
High-speed, ultrahigh-resolution distal 
scanning OCT endoscopy at 800 nm for in 
vivo imaging of colon tumorigenesis on 
murine models 

JESSICA MAVADIA-SHUKLA,1 PAYAM FATHI,2 WENXUAN LIANG,1 

SHAOGUANG WU,2 CYNTHIA SEARS,2 AND XINGDE LI* 
1Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 
21205, USA 
2Department of Medicine- Infectious Disease, School of Medicine, Johns Hopkins University, Baltimore, 
MD 21205, USA 
*xingde@jhu.edu 

Abstract: We present the first, most compact, ultrahigh-resolution, high-speed, distal 
scanning optical coherence tomography (OCT) endoscope operating at 800 nm. Achieving 
high speed imaging while maintaining an ultrahigh axial resolution is one of the most 
significant challenges with endoscopic OCT at 800 nm. Maintaining an ultrahigh axial 
resolution requires preservation of the broad spectral bandwidth of the light source throughout 
the OCT system. To overcome this critical limitation we implemented a distal scanning 
endoscope with diffractive optics to minimize loss in spectral throughput. In this paper, we 
employed a customized miniature 900 µm diameter DC micromotor fitted with a micro 
reflector to scan the imaging beam. We integrated a customized diffractive microlens into the 
imaging optics to reduce chromatic focal shift over the broad spectral bandwidth of the 
Ti:Sapphire laser of an approximately 150 nm 3dB bandwidth, affording a measured axial 
resolution of 2.4 µm (in air). The imaging capability of this high-speed, ultrahigh-resolution 
distal scanning endoscope was validated by performing 3D volumetric imaging of mouse 
colon in vivo at 50 frames-per-second (limited only by the A-scan rate of linear CCD array in 
the spectral-domain OCT system and sampling requirements). The results demonstrated that 
fine microstructures of colon could be clearly visualized, including the boundary between the 
absorptive cell layer and colonic mucosa as well the crypt patterns. Furthermore, this 
endoscope was employed to visualize morphological changes in an enterotoxigenic 
Bacteriodes fragilis (ETBF) induced colon tumor model. We present the results of our 
feasibility studies and suggest the potential of this system for visualizing time dependent 
morphological changes associated with tumorigenesis on murine models in vivo. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (110.4500) Optical coherence tomography; (170.2150) Endoscopic imaging. 
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1. Introduction 

In vitro endoscopic OCT was first demonstrated 20 years ago using a single-mode optical 
fiber and a gradient-index (GRIN) lens to deliver and collect backscattered light to and from 
the sample [1]. OCT endoscopes [2] laid the foundation for high-resolution, non-invasive or 
minimally invasive in vivo OCT imaging of internal luminal organs such as the 
gastrointestinal tract [3], coronary arteries [4, 5], and the respiratory tract [6–8]. Until 
recently, most endoscopic OCT systems have been implemented at 1300 nm, with the best 
achievable axial resolution limited to 5-20 µm (in air) [9–11]. 

Over the past decade there have been several attempts to implement ultrahigh-resolution 
endoscopic OCT at 800 nm [11–15]. Success has been limited due to the engineering 
challenges for OCT endoscopes at this wavelength range. Two major challenges are: 1) 
correcting chromatic aberration in the imaging micro-optics for the broad spectral range and 
2) implementing a scanning mechanism for high-speed imaging. Our group recently 
addressed the first challenge by engineering a diffractive endoscope [15, 16]. In our prior 
publication, we demonstrated proof-of-concept that off-the-shelf miniature diffractive optics 
is able to partially compensate chromatic aberration. In this paper we present new customized 
diffractive optics capable of compensating the chromatic aberration throughout the entire 
spectral bandwidth of the light source. 

Secondly, in the prior publication, circumferential scanning was performed using a 
capillary tube based homebuilt broadband fiber-optic rotary joint (FORJ). The capillary tube 
based FORJ had several design and manufacturing challenges, resulting in a limited 
achievable rotational speed. For example, reliable operation requires that butt-coupled optical 
fibers within the capillary tube are cleaved perfectly at 90 degrees, which is very challenging 
to achieve. In addition, high-speed rotation can quickly damage the end surfaces of the two 
butt-coupled fibers, leading to high loss in throughput. The reliable continuous imaging speed 
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3.2 Feasibility of longitudinal imaging of enterotoxigenic Bacteriodes fragilis (ETBF) 
induced murine colon tumorigenesis 

After confirming the ability to perform ultrahigh-resolution and high-speed endoscopic 
imaging of mouse colon in vivo, we performed longitudinal imaging in a bacteria induced 
murine colon tumorigenesis model. In these experiments, APCMin mice were infected with 
enterotoxigenic Bacteriodes fragilis (ETBF). ETBF induced colon tumorigenesis in APCMin 
mice is a model for human commensal colorectal cancer (CRC) that can be used to study 
morphological changes leading up to cancer. APCMin mice have a mutation in one allele of the 
apc gene resulting in spontaneous small bowel tumor formation. In this model, after ETBF 
colonization, mice experience severe colitis and shedding of the intestinal epithelial lining for 
approximately 2 weeks, after which distal colon tumors form and grow rapidly over time [17, 
18]. 

In order to test the ability of this ultrahigh-resolution, high-speed, endoscopic OCT system 
to monitor longitudinal changes in the colon, we imaged the mice at 8 time points. Initial 
baseline imaging was performed on the animals before being infected with ETBF. No 
imaging was performed during the 2 weeks following the infection, to allow ETBF to 
successfully colonize in the colon and allow recovery from colitis. The first imaging time 
point after the initial baseline imaging was set to approximately 2 weeks (or until mice 
recovered from acute colitis). 

Figure 5 shows the en face depth averaged intensity projection view of a volumetric scan 
from each time point during longitudinal imaging. Figure 5(A) is the baseline image and Fig. 
5G shows the last time point before the animal was sacrificed. 

In addition to the en face projection views, a cross-sectional OCT image from a 
representative location marked by the cyan dashed line (in each image) is shown to the right 
in Figs. 5(B), 5(D), 5(F) and 5(H). The cross-sectional images clearly reveal the changing 
morphology of the colon during ETBF-induced carcinogenesis. The baseline image, Fig. 
5(B), shows normal colon structures such as the colonic mucosa, muscularis mucosa, 
submucosa, and muscularis externa. By day 19 (Fig. 5(D)) the colonic mucosa has high signal 
attenuation due to continued inflammation (from colitis). Figure 5(F) shows an image from 
day 44 where inflammation appears to have subsided, yielding normal looking structures 
around the 7 o’clock location and high signal attenuation near the 1-2 o’clock and 5 o’clock 
locations. The high signal attenuation is most likely due to the presence of a polyp. Finally, 
by time point day 58, the image in Fig. 5(H) shows relatively high signal attenuation across 
the whole image frame with a suspected polyp at the 11 o’clock region. Similarly, in the en 
face projection views (Figs. 5(A), 5(C), 5(E), and 5(G)), the dark blue arrows point to 
abnormal regions corresponding to suspected tumors. Furthermore, the red asterisks in each 
en face is overlaid on a tumor that could be seen growing as time progressed from day 19 to 
day 58. These imaging results demonstrate the capability of the ultrahigh-resolution, high-
speed endoscope for visualizing morphological changes longitudinally during cancer 
development. 

4. Discussion and conclusion 

High-speed, ultrahigh-resolution endoscopic imaging with a distal scanning probe at 800 nm 
was demonstrated in this paper. By employing a compact (900 µm) micromotor, we were able 
to eliminate the need for challenging components such as an FORJ, increase the overall 
imaging frame-rate, and maintain an overall small foot print for the endoscope. We were able 
to perform in vivo imaging at 50 frames-per-second, limited only by the line-scan rate of the 
linear CCD array in the spectrometer. By upgrading the linear CCD to a higher speed linear 
CMOS array in the future, we will be able to effectively double the imaging frame rate. 

The ultrahigh axial resolution of 2.4 µm (in air) was achieved by integrating a customized 
diffractive microlens into the distal end optics of the endoscope. The achromatic performance 
of the customized diffractive microlens was verified by the nearly invariant normalized back-
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reflected broad spectra measured along the imaging depth, demonstrating a minimal 
chromatic focal shift. 

Finally, we demonstrated that the distal scanning endoscope was capable of high-speed, 
ultrahigh-resolution endoscopic imaging of small lumens (such as mouse colon) in vivo. 
Distal scanning afforded us several advantages including speed, enhanced scanning stability 
and thus improved imaging quality. These features were demonstrated by the results of in 
vivo murine colon imaging and visualization of delicate microstructures such as the boundary 
of the absorptive cells and colonic mucosa (Fig. 4(B)) and crypt patterns specific to the 
gastrointestinal tract (Figs. 4(D) and 4(E)). Furthermore, we demonstrated the feasibility of 
using the ultrahigh-resolution endoscope for longitudinally studying the morphological 
changes in vivo in an ETBF-induced colon tumorigenesis model. This study demonstrated the 
robust mechanical design and capability of the endoscopic probe to provide high quality 
images of time-dependent changes during tumorigenesis. Future systematic studies will be 
needed to correlate morphological changes visualized in the OCT images with histology at 
each individual time point. To conclude, it is expected that, as the frame rate continues to be 
improved and the micromotor cost continues to decrease, the high-speed, ultrahigh-resolution 
distal-scanning endoscopic imaging system at 800 nm with improved imaging resolution and 
contrast can potentially benefit various translational applications by offering a better 
assessment of morphological changes. 

Funding 

National Institutes of Health (R01CA153023 and R01HL121788); The Wallace H. Coulter 
Foundation. 

Acknowledgments 

The authors would like to thank Jiefeng Xi, Hyeon-Cheol Park, and Wu Yuan for their 
helpful discussions. We would also like to acknowledge the participation of Namiki Precision 
of California in providing us with customized micromotors. 

Disclosures 

The authors declare that there are no conflicts of interest related to this article. 

 

                                                                       Vol. 9, No. 8 | 1 Aug 2018 | BIOMEDICAL OPTICS EXPRESS 3739 




