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Abstract: Multiple scattering in turbid media inhibits optimal light focusing and thus limits
the penetration depth in optical coherence tomography (OCT). However, the effects of multiple
scattering in a turbid medium can be systematically controlled by shaping the incident wavefront.
The authors utilize the reciprocity of Maxwell’s equations and finite-difference time-domain
numerical analysis to investigate the ultimate performance bounds of wavefront shaping-OCT
under ideal and realistic configurations and compare them with the conventional method. The
results reveal that the optimized impinging wavefront significantly enhances the penetration
depth of OCT.
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or adaptive optics.
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1. Introduction

Scattering of waves due to inhomogeneous material compositions is a fundamental physical
phenomenon on which most imaging methodologies, from seismology to medical imaging, are
based. Among various three-dimensional imaging principles, coherence tomography, especially
optical coherence tomography (OCT) has attracted much interest for its clinical and industrial
applications [1, 2]. Based on low-coherence interferometry, an OCT system can reconstruct live
three-dimensional images of sub-surface structures of a sample in a non-invasive manner by
detecting back-scattered light.
Scattering, on the other hand, is also a limiting factor for imaging in general. While elastic

scatterings do not necessarily result in loss of information in principle, the original informa-
tion,encoded in the intensities, phases, and polarizations of each wavevector component, is
perturbed each time a scattering event occurs [3–5]. Thus, from a practical point of view, it
becomes increasingly more difficult to retrieve the original information faithfully as the number
of scattering events increases, due to constraints such as the noise level of photodiodes or
amount of post-processing required. Various solutions proposed so far, including optical clearing
method [6–8], may be applicable in some situations, but a universal method that can fundamentally
reduce multiple scattering-related decoherence without physically altering the sample has yet to
be discovered. To remedy this situation, wavefront shaping, which has been successfully utilized
for various other purposes [9–18], was recently applied for the first time to OCT [19,20]. The
experimental results suggested that the penetration depth can indeed be extended. However, only
indirect evidence of distortion compensation was available because experimental measurement of
the complete propagation pattern of a light beam inside a turbid medium is practically impossible.
In this paper, we utilize the reciprocity of Maxwell’s equations and a first-principle based

numerical analysis method to investigate the theoretical performance bounds of wavefront
shaping-OCT (WS-OCT). The exact spatial and spectral profiles of vectorial electromagnetic
fields inside turbid media under non-trivial wavefront illumination conditions are obtained
to verify the operation principle of WS-OCT; these profiles, however, were available neither
from experiments nor from previously used numerical methods. For example, the extended
Huygens-Fresnel principle is often used for OCT simulations [21, 22] but the adoption of a
highly simplified model for scattering phenomena prevents it from obtaining intensity and phase
distributions inside a specific sample. Monte Carlo simulations (MCS) have also been applied
for analysis of the OCT system (Fig. 1(a)) [23–25]. The MCS is a stochastic ray-tracing method
based on scattering phase function and, as such, is also not suitable for the exact calculation of
electromagnetic vector fields necessary for analyzing the new OCT methodology [24]. Instead
of these existing methods, we adopt finite-difference time-domain (FDTD) analysis [26–30],
which is a first-principle based method with very general applicability. Based on FDTD analysis,
and by applying the reciprocity principle, we design an ideal wavefront for the incident beam in
WS-OCT and measure the intensity and phase profiles inside a turbid medium that approximates
the scattering properties of actual human tissues. From the data, the performance of WS-OCT is
calculated and compared to that of conventional OCT, including the effect of a finite numerical
aperture of real OCT systems.

2. First-principle analysis of WS-OCT

2.1. WS-OCT

Wavefront shaping-OCT can be regarded as an application of one of the well-known fundamental
properties of Maxwell’s equations, Lorentz reciprocity, which applies to the propagation and
scattering of electromagnetic waves in reciprocal media of arbitrary morphology [31],∫

( ®E2 · ®J1)dv =
∫
( ®E1 · ®J2)dv, (1)
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Fig. 1. Schematic of reciprocal system coupled with multiple ports. The arrows indicate the
scattered and incident wave amplitude.

where ®J1 represents the phasor of an extrinsic current density vector field that is oscillating
with a given angular frequency ω and ®E1 is the phasor of the total electric fields excited by this
source taking into account the effect of the spatial composition of materials (including multiple
scattering) inside the system. ®J2 and ®E2 are another independent set of source and fields. This
equation is a special case of more general form of reciprocity, for which there is no source at
infinity. There is no other restriction on the location of the source currents and they can be inside
a turbid medium as well. Using this theorem, the optimal configuration of the input wave for
WS-OCT can be easily derived. The time-reversal symmetry argument often found in previous
literature on shaped-wavefront based focusing can be applied to lossless media with real-valued
permittivity only [32–34]. Thus, researchers looked at alternative theoretical approaches with
more relaxed constraints on the medium [35,36]. Especially Tanter et al. used a reciprocity-based
argument and the theoretical derivation below is close to their version but with the effect of loss
on the transmittance efficiency explicitly shown.
Without losing generality, we assume that the system consists of N orthogonal ports, labeled

1 to N , as shown in Fig. 1. We denote the complex amplitudes of the incident and scattered
wave at the ith port by a+i and a−i , respectively. The modes in the ports are normalized such that
the incident and scattered powers through the ith port are simply |a+i |2 and |a−i |2, respectively.
The assumption of orthogonality allows a simple representation of the total incident (scattered)
power through all ports of

∑
i |a+i |2 (

∑
i |a−i |2). The frequency-dependent port-to-port complex

transmission coefficient is defined as ti j = a−i /a+j when the single-frequency wave is incident
from the j th port only and the system is in a steady-state. The reciprocity relation in Eq. (1),
when applied to these discrete ports, dictates that ti j = tji should be valid for all combinations of
i and j [31]. Note that these ports are conceptual ports and need not be physical waveguides:
any orthonormal basis for the Hilbert space of all propagating modes inside the surrounding
material outside the turbid medium can constitute a set of orthonormal ports in this argument,
including the set of linearly-polarized plane waves propagating in all possible directions. Linear
combinations of such plane waves resulting from unitary transformation on the basis can be
another example.

Now, we imagine that port 1 has a mode profile that is a focused Gaussian beam with a known
waist located at the target depth of OCT. (For this argument, we ignore the scattering medium
below the target depth. More rigorously, port 1 can be considered as a linear combination of
plane wave ports located outside all scatterers including the scatters below the target depth, which
generate such a Gaussian profile inside the turbid medium system.) If we conduct a conceptual
experiment of launching a single-frequency incident wave through this port towards the scattering
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medium above and measure the scattered fields in a steady-state, the total scattered power is
expressed as

P−total =
N∑
i=1
|a−i |2 =

N∑
i=1
|ti1a+1 |

2 =

N∑
i=1
(|ti1 | |a

+
1 |)

2 =

N∑
i=1
(|ti1 |2 |a+1 |

2) = (
N∑
i=1
|ti1 |

2)|a+1 |
2. (2)

On the other hand, P−total = (1 − A1)|a
+
1 |

2, where A1(0 6 A1 6 1) is the absorption factor of the
system when excited by port 1, must be satisfied due to energy conservation because |a+1 |

2 is the
incident power. Hence,

∑N
i=1 |ti1 |

2 = 1 − A1 6 1 in general. (We note that clinically important
human tissues such as the breast tissue, prostate tissue, and stomach mucous have high anisotropy
factors, g > 0.9, for scattering and also that the magnitude of the scattering coefficient is two
orders of magnitude higher than the absorption coefficient [37–39]. Hence, the forward scattering
is the dominant factor affecting the signal attenuation in these cases, over the back-scattering and
absorption.)

Now we consider a shaped wavefront for WS-OCT and, on the basis of aforementioned discrete
ports, let b+i ’s represent the decomposition of the incident wave with a complicated spatial profile.
The resulting scattered wave at port i = 1 from the new source becomes

b−1 =
N∑
i=1

t1ib
+
i =

N∑
i=1

ti1b+i . (3)

The second equality sign in Eq. (3) is a direct consequence of reciprocity. The power of the
scattered field coupled into port 1 is expressed as

P−1 = |b
−
1 |

2 = |
N∑
i=1

ti1b+i |2. (4)

Using the Cauchy-Schwarz inequality for complex variables in the last term of Eq. (4) yields

|
N∑
i=1

ti1b+i |2 = (
N∑
i=1

ti1b+i )(
N∑
i=1

t∗i1b+∗i ) 6 (
N∑
i=1

ti1t∗i1)(
N∑
i=1

b+i b+∗i ) =

N∑
i=1
|ti1 |

2
N∑
i=1
|b+i |2 = (1 − A1)P+,

(5)

where P+ is the incident power. As the right-most side of Eq. (5) is constant for a given incident
power, the maximum excitation of the focused Gaussian profile (i.e., maximum P−1 ) can be
achieved if and only if the equality condition for the above inequality holds true, which requires
b+i /t∗i1 = κ for some complex constant κ. Thus, the optimal incident source of power P+ for
WS-OCT is b+i = t∗

i1(P
+/∑ |t

i1 |
2)1/2 = t∗

i1[P
+/(1 − A1)]

1/2, which is the main conclusion of this
theoretical derivation. It is important to note that this is proportional to a−∗i excited through port 1,
meaning that the optimal input beam for WS-OCT is the phase conjugated version of the recorded
scattered wave when the system is excited by a Gaussian beam at the target depth. For optically
lossless samples, this result is in agreement with the typical derivation based on time-reversal
symmetry. However, this is more general as the results remain valid for lossy materials as well.
Using this input beam, the amplitude of the fields at the target position is

b−1 =
N∑
i=1

ti1b+i =
N∑
i=1

ti1t∗i1

√
P+

1 − A1
= (

N∑
i=1
|t1i |2)

√
P+

1 − A1
=

√
(1 − A1)P+. (6)
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One can see that much of the input power can reach the focused target spot as long as the
absorption is weak. In fact, this result, obtained from reciprocity and the Cauchy-Schwarz
inequality, gives the fundamental upper bound for the maximum deliverable power fraction in
WS-OCT and the necessary and sufficient conditions for the wavefronts to achieve such maximum
power delivery.

In real OCT systems, it may be difficult to launch optimally-shaped wavefronts, for two reasons.
First, the ports corresponding to waves propagating to and from the side or to the backside of the
sample are normally inaccessible as input ports: i.e., there is no pratical way to launch waves
into these ports from outside. Second, even among the top-side ports (plane waves entering
and exiting through the sample surface), only those waves within the numerical aperture of the
objective lens of the OCT system can be utilized. In other words, one cannot fully utilize all N
ports required to generate the exact phase-conjugated beam. This may affect the amount of actual
power transferred to the target spot in WS-OCT. We investigate this effect in the next section and
show that good performance is still expected even when only the top-side ports with realistic
numerical aperture values are considered, because the human tissues of interest are usually
forward-scattering dominated with small scattering angles [37–39]. We also note that, while the
process of finding the optimal wavefront based on reciprocity and an internal light source is
a rigorous and simple theoretical process that can be easily adopted in numerical simulations,
there are some pioneer unexperimental realization of the process could be challenge with a few
novel schemes proposed only recently [17,18]. Alternatively, actual implementations may use
iterative optimization algorithms that aim to find an approximate wavefront with reasonable
performances [10, 19]. Therefore, the reciprocal wavefront shaping operation we consider here is
an ideal case serving as the ultimate benchmark for OCT based on shaped wavefronts, and can
help verify the operation principles, identify possible challenges in practice, and evaluate the
relative performance of actual beams obtained from optimization routines in experiments.

2.2. Finite difference time domain method

There are various numerical methods used to simulate light propagation in optical systems, such
as ray-tracing, transfer-matrix method, rigorous coupled-wave analysis, the plane-wave expansion
approach, the finite-difference frequency-domain method, and the finite-difference time-domain
method [21–30]. These approaches use different degrees of approximation and assumptions.
Among them, FDTD is a first-principle based simulation method, in which Maxwell’s equations
are directly solved on a discretized grid. Its accuracy and versatility originate from its use of
very few approximations, which include the substitution of differential equations with difference
equations and fitting of the experimentally measured permittivities of materials with analytic
expressions [26–29]. Due to the long history and wide acceptance of FDTD calculations, the
accuracy and convergence of this method are now well understood [30].
For the particular problem of the WS-OCT, FDTD methods are well-suited, since both the

amplitude and phase of the electric field can be mapped as a function of wavelength over the entire
simulation region. Hence, the scattering and focusing behavior can be monitored quantitatively
inside scattering samples as a function of scattering parameters or input beam conditions. One can
also emulate the actual OCT process by placing a field monitor outside the scattering sample; this
monitor captures back-scattered light within a finite numerical aperture. Details of the simulation
setup are explained in the following section.

3. Simulation: modeling and signal retrieval

3.1. Modeling of turbid media

The turbid medium used in the OCT simulation is designed based on known optical properties of
human tissue, which mainly consists of four components, two of which have lower refractive
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Fig. 2. Schematic illustrations of conceptual experiments that find and utilize the optimal
wavefronts for WS-OCT. (a) A focused Gaussian beam is launched toward the surface from
the target depth. The beam propagates through the turbid medium and is collected outside
the sample surface. (b) Optimal wavefronts for WS-OCT, obtained by conjugating the phase
of the collected beam, is launched into the turbid medium and form a desired focused spot at
the target location. (c) The back-scattered light is collected outside the sample to be used for
coherence tomography. This becomes the model case against which realistic WS-OCTs can
be compared.

indices (interstitial tissue plasma, 1.33, and cell bodies, 1.36); the other two have larger
indices (intracellular organelle and structural fibers, both with indices ranging from 1.40 to
1.45) [22, 40, 41]. In our model, the background index of the turbid medium is set at 1.35, close
to the mean index of the cell bodies and interstitial tissue plasma, while the refractive index of
randomly distributed scatterers are set as 1.40, which is similar to the indices of intracellular
organelles and structural fibers. The diameters of the scatterers are chosen to be a uniformly
distributed random variables ranging from 1 to 2 µm, which gives the scattering anisotropy
factor in the range of 0.9-0.95. The particles are randomly placed without overlap with density of
0.1 particle/µm2, resulting in a calculated scattering coefficient of 22 mm−1 [42, 43]. Similar
conditions for the scattering coefficient and anisotropy were used in other numerical studies of
human tissue OCT as well as experimental works [37–40]. Additionally, unity-index particles
with 4 µm width and 1.4 µm height are periodically inserted to provide reference signals at
predefined depths in the OCT A-line scan profiles. These particles (located between 50 and 490
µm with an interval of 40 µm) serve as quantitative markers to help evaluate the performance
of the WS-OCT method compared to the standard OCT measurement method. For lossy turbid
media, the imaginary part of refractive index is adjusted to obtain a desired absorption coefficient.
We further note that, even though the turbid medium parameters are chosen to simulate human
tissue-like samples in this work, the method is general and can be applied to vastly different
situations such as micro-crack detection or defect analysis in industry.

3.2. Construction of an optimal wavefront and set up of numerical simulations

Figure 2 shows a schematic diagram for finding the optimal wavefront by reciprocity. First, a
Gaussian beam is launched at the target depth toward the surface through the turbid medium, as
shown in Fig. 2(a). Outside the turbid medium, the complex wavefront resulting from multiple
scattering events is recorded by a field monitor (the dashed line in Fig. 2(a)). The optimal
wavefront for WS-OCT is obtained by taking the complex conjugate of the recorded electric
and magnetic fields and flipping the direction of the magnetic fields. To account for the effect
of a finite numerical aperture, the optimal wavefront is Fourier-transformed into its spatial
frequency components, onto which a top-hat filter is applied to cut off high spatial frequency
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components outside the numerical aperture, and then Fourier-transformed back to the real domain.
The actual WS-OCT system can be emulated by launching this complex wavefront towards the
turbid medium by placing a source plane outside the turbid medium (Figs. 2(b)). According to
the surface equivalence theorem [44], this source plane can emulate any actual incident beam
configuration through the objective lens system in OCT. While it is possible to find and utilize the
optimal phase-conjugated wavefront for individual wavelengths simultaneously in one numerical
simulation using a broadband source, this is a difficult task in experiments. Hence, we retained
the phase of the center wavelength only in the phase conjugation process, and set the phases of
all other wavelengths according to this value, more in line with a realistic phase conjugation
mirror. The resulting field profile inside and outside the medium is recorded to analyze the OCT
performance (Fig. 2(c)). The simulations are performed using a commercially available FDTD
solver (Lumerical FDTD solutions) with custom-made scripts for the phase conjugated input
beam.

The field monitor and simulation domain width are set at least two times larger than the target
depth to ensure that most of the scattered beam is captured and perfect matched layers (PML) are
used for all boundaries to emulate open boundary conditions. We used a light source with a center
wavelength of 1000 nm and a full-width half-maximum bandwidth of 40 nm. The Gaussian
beams used in the conventional OCT simulations have a waist size of 8 µm.

3.3. Obtaining the depth profile

In OCT systems, the "A-line signal" (depth profile) is typically extracted by moving the reference
mirror (time-domain OCT) or by performing a Fourier transform on the frequency-resolved
measurements (frequency-domain OCT). The frequency-domain method is employed in our
numerical simulations. The frequency-resolved back-scattered spatial electric field, ®Escat , is
collected at the field monitor above the sample surface, as depicted in Fig. 2(c), and the electric
field of the reference beam is calculated as ®Ere f = R(λ)e−i(2k0d), where R(λ) is the reflection
amplitude at wavelength λ, d is one-way path-length up to a virtual mirror, and k0 is the
wavenumber. Before calculating the OCT signal, ®Escat is spatially Fourier-transformed and only
those spatial frequency components that fall inside the numerical aperture of the virtual OCT
lens system are retained and focused on to a virtual detector together with the reference beam.
The intensity is expressed as,

I(λ) = | ®Escat(λ) + ®Eref(λ)|2 = | ®Escat(λ)|2 + | ®Eref(λ)|2 + 2Re( ®Escat(λ) ®E∗ref(λ)), (7)

We assume that the reference beam is perfectly reflected, R ∼ 1, and then Eq. (7) is rewritten
as I(λ) = | ®Escat(λ) + e−i(2k0d) |2. The A-line signal yields to superposition of intensity at all
wavelengths;

IOCT =

∫
| ®Escat(λ) + e−2ikd |2dλ. (8)

4. Results and discussion

4.1. Reciprocal beam focusing

When a Gaussian beam is used as the illumination source in OCT, the beam undergoes multiple
scatterings until it reaches the target depth. Thus, even when the objective lens is set to produce
a focused Gaussian beam with a desired width at the target depth (Fig. 3(a)), the actual beam
profile becomes distorted and much wider than the intended Gaussian beam after only a few tens
of micrometers of propagation in typical human tissues phantoms, as shown in Fig. 3(b). This
results in loss of lateral resolution, a lower signal-to-noise ratio, and decreased penetration depth.
On the other hand, when the optimal wavefront obtained from the aforementioned procedure with
a unity numerical aperture is used, a numerical simulation confirms that this beam indeed forms
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Fig. 3. Simulated electric field amplitude profile at 1000 nm wavelength, when an optical
beam is launched from the top side. (a) A Gaussian beam is launched into a uniform medium
with a refractive index of 1.35, showing a well-focused spot at the target depth. (b) A
Gaussian beam is launched into a turbid medium, showing the effect of multiple scattering.
(c) The optimal beam is launched into the same turbid medium, showing a well-focused
spot at the target depth. (d-f) Magnified phase profiles of the white dashed region in (a-c),
respectively.

a near-perfect Gaussian spot at the target depth, which is set to 400 µm in this example (Fig. 3(c)).
The figure reveals that at depths between 350 and 450 µm, the beam is tightly focused, as expected,
and the maximum field intensity is attained at the target depth. For quantitative comparison,
electric field intensities are averaged over an 8 µm-wide focus region and the optimal beam shows
47.3 times higher average intensity compared to the conventional Gaussian beam. The phase
profiles shown in Figs. 3(d-f) further illustrate the performance of the optimal beam compared to
that of the Gaussian beam. The phase of the Gaussian beam is highly perturbed, while a locally
uniform phase profile distribution is observed around the 400 µm target depth for the WS beam.
The uniform phase distribution region closely corresponds to the tightly focused region in the
amplitude profile and this provides concrete evidence that the wavefront shaping successfully
compensates for the multiple-scattering based decoherence. While the phase conjugation is
performed based on the phase of the center wavelength (λ= 1000 nm) only, Fig. 4 confirms
that the optimal beam is well-focused at the target depth for other wavelengths up to 40 nm
bandwidth around the center wavelength as well. This is in agreement with the theoretical spectral
correlation bandwidth, ∆λ = (λ2l∗)/L2 =60 nm, where l∗ and L are the transport length and
thickness of the turbid medium, respectively. The peak intensities of those off-center wavelengths
shown in Fig. 4(e) and (f) are slightly lower than the center wavelength case (Fig. 4(d)), and
a few small side peaks are observed. Nonetheless, the Gaussian-like center peak shape and its
width are well maintained. These results indicate that near-optimal light focusing is possible for a
reasonably broad wavelength range, even though only the center wavelength is used for the phase
conjugation operation.

                                                                       Vol. 9, No. 8 | 1 Aug 2018 | BIOMEDICAL OPTICS EXPRESS 3891 



Fig. 4. Simulated electric field amplitude profiles of a shaped-wavefront beam, phase-
conjugated at 1000 nm, at various wavelength of (a) 1000 nm, (b) 990 nm, and (c) 980 nm.
(d-f) Corresponding lateral electric field intensity along the white dashed line, respectively.

Actual biological tissues are optically lossy, and the power reaching the focusing spot at the
target depth will be smaller than the lossless case, as predicted by Eq. (6). Nonetheless, the
wavefront shaping can still produce a well-focused beam at the target depth as evidenced by the
simulated amplitude profiles of the optimal shaped-wavefront beam in turbid medium with the
absorption coefficient of 0.1 and 2 mm−1, respectively, in Figs. 5(a-b). The lateral beam profiles
at the target depth, shown in Fig. 5(c) for biologically important range of absorption coefficients
from 0.1 to 2 mm−1, further confirm that the Gaussian-like beam profiles are well maintained,
albeit with progressively reduced intensities as the absorption increases. The normalized lateral
beam profiles in the inset of Fig. 5(c) overlap with one another almost completely for all the
absorption coefficients considered. Figure 5(d) compares quantitatively the theoretically and
numerically calculated fractional beam power reaching the target focal spot as a function of the
absorption coefficients. The fractional beam power is calculated by integrating the Poynting
vector over a 30 µm focal spot at the target depth and normalizing it by the incident beam power.
As the absorption coefficient is increased, the fractional beam power at the target focal spot
decreases from unity. However, the value obtained by the optimal shaped-wavefront beam (red
dots in Fig. 5(d)) is very close to the theoretically predicted maximum value of 1 − e−αL , where
α is the absorption coefficient and L is the target depth (black dashed line in Fig. 5(d)). From
the above observations, it is expected that the measured OCT signal based on the optimal beam
will have substantially enhanced signal-to-noise ratio, lateral resolution, and penetration depth,
compared to those of the conventional OCT.
For quantitative comparison of the conventional OCT and the WS-OCT, we obtain the depth

profiles from both methods. The results for the conventional OCT and the WS-OCT optimized at
a target depth of 400 µm are shown in Fig. 6, denoted as a dashed green line and a solid blue
line, respectively. For the conventional OCT, the signal level is gradually reduced as the depth
increases; its rate is in agreement with actual experimental results [20]. On the other hand, the
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Fig. 5. Simulated electric field amplitude profiles of a shaped-wavefront beam inside the
turbid medium with absorption coefficient of (a) 0.1, and (b) 2 mm−1. (c) Lateral profile of
the electric field intensity at the target depth for various absorption coefficients of the turbid
medium. (d) Optical power reaching the focusing spot at the target depth, normalized by the
input beam power. The dashed line and red dots correspond to the theoretically derived and
simulated values, respectively.

signal levels of the WS-OCT show enhancements at depths near the target depth of 400 µm
(red-shaded area in Fig. 6). Signal from the marker particles at 370 and 410 µm in the WS-OCT
case are enhanced 31.1 and 36.7 times, respectively, in comparison to those of the conventional
method. For other particles, the signal levels of WS-OCT are lower, indicating that WS-OCT
has clear depth selectivity and is optimized to investigate features near the target depth. We note
that, in an experimental investigation of WS-OCT using tissue phantoms with similar scattering
parameters as ours, significantly enhanced signals near the target depth was observed as well.
The exact level of enhancement was not as high as this numerically predicted value, which is due
to the fact that the wavefront used in the experiment was not the ideal wavefront obtained by
reciprocity but an approximate one that was found by optimizations [19].

4.2. Enhanced penetration depth of the WS-OCT

The depth selectivity of WS-OCT also means that a composite of several independent WS-OCTs
may be required if one wants to obtain a full-depth profile with a total depth span more than a
couple of hundred microns. The electric field amplitude profiles, shown in Figs. 7(a-c), illustrate
that the optimal wavefront can be found for different target depths, in addition to 400 µm, as can
be seen in Fig. 3(c). The focusing efficacy of each beam is quantified by averaging the electric
field intensity over an 8 µm-wide center region and plotted as a function of depth (Fig. 7(d)).
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Fig. 6. OCT signal intensity for the WS-OCT at the target depth of 400 µm; the dashed
green line and solid blue line represent the signal levels of the conventional OCT and the
WS-OCT, respectively. The red shaded area indicates the depth range over which a significant
enhancement of the signal intensity occurs.

Fig. 7. Simulated electric field amplitude profiles of optimal beams at different target depths
of (a) 100, (b) 200, and (c) 300 µm. (d) Longitudinal profiles of the focusing efficacy of the
optimal beams and a Gaussian beam. Square markers represent the transmittance of optical
power from a virtual Gaussian source at the target depth to the field monitors near the sample
surface.
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Fig. 8. Composite OCT A-line signal from four WS-OCTs with individual target depths
of 100, 200, 300, and 400 µm (solid blue line) is compared to that of a conventional OCT
using a Gaussian beam (dashed green line). Significant signal enhancement is observed at
all depths except at 50 µm, at which the conventional OCT also performs well.

While the Gaussian beam, which can be considered as an optimal beam with zero target depth,
has the maximum intensity near the surface, the maximum intensities of the shaped-wavefront
beams are achieved at the corresponding depths, as expected. Moreover, the intensity difference
between the Gaussian beam and the shaped-wavefront beams becomes greater for larger depths.
The gradual decrease of the focusing efficacy with the increasing target depth is also evident. It is
noteworthy that this monotonically decreasing peak value of the focusing efficacy near each target
depth is very close to the value predicted by the reciprocity (square markers in Fig. 7(d)). As the
target depth is increased, more beams are scattered to the side and backward directions during the
WS beam generation step (Fig. 2(b)). Hence, the transmittance to the top surface, i.e., into the
ports accessible from outside, decreases and, by reciprocity, the shaped-wavefront beam injected
from those ports (Fig. 2(c)) has decreased transmittance to the focal spot at the target depth.

The composite A-line scan profile in Fig. 8 is from four WS-OCTs optimized at progressively
deeper target depths: I (100 µm), II(200 µm), III(300 µm), and IV(400 µm). Away from the
surface, WS-OCT shows consistently higher intensity than that of conventional OCT. The highest
signal enhancement is 40.2 times by the particle located at 450 µm. Since the penetration depth
is limited by the signal-to-noise ratio, these results based on human-tissue emulating phantoms
suggest that WS-OCT can allow significantly enhanced penetration depths in clinical situations.

4.3. Effect of a finite numerical aperture

The lens systems used in actual OCT setups have a finite numerical aperture (NA) with a limited
range of angles within which the incident wavefront can be injected and the scattered light
from the sample can be collected. With a limited NA, the optimal beam found from reciprocity
cannot be realized exactly and the signal performance is expected to be lower than the ideal case.
Hence, it is practically important to know how large an NA is required for the WS-OCT to be
meaningful. Figure 9(a) shows the electric field intensity of the shaped-wavefront beams at a
target depth of 300 µm under varying assumptions on NA. The intensity of a Gaussian beam at
300 µm depth is also plotted for comparison. This clearly shows that, even with a small NA of
0.1, the wavefront shaping is effective. As NA decreases from 1.0 to 0.1, the intensity becomes
progressively lower but the Gaussian-like main intensity profile is well maintained. Though this
study mainly addresses OCT, the principle can be transferred to high-resolution reflection in-vivo
imaging technologies that use high-NA optical systems.
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Fig. 9. (a) Electric field intensity of Gaussian beam and of shaped-wavefront beam with NA
of 0.1, 0.15, 0.35, 0.5, 0.75, and 1 at depth of 300 µm. (b) Signal enhancement of WS-OCT
modeled with corresponding NA. Star mark represents signal enhancement for ideal case,
for which full spatial information is used.

5. Conclusion

We have quantitatively investigated the performance of the proposed WS-OCT through FDTD
simulations, demonstrating the exact amplitude and phase profiles of the injected beam within a
turbid medium whose scattering properties are similar to those of clinically important human
tissues. The profiles exhibited tight focusing and high intensity at the target depth, as predicted.
In the quantitative analysis, the numerically extracted OCT depth-scan results revealed that, in
comparison to the conventional OCT system, the WS-OCT has a signal level that is significantly
enhanced near the target depth. Also, the depth selectivity and the performance under small
numerical aperture found in actual OCT lens systems are investigated. These outcomes provide
concrete evidence and physical explanation for the performance of the WS-OCT, and have
potential applications in the field of deep-tissue biomedical imaging. Moreover, this work also
illustrates that FDTD analysis can provide exact profile information that can be obtained neither
by experiments nor other simulation methods developed so far, and can become a useful platform
for quantitatively examination of the principles and performance of new imaging schemes to be
proposed.

Appendix

More detailed explanation of orthonormal ports in the theory section is provided here. A set of all
possible plane waves in the air can become a set of orthonormal ports, with each port indexed by
a directional vector indicating the direction of propagation for an outgoing wave through the port
and a Boolean variable indicating whether wave is s-polarized or p-polarized. While the number
of possible propagation directions is infinite, one can first assume a finite universe with size D
and work with discrete wavenumbers in each direction in the multiples of 2π/D bounded by the
vacuum wavenumber. This assumption allows the number of modes as well as the total power in
a port for a finite electric field to remain finite, until we let D approach infinity. For these finite
ports, we can use a single, integer-valued index m, which simplifies the notation. Inspection of the
mode profiles for these ports reveals their orthogonality. The complex electric and magnetic field
profiles for a plane wave can be expressed as ®E(r) = am ®Emo(r) and ®H(r) = am ®Hmo(r), where
am is the complex amplitude of the wave and ®Emo and ®Hmo represent the electric and magnetic
field distribution at the mth port, respectively, with explicit forms of ®Emo = ( ®em/D)exp(i ®km · ®r)
and ®Hmo = ( ®hm/D)exp(i ®km · ®r), where ®km is the wavevector for the mth port, and ®em( ®hm is an
electric (magnetic) field vector in one of the two ortogonal polarization configurations allowed
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for given ®km, satisfying ®hm = |η0 ®km |−1 ®km × ®em and 0.5Re( ®em × ®h∗m) · ®km/| ®km | = 1 W/m2

(η0 is the vacuum impedance) [45]. Now, for any two mode indices m and n, it follows that∫
S

1/D2exp(i ®km · ®r)exp(i ®kn · ®r)d2r = 0 if ®km , ®kn and
∫
S

1/D2exp(i ®km · ®r)exp(i ®kn · ®r)d2r = 1
and 0.5 Re( ®em × ®h∗n) · ®km/| ®km | = δmn if ®km = ®kn. Hence,

∫
S

0.5Re( ®em × ®h∗n) · ®km/| ®km |d2r = δmn

is satisfied for any m and n, which proves the orthonormality of the modes. It it known in
linear algebra that the result of any unitary transformation on an orthonormal basis is another
orthonormal basis. As such, a Gaussian port can be one of the orthonormal ports.
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