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Abstract: The recent massive Zika virus (ZIKV) outbreak illustrates the need for rapid and 
specific diagnostic techniques. Detecting ZIKV in biological samples poses unique problems: 
antibody detection of ZIKV is insufficient due to cross-reactivity of Zika antibodies with 
other flaviviruses, and nucleic acid and protein biomarkers for ZIKV are detectable at 
different stages of infection. Here, we describe a new optofluidic approach for the parallel 
detection of different molecular biomarkers using multimode interference (MMI) waveguides. 
We report differentiated, multiplex detection of both ZIKV biomarker types using multi-spot 
excitation at two visible wavelengths with over 98% fidelity by combining several analysis 
techniques. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Zika Virus (ZIKV) infection is caused by a mosquito-borne flavivirus [1, 2] and has been 
strongly correlated with the development of fetal microcephaly and Guillan-Barré syndrome 
[3–7]. Consequently, the recent 2016 ZIKV outbreak throughout the Americas was declared a 
public health emergency by the World Health Organization (WHO), and created a pressing 
need for accelerated development of rapid, specific, and clinically sensitive ZIKV diagnostic 
techniques [8]. Symptomatic diagnosis of ZIKV in humans is difficult as ZIKV infection can 
initially present as influenza-like, and can furthermore be easily confused with other 
flaviviurses, such as Dengue Virus [2]. Currently available tests include qualitative enzyme-
link immunosorbent assays (ELISA) which target IgM antibodies and qualitative and 
endpoint polymerase chain reaction (PCR) assays that measure viral RNA concentrations 
with amplification-based methods. Due to the recorded cross-reactivity with Dengue Virus, 
Zika Virus antibody detection is not sufficient as a stand-alone diagnostic tool [2, 9–12], and 
the involvedness and intricate laboratory setting necessary for PCR tests of nucleic acid 
targets are non-ideal [13] and limited to nucleic acids. Furthermore, nucleic acid and antibody 
biomarkers are detectable in different stages of the infection [14]. A biosensor that detects 
both modalities is, therefore, highly advantageous to accurately diagnose a ZIKV patient and 
essential to monitoring a possible ZIKV epidemic. 

One avenue to accomplish this involves “lab-on-a-chip” devices, which are compact 
apparatuses that process and analyze clinically relevant chemical or biological samples in 
small volumes. Optofluidic approaches that integrate photonic principles with biosensing, 
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[15]. Single mode fiber is butt-coupled to a single mode excitation waveguide, which 
launches into the MMI excitation waveguide. Fluorescently tagged targets are directed from 
an input reservoir to an output reservoir through the LC-ARROW microchannel by pressure-
driven flow. As these fluorescent targets pass through the excitation cross-section at the 
intersection of the LC-ARROW and the excitation MMI waveguide, a fluorescence signal is 
generated. This fluorescence signal propagates down the LC-ARROW, orthogonal to the 
excitation waveguide, and is coupled to a collection solid-core waveguide. The signal is then 
transmitted to and analyzed by an avalanche photodiode (APD). The hollow-core ARROW 
waveguides were 5 μm x 12 μm in cross section geometry and fabricated using a SU8 
sacrificial layer technique and standard planar silicon device fabrication methods [27]. 

The dependence of the spot number (N) on distance from the beginning of the MMI (L) 
and the excitation wavelength λ can be derived from standard MMI theory [24] and is given 
by: 

 
2

cn w
N  

Lλ
=  (1) 

where w is the effective MMI-WG width (here: 75 µm) and n c the effective refractive index 
of the MMI-WG (here: 1.46). When λ = 633 nm; 7 well-defined spots are produced at the 
MMI length of L = 2243 µm, where the liquid core ARROW intersects the MMI-WG. At the 
same intersection, choosing λ = 556 nm produces 8 well-defined spots. This provides a means 
for spectral multiplexing for our targets. Figure 1(a) also shows both excitation patterns of the 
MMI waveguide within the liquid-core ARROW filled with quantum dots (right). 

Target specificity is implemented with a bead-based solid phase extraction method 
illustrated in Fig. 1(b), which displays the resultant particles for both nucleic acid and protein 
target isolation. A biotinylated pulldown molecule, either a complimentary oligonucleotide 
(IDT) specific to a section of the Zika genome or a biotin-functionalized (Roche) ZIKV 
monoclonal antibody HM333 (East Coast Bio.), was added to streptavidin-coated magnetic 
microspheres (Thermo) at room temperature for 30 minutes in a medium-high salt solution in 
accordance with the manufacturer’s specifications [12]. The pulldown-functionalized beads 
were then washed with a low-salt buffer, PBS (Corning). Reporter molecules were then 
combined with the target nucleic acid (IDT) and target recombinant ZIKV-NS1 protein (East 
Coast Bio.) and incubated at 37°C for two hours. These reporter molecules were either a 
complementary nucleic acid probe with TYE665 attached (IDT) or a secondary monoclonal 
antibody HM332 (East Coast Bio.) functionalized with Cy3 (Lumiprobe). The target and 
reporter biomarkers were then combined with their respective pulldown beads and left to 
incubate at room temperature for another 2 hours, at which point they were washed a second 
time in a low-salt buffer. Each microsphere has the maximum capacity to bind 20 fg of 
biotinylated antibody or 2.5 x 105 molecules of biotinylated ss-oligomer, both of which 
correspond to a maximum of ~2.4 x 105 fluorophores/bead. The isolated target complex is 
finally pipetted into the input reservoirs of the ARROW chip for detection. Figure 1(c) shows 
the fluorescence particle trace over time for the protein-bead complex in the absence (top) and 
presence (bottom) of the NS1 target protein. It is evident from Fig. 1(c) that there is minimal 
background in the absence of NS1 protein, demonstrating the specificity of this detection 
scheme for protein detection. This serves as a negative control experiment for our 
experiments. Specificity for nucleic acid analysis was demonstrated previously in [22, 26]. 

3. Results and discussion 

In Fig. 2, the experimental fluorescence particle trace results for multiplex biomarker 
detection are shown. 
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where S(t) is the new, shift-multiplied signal, N is the number of MMI spots, F(t) is the 
particle fluorescence signal, δt is the corresponding characteristic time difference for each 
individual nucleic acid (red) or protein (green) particle signals, mentioned above [28]. The 
result is that S(t) is enhanced when the particle trace is shifted the correct number of times (N) 
and by the correct δt, and it is quenched when shifted the incorrect number of times and by 
the incorrect δt. Figure 3(b) shows enhanced signal values for the signals shown in Fig. 2 (b) 
and (c) as well as Fig. 3(a). When we perform the shift multiply algorithm, we see that the 
signals are well separated, and the signal with higher N is notably larger as previously 
reported [28]. Despite a velocity distribution of the ensemble of multichromatic signals, we 
are able to obtain a velocity-independent confirmation of the fluorescence signal identity 
using the individual δt of the signal. We also confirmed each peak by vetting with a data 
parsing scheme that would also mitigate the distribution of velocities in the trace. The spot 
pattern of the excited particle was directly determined by dividing the total time of the signal 
by the individual signal’s δt, as shown below: 

 Tot,i
i

i

T
N  

δt
=  (3) 

where Ni is the number of spots created by the MMI excitation of the individual particle, Ttot,i 
is the total time of the individual signal, δti is the individual signal’s characteristic delta t. In 
order to robustly identify each particle signal, we applied both methods. If the identity of the 
particle was verified by both methods, then the particle was defined as such. If there was a 
discrepancy in the two methods, then the particle was left as unidentified. Figure 3(c) shows 
implementation of this approach for a fluorescence trace where both lasers are exciting the 
sample in flow. Of the 215 fluorescence signals in the trace, over 98% were identified. We 
differentiated 134 red nucleic acid signals and 77 protein signals. We repeated this assay three 
times with comparable results to ensure repeatability of the approach. 

4. Conclusions 

We have demonstrated a dual nucleic acid and protein detection scheme using a planar MMI 
waveguide platform. Zika virus nucleic acid and protein complexes can be excited and 
detected simultaneously on-chip with high specificity and sensitivity. We demonstrate here 
that the ARROW optofluidic biosensor is a sample-agnostic platform that is a highly specific 
and sensitive means of detecting different types of molecular targets at once. The optofluidic 
platform discussed above can also be incorporated into a dedicated sample preparation and 
delivery microfluidic layer, as demonstrated in [19, 21, 25]. These results and the upcoming 
integrated technology show that this optofluidic approach is capable of detecting different 
classes of biomarkers down to a single antigen using a simple sample preparation and analysis 
protocol, in contrast with current gold standard techniques such as RT-PCR and ELISA, 
which are only suited for one type of target. 
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