaging system 
enables sensing of VSD fluorescence with excitation-emission spectral characteristics shown 
in Fig. 1(c). Focusing and magnification was achieved with a zoom lens (Navitar Inc.) 
attached to an sCMOS camera (Hamamatsu Photonics). For the optimization craniotomy 
study, mice were head-fixed to avoid motion artifacts from breathing. 

To account for differences in injection timing, the time sequences of the VSD only and 
VSD + regadenoson conditions were synchronized by aligning injection peaks (the maximum 
of the fluorescence signals, indicated in Fig. 3 center panel). Before each dye injection, a 
background image was taken. After the experiment, the corresponding background image was 
subtracted from each 30 min sequence of images to examine fluorescence contributions due 
only to that particular dye injection and reject any fluorescence signal remaining from 
previous injections or autofluorescence. In order to compare the VSD only condition to the 
VSD + regadenoson condition, the condition subtraction curve, a differential fluorescence 
intensity trace between VSD and VSD + regadenoson conditions (indicated in Fig. 3 center 
panel), was calculated pixel-by-pixel. Regions of interest (ROIs) were chosen to reflect large 
in-focus vasculature versus microvasculatures. Average VSD fluorescence intensity over the 
ROIs was plotted. 

A histological verification study was conducted using three Sprague Dawley rats 
weighing 280-350 g. The first rat was injected with regadenoson alone, the second one was 
injected with regadenoson followed 5 min later by IR-780 VSD, and the third was injected 
with IR-780 VSD only. All rats were sacrificed 1-hour post injection(s). The whole brains of 
the rats were immediately harvested and placed in fresh 10% formalin for > 48 hours with 
gentle agitation using a conical rotator. Cryoprotection processing was done via a series of 
sucrose gradients (15%, 20%, 30% for 12-24 hours each). Brains were frozen-sectioned at 
300 µm thickness. Slides with tissue sections in ProLong Diamond Anti-face mountant were 
imaged using the LI-COR Odyssey for fluorescence visualization of VSD perfusion. 

Results 

Through-skull fluorescence imaging validated the capability of the system and VSD to be 
used minimally-invasively. In this first study in which only the scalp was removed and the 
skull remained intact, the fluorescence signal decay was compared between the VSD only and 

VSD + regadenoson conditions. An exponential curve was fit following the model 
t

e τα β
−

+  

for which the exponential decay coefficient, , was defined as  = 1/ . As shown in Fig. 2(a) 
where the y-axis represents the normalized mean fluorescence signal over the whole mouse 
brain after normalization, a much faster decay in fluorescence signal was observed without 
regadenoson. The faster decay of the fluorescence normalized mean intensity without 
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Additionally, although the same amount of VSD was injected for each mouse, variability can 
be observed in the peak intensities of the injection curves. These differences in the 
fluorescence signal are likely due to anatomical differences from mouse to mouse in addition 
to the position of the mouse brains under the non-uniform beam as discussed above. 

After the first studies, in which the VSD fluorescence was monitored for 1 hour after each 
dye injection, it was found that the fluorescence intensity reached a steady state before 30 
minutes. In order to keep the mouse anatomy constant, the same mouse was used for both 
conditions (VSD only and VSD + regadenoson). To account for remaining fluorescence after 
any previous VSD injections, a background image was taken before each 30 min monitoring 
session when it was assumed that any further decay in fluorescence signal due to previous 
injections was negligible. This background image was subtracted from images collected from 
the proceeding VSD injection. 

For the optimization of regadenoson dose and timing studies, the cranial windows varied 
slightly in their locations for each mouse. However, roughly equivalent ROIs were chosen 
based on in-focus major vasculature versus out-of-focus microvasculatures. It can also be 
seen in the results (Fig. 3) that all the ROIs have approximately the same time course trend 
but varied slightly in their intensities. Equivalent ROIs were also used to measure diffusion 
time constants through exponential curve fitting. 

regadenoson is routinely used for cardiac stress testing, raising a concern about how faster 
heart rate and circulation affects the results. However, with increased circulation, it would be 
reasonable to expect faster flushing out of the VSD from the circulatory system. Astellas, the 
manufacturer of regadenoson, also warns of changing blood pressure (increase or decrease), 
which could contribute to the difference in slopes of the condition subtraction curves. 

Another concern is with regard to dosage based on weight. Clinically, regadenoson is 
given to humans at the same concentration and volume regardless of weight or size. Thus, in 
this study, the same concentration and volume were given regardless of animal weight or size, 
mimicking the human protocol. We approximated the mouse dose based on the clinical 
human dose and the ratio between average mouse and human weights. We found this dose 
was insufficient, possibly due to the higher metabolism, heart rate, etc. of mice as compared 
to humans. The rat dosage used for histopathological studies that was effective in increasing 
BBB permeability was similar to that used in the mice, although the rats weighed 
significantly more and their metabolism is much slower than that of mice. Alternatively, 
anesthesia may have cardiac implications, which could alter regadenoson’s dilatory effects. 
Perhaps rodent dose can be generalized, but for animals with weights more than an order of 
magnitude different, slight adjustments may need to be made for the optimal conditions. 

Overall, this study validated the use of venous injections of regadenoson for BBB opening 
to deliver NIR VSD, IR-780 perchlorate. It also demonstrated the possibility of using IR-780 
VSD for minimally invasive through-skull fluorescence imaging of neuronal activity. General 
dosage and timing guidelines were created for optimal VSD diffusion results. 
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