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Contrary to the criticism that mysterious,
unaccountable black-box software systems threaten
to make the logic of critical decisions inscrutable,
we argue that algorithms are fundamentally
understandable pieces of technology. Software
systems are designed to interact with the world
in a controlled way and built or operated for a
specific purpose, subject to choices and assumptions.
Traditional power structures can and do turn systems
into opaque black boxes, but technologies can always
be understood at a higher level, intensionally in
terms of their designs and operational goals and
extensionally in terms of their inputs, outputs and
outcomes. The mechanisms of a system’s operation
can always be examined and explained, but a focus
on machinery obscures the key issue of power
dynamics. While structural inscrutability frustrates
users and oversight entities, system creators and
operators always determine that the technologies
they deploy are fit for certain uses, making no
system wholly inscrutable. We investigate the
contours of inscrutability and opacity, the way they
arise from power dynamics surrounding software
systems, and the value of proposed remedies from
disparate disciplines, especially computer ethics
and privacy by design. We conclude that policy
should not accede to the idea that some systems
are of necessity inscrutable. Effective governance of
algorithms comes from demanding rigorous science
and engineering in system design, operation and
evaluation to make systems verifiably trustworthy.
Rather than seeking explanations for each behaviour
of a computer system, policies should formalize and
make known the assumptions, choices, and adequacy
determinations associated with a system.
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Let’s think the unthinkable, let’s do the undoable. Let us prepare to grapple with the
ineffable itself, and see if we may not eff it after all.

—Douglas Adams, Dirk Gently’s Holistic Detective Agency

1. Introduction
Much has been said about the ‘black box’ of computer systems, especially those based on data
analysis, data-derived models and machine learning [1,2]. Opacity is certainly an important part
of understanding the power dynamics surrounding any computer system [3]. Such criticisms
arise in the context of technical descriptions of complex computer systems or machine learning
algorithms [4,5], as part of social critiques of computer systems [3], and in legal scholarship which
aims to derive the appropriate regimes for computer system governance [1,6]. The supposed
inscrutability of these systems is offered as an insurmountable problem to which the only answer
is to avoid the use of opaque systems in important contexts.

But when even technologists throw up their hands and say they ‘cannot’ understand an
algorithm or do not know why it is doing something, they are considering the action of the
system too mechanistically. After all, systems are constructed to be fit for some purpose, and
we can scrutinize or attach requirements to that determination of fitness. Data-driven systems,
like all human-programmed software systems, involve choices and assumptions in their creation,
which circumscribe how the system’s authors intend the system to function. Responsibility and
ethics attach not to the specifics of a technical tool, but rather to the ways that tool is used in a
sociotechnical context, which are always considered when tools are created.

That is, the claimed inscrutability of computer systems is a category error: by claiming that a
system’s actions cannot be understood, critics ascribe values to mechanical technologies and not
to the humans who designed, built and fielded them. Computer systems are not pure, neutral
tools, but products of their sociotechnical context, and must be considered as such. And in
context, inscrutability is not a result of technical complexity but rather of power dynamics in
the choice of how to use those tools. This choice is made by the system’s designers, operators
and controllers. In turn, because they have determined that it is appropriate to use technology
for particular ends, a system’s controllers have also provided an understanding of the outcomes
created by their technology: the reasons they have for believing that the system is adequate to
that purpose. Any inscrutability or opacity, then, is the product of power dynamics between the
controllers of a system and those affected by it.1 Interventions that aim to protect the subjects
or users of a computer system must therefore engage these power relationships. Work in both
Privacy by Design [7,8] as well as ethics for computer systems [9–11] aims to contextualize
technology in human value systems, but recent debates on the governance of artificial intelligence
ignore the extent to which inscrutability is always a structural concern and a technological
choice.

Thus, no system is wholly inscrutable. Instead, this paper argues that, while software systems
may be opaque to certain observers in certain cases, at base they can and must be understood,
both at a technical level and in a human context. Systems can be understood in terms of their
design goals and the mechanisms of their construction and operation. Additionally, systems
can also be understood in terms of their inputs and outputs and the outcomes that result from
their application in a particular context. This paper proposes a research agenda and policy
options to manage opacity, focusing on the idea that systems and their assumptions must be
validated and tested in the real world. Policy should not accede to the idea that some systems
are of necessity inscrutable. Nor is an individual right to explanation a remedy for opacity.
Such a right sidesteps questions of aggregate effects like group fairness and nondiscrimination,
while failing to provide individual understanding of particular decisions or to address power
dynamics between individuals and computer systems or to facilitate governance of those

1Previous work has argued that inscrutability can arise from complexity [3], but this, too, is a choice: plenty of complex
systems, such as those in use in aviation nonetheless make robust guarantees of safety or performance.
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systems. Understanding how a system fits into its sociotechnical context reveals a stronger set
of interventions based around harmonizing the action of systems with the norms demanded by
their context.

(a) Responses to inscrutability: explanations and the abdication of fault
One common response to the perceived threat of inscrutable systems is to demand that systems
be intelligible. Most often, this comes as a demand that systems be able to produce explanations
of their behaviours [2,12,13]. However, the value of explaining a tool’s behaviour is tempered
by the need to understand what must be explained to whom and what conclusions that
party is meant to draw. Explanation is not an unalloyed good, both because it is only useful
when it properly engages the context of the tool being explained and because explanations,
at a technical level, do not necessarily provide understanding or improve the interpretability
of a particular technical tool. Rather, explanations tend to unpack the mechanism of a tool,
focusing narrowly on the way the tool operated at the expense of contextualizing that
operation. Explanations risk being ‘just-so’ stories, which lend false credence to an incorrect
construct [14].

It may in many cases be unnecessary to understand the precise mechanisms of an
algorithmic system, just as we do not understand how humans make decisions, so long
as we describe the outlines of the system’s interaction with the world (e.g. doing good
science, understanding causal mechanisms versus correlations). The role of detailed, mechanistic
explanations in creating understandable software systems is much smaller than the role of
careful validation, experimentation, and a focus on capturing robust mechanisms, especially
causal ones.

For example, while it is hard to tell why a particular ad was served to a particular person at
a particular time, ad companies are willing to devote significant resources to the building and
upkeep of the ad systems because they are profitable and achieve desirable metrics such as click-
through rate or user engagement. Any inability to describe how or why a particular advertisement
was presented in a particular situation is merely a design choice, not an inevitability of the
complexity of large systems. Beyond complexity, we must consider the validity of a system. For
example, in a credit context, it is quite likely that a machine learning model could likely learn
that a borrower’s quality of clothing correlates with their income and hence creditworthiness.
However, wearing nice clothes does not create creditworthiness. While such a correlation might
be strong, for a model to function well and avoid manipulation, it should be robust to its
specified purpose. Thus, a credit model based on the borrower’s clothing (or irrelevant features
such as race or religion) should be rejected during a process of critical evaluation, investigation
and validation.

Interventions may not always provide a path to understanding either. Sometimes, it is
necessary to consider a system’s context dynamically and to account for how the system changes
and is changed by its context. For example, a credit-scoring or credit-granting system which
under-rates a certain minority group relative to their actual credit risk could be said to be
biased, but simply giving higher ratings to this group may or may not in fact improve credit
or economic opportunities for its members. That is, increasing the credit scores of the group’s
members may cause some real-world effect which counteracts the benefit of the higher scores.
This could be the case if qualified members of the minority group did not resemble qualified
members of the majority, meaning that the boosted scores likely create credit opportunities for
unqualified members of the minority group. In turn, this could lead to higher default rates in
the minority group, and increased burdens to that community.2 Rather, we must demand that
the agency rating the creditworthiness of this community consider the context and impacts of
their credit system and in particular to consider what outcomes are desired, how they might

2In a sense, this is what happened in the USA during the 2008 financial crisis: a systematic programme of marketing risky
home loans to minorities led to a correlated failure of risk models and a crisis of foreclosures borne primarily by already
poorer minority communities.
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be reached, and how the deployment of a new system or changes to an existing system will
alter the world (and whether that change will undermine assumptions made in the design of
the system).

That is not to say that all systems are of necessity understandable—too often, systems
are built (in whole or in part) irresponsibly by simply applying learning technologies to
data without considering what phenomena the results should capture or to what ends the
resulting system should function. Because such learning technologies are, as a general matter,
difficult to understand at a mechanistic level, such an approach serves to create a barrier to
understanding. But this barrier is illusory—inscrutability in these contexts is a choice, perhaps
one born of laziness, on the part of the system’s controllers. In such cases, reaching sufficient
understanding may require careful experimentation, active interaction with the system, or the
collection of new data. Even software systems that are not based around learning from data can be
difficult or impossible to examine due to fundamental mathematical limitations within computer
science [15,16]. But even here, systems can be designed to sidestep these limits and to support that
interrogation—inscrutability remains a choice that can be accommodated for in system design.
Rather than discounting systems which cause bad outcomes as fundamentally inscrutable and
therefore uncontrollable, we should simply label the application of inadequate technology what
it is: malpractice, committed by a system’s controller.

Another common approach to dealing with inscrutability is to eschew attempts to understand
the system at all and to treat outcomes from computer systems as though they were unforeseeable
externalities analogous to pollution [17,18] or other sources of nuisance [19]. This analogy leads
scholars to look for remedies such as efforts-based liability regimes and to describe the impact
of biases in decisions made by machines as unavoidable, structural, environmental fact. But
arguing that the effects of a system are unforeseeable pre-apologizes for that system’s failures.
While demanding perfect foresight puts too much faith in engineering, it is certainly true
that systems which are designed to achieve certain goals in a trustworthy and verifiable way
can reasonably be judged on an absolute scale. In many domains where perfect foresight is
impossible and where the outcomes from interventions are not foreseeable, such as medicine,
we nonetheless hold practitioners to a standard of practice and are comfortable punishing
practitioners when their actions do not rise to a sufficient standard of care. Further, the law
does successfully regulate harmful environmental effects of processes in other domains, requiring
that systems which might have negative consequences be controlled by the best available
technology [20].

2. Intensional understanding: goals, requirements and mechanisms
The simplest way to understand a piece of technology is to understand what it was designed
to do, how it was designed to do that, and why it was designed in that particular way instead of
some other way. Software products, and in particular those that are developed by finding patterns
in data using techniques such as machine learning, are no different. Understanding how computer
systems are designed and built, including understanding when trade-offs between competing
goals were made by the designers and why, dispels much of the inscrutability the systems may
have when viewed as a whole or from the perspective of someone affected by such a system.
Here, we explore how understanding the design of a system helps interpret its behaviours,
how it can fail to help interpret outcomes, and briefly mention some common software design
methodologies.

The ‘Privacy by Design (PbD)’ literature explores how amorphous values such as privacy can
be related to the concrete and detailed concerns that arise in engineering [21]. An engineering
design process begins by developing goals and requirements; continues by determining what
methods, mechanisms and technical tools can be cobbled together to meet those requirements;
and finishes by releasing a product into the world which can be monitored, measured and learned
from to refine the stated goals and requirements. This process can be managed informally in ad
hoc ways when projects are small. But just as building a bridge on a major highway requires more
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planning and organization than pouring a new cement patio at home, large engineering projects
are generally managed using a well-defined methodology.

In safety-critical engineering fields—including, for example, the design and development
aviation and other transportation systems, medical devices, weapons systems and large-scale
infrastructure such as factories, refineries and power plants—the design process proceeds not
from an ad hoc gathering of goals and requirements, but rather an articulation of invariants,
or properties which must always be true of the artefact being designed. These properties, in
turn, help shape the functional requirements of the system. For example, we might desire that
activation of a control by a plane’s pilot always leads to a certain physical response in the plane’s
control surfaces. This might lead to the requirement that the control surface be manipulated by
multiple actuators, so that if one fails the others can still create the desired response.

The software industry has standardized many development methodologies under the banner
of System Development Life Cycle (SDLC) processes. Idealized methodologies do not generally
correspond to actual practice faithfully, but rather provide guideposts for development. Because
software systems are developed without the process rigidities of other types of engineering
work or the constraints of physical reality, large software development projects are more prone
to failing both to produce outputs that meet the objectives of their customers and to produce
outputs at all [22]. Further, software products have far and away more defects and bugs than
other kinds of engineered artefacts, to the point that most people inside and outside the industry
consider bugs and defects in software inevitable. But the presence of such defects is a choice, not
an inevitability.

Early SDLC methodologies adapted from other industries such as construction, such as the
‘waterfall’ model of system design [23]. These models are ‘linear’ or ‘sequential’, meaning that
they move forward from phase-to-phase and never officially return to a previous phase, with
work in each phase completed iteratively. To improve these sequential engineering paradigms,
the software industry invented iterative methodologies, where the phases form a true cycle
and the things learned during development, implementation and maintenance can be fed back
into design objectives to create requirements for future iterations of the software product.
In these models, design goals are a living product of the process of software engineering
rather than a static input to software development. Unclear objectives can be resolved by
experimentation and communication between those developing software and those affected
by it.

However, this flexibility comes at a cost: because the process focuses on iterative improvement
of an early prototype, outcomes can be path dependent and it is common for only the most
obvious requirements to be addressed, leaving little time for features which are important, but
only affect a small part of a system’s user base. Further, because both the software product and
its specification are living outputs of the engineering process, approval, review and control suffer.
That is, without clear places in the life cycle to convene stakeholders, review progress, and confirm
the validity of process outputs, flexibility comes at the cost of less oversight.

Modern software engineering paradigms attempt to balance these concerns while espousing
the best parts of different approaches. The commonly used agile paradigm [24], for example,
relies on 12 core principles that prize iteration, continuous improvement, and the sustained
output of ‘working’ software while also encouraging clear requirements and collaboration
between stakeholders. While agile software development can improve the speed at which
functional software is delivered, it does so by creating incentives to avoid thinking deeply
about the consequences of technical requirements or engaging stakeholders outside the day-to-
day development process. By focusing on the mechanisms of software development instead of
questioning foundational assumptions baked into that process, agile and other iterative methods
can blind an organization to straightforward questions with important answers. Such methods
elide an important reflective step, sometimes called ‘double-loop learning’ [25]. Instead, the
priorities of the organization managing the software development are mediated into the product
and tested for fit with the market rapidly, causing the benefits of sustained iteration to accrue not
to overall social good, but to the software development organization alone.
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We can distinguish well-governed development processes from unconstrained tinkering. Any
reasonable development methodology establishes formal requirements, often documented in
design documents and subject to a formal design, privacy, or security review by peers and domain
experts. Such design documents are often distilled into technical specifications, which describe
how the requirements and approaches in a design document will be effected in technology. And
these documents are subject to scrutiny whether or not the ultimate technical artefacts need to be
directly understandable themselves. Development processes that are insufficiently documented
but nonetheless significantly affect people should be viewed with scepticism, as they do not
follow accepted best practice (although they are remarkably common).

Regardless of the development methodology being used, it is common and a recognized best
practice for software to be tested for consistency with its specification [26]. Testing measures the
functionality of software both in the sense that it reveals defects and also in the sense that it
verifies that the software acts according to its goals. For this reason, tests are often considered to
be some of the best and most up-to-date documentation of a software system, to the point that
some methodologies advocate writing tests in advance of writing the actual software, as tests
constitute a de facto specification for a system [27]. Software testing serves as another point in
the development work flow for computer systems at which systems are naturally made subject
to introspection. Therefore, the presence of tests acts against opacity and inscrutability because
tests can be reviewed alongside code. Testing is just the most straightforward of a number of
technologies that allow software to be reviewed and validated for consistency with a specification
(a taxonomy can be found in Kroll et al. [15]), and more advanced tools can even provide
convincing evidence of correctness to others beyond the developer.

Critics who claim that computer technologies are inscrutable black boxes must look less at the
understandability of the technical tools, which are merely instrumental vehicles for mediating
requirements into the world, and more at the way requirements are chosen and developed as well
as the purposes they serve. Indeed, such critics often demand additional transparency of the code
and data underlying software systems of interest [1]. Transparency of these instruments alone
does not provide understanding, however: there are fundamental technical limits on the capacity
for software analysis [15,16]. While it is tempting to view the disclosure of documentation as
part of the disclosure of code, demands for transparency must cover the entire design process:
how were requirements determined? By whom were requirements determined? Were alternatives
considered? Which ones? Why were they rejected? Was a particular negative outcome under
scrutiny a property of only some alternatives, or was it a necessary consequence of the system
however it was designed? How do we know that the system in practice satisfies the requirements
that were established for it? All software is designed and built by people, and responsible
organizations will create traces of their decision-making processes which provide insight into
the meaning and function of the artefacts they produce.

Understanding the design process that led to a software system helps elucidate the
mechanisms by which the system operates, in turn providing insight into why particular
outcomes or outputs were produced. Systems can be validated for correspondence to key goals
and requirements. In safety-critical applications, software systems are presented together with
assurance cases, documents that are meant to convince a sceptical expert that the system operates
as intended, and which detail the steps taken to assure fidelity of the system to its stated
goals [28,29]. Further, this analysis holds the focus of review away from the logic of processing
itself and maintains attention on the important question of why the logic in use is the best
solution to the problem at hand (further, it opens to review the question of whether the problem
being attacked is in fact the problem that should have been considered or whether the measures
of success employed to refine requirements caused a focus on the wrong questions) [14]. We
refer to this as a kind of intensional understanding, borrowing a term from formal logic where
an intensional definition of a collection is a rule for inclusion in or exclusion from the collection.3

3This is in contrast to extensional definitions of a collection, which simply list all elements of the collection. We contrast
intensional understanding with extensional understanding, which relies on measuring a computer program’s behaviours by
enumerating them (e.g. by examining real inputs and outputs).
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Examining an artefact within the context of its design process provides a more robust
understanding than receiving an explanation for each behaviour of the artefact, though the two
approaches can support each other. Good explanations must not only explain why a behaviour
occurred or why some other behaviour did not occur as a product of a system, but also capture
and transmit the knowledge of the context underlying a system’s mechanism of action as a process
within a broad sociotechnical system [30]. Yet, calls for requiring explanations of computer system
behaviour as a path to governing those systems often do not address the question of who is meant
to receive what knowledge through the explanation. We offer that explanations must speak to the
decisions made during the design of a computer system, as such information is always available
and always fulfils the key requirements of a meaningful explanation.

We further reject that computer system behaviours should be held to a ‘best-effort’ standard
because they are unforeseeable. The behaviours of any human artefact are considered during its
design and construction. Viewing computer system behaviours as though they are uncontrollable
ignores the fact that these systems are human artefacts, built to a purpose by some human
agency that must be accountable for the behaviours of those artefacts. Such a view defers too
strongly to the power dynamics at play, placing actions with human agency beyond governance,
control and accountability. Even when the specifics of how a system will interact with the world
are not directly foreseeable, they can be reviewed, managed and constrained. The extent to
which particular details are or are not foreseeable may differ depending on the discipline and
background of the viewer. For example, the presence of fake news on social media websites
may be much more obvious a priori to activists or journalism scholars than it would be to
programmers or even product managers in industry. Even if we stipulate that designers cannot
foresee the interactions between their products and the world, we discover that such effects can
be considered during iterations of the design process or learned about through consultation with
external experts and stakeholders. Systems to surface these effects for review by its controllers or
to continue to serve their goals despite unpredicted interactions with the world. Because systems
are designed to achieve particular ends, we cannot disentangle the environmental contributions
to a particular behaviour from the designed mechanism [31]—the mechanism must, after all,
compensate for its environment if it correctly embodies its goals. And only when we consider how
the mechanism functions in light of the process which created it do we truly have the information
we need to assign responsibility for the system’s behaviours [32].

However, the analogy of computer system behaviour to environmental conditions does surface
interesting governance tools which do help govern artefacts when the precise consequences
of their outcomes are not readily foreseeable (e.g. when system behaviours create externalities,
or costs not borne by the system’s controllers). Several scholars propose the use of an impact
assessment process to aid in governing those systems [17–19,33], and assessments can even be
legally required, as in Article 35 of the General Data Protection Regulation (GDPR) in Europe.
Such assessments are indeed useful, but because they are tools that aid the design process in
appropriately adjusting for the nature of the environment, and because they engage stakeholders
in the question of what mechanisms a system should use. Further, they help the controllers of
a system understand how to set their goals, or how to achieve their goals in light of the world
as it is. Impact assessments are a valuable tool, especially as we must not view the behaviours
of a human artefact as devoid of any agency. Below, we consider how measurement of a system
beyond understanding of its internals and its design can help to defeat inscrutability.

3. Extensional understanding: inputs, outputs, outcomes, audit and review
While information about the design process almost always exists and can improve understanding
of a computer system, such information generally is not available to the people who need it
for review. Additionally, it can be difficult to understand at the design stage how a system
will interact with the world. For both reasons, measurement of inputs, outputs and outcomes
is also necessary to dispel inscrutability, especially in situations where power dynamics prevent
the review of information about the design of or mechanism behind a system. The emerging
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discipline of algorithm auditing provides tools for understanding how systems work in the real
world [34–38]. We consider this an approach to understanding systems extensionally, in terms of
their inputs, outputs and measurable outcomes. While audits cannot, for technical reasons, ever
guarantee that they will completely suss out the mechanisms of a computer system [15,16], they
can, in many cases, provide useful information about when a system is causing harm or when it
is behaving in a way different from what is expected.

For example, a review by ProPublica famously discovered a disparity in false positive rates
for black arrestees in the COMPAS evaluation, which is used to support bail decisions and other
criminal justice professional judgement [39]. Although the observed disparity in this audit is a
mathematical consequence of arrest rates by race in the examined jurisdiction combined with the
design requirement that scores meaningfully correspond to risk equally for all individuals [40],
the audit nonetheless reveals a fairness issue that was not previously observed: black arrestees are
rated incorrectly as having a high risk of being re-arrested upon release nearly twice as often as
white arrestees. This causes black arrestees to be required to post bail when no bail is deserved at a
higher rate than whites. In turn, black arrestees find themselves systematically less able to mount
a defence to the case against them, reinforcing historical and structural discrimination. This gives
rather clinical decisions in the design of the risk-rating system a strong ethical dimension. Similar
audits have turned up issues of bias reinforcement in systems that guide police to portions of a
city to patrol [36], and in e-commerce platforms [35]. The theoretical potential for discrimination
in automated systems is well established [15,41,42].

Measuring the performance of a system in the wild is also useful during the development and
fielding of a system to uncover bugs, biases and incorrect assumptions. Even carefully designed
systems can miss important facts about the world, and it is important to verify that systems are
operating as intended and satisfying their articulated requirements. This is the classical problem
of measurement: do data reflect the world and the object of study sufficiently accurately? A related
concern is that of construct validity, the degree to which a model or test accurately measures what
it purports to measure, a multi-pronged concept that connects both actual fidelity to the world,
theoretical groundedness, the risks of performing the measurement, interrelatedness of the factors
being considered, and generalizability of the results [14,43].

Regular measurement helps to manage the twin phenomena of concept drift—changes in
the world that can invalidate assumptions baked into collected data or data collection and
normalization methodology—and modelling error—choices which cause the assumptions of a
computer system to diverge from the reality of the world. Only measuring and validating a
system against the world can manage and control these risks. Such measurements are undertaken
regularly by the controllers of computer systems. Indeed, if only to protect their investment
in developing the system or their costs in operating and maintaining it, the controllers of a
system are likely to demand particular performance targets according to their preferred metrics
for success. The questions of how a system is measured, what about it is measured, and how
well the system must perform against those metrics are all key issues to be established during
the design and deployment of a computer system. Claims that a system is inscrutable should
address how a system is measured and describe why the desired introspection into its operation
is relevant to observable performance. Once again, we see that inscrutability is likely to be the
result of pre-existing power dynamics, not a property of the technology or its application.

Extensional review of computer systems may also be undertaken by privileged oversight
entities. It is common that the inputs and outputs of specific decisions are reviewed for
accuracy or so errors can be corrected. In fact, the right to review computer system outputs
in this way is guaranteed in laws such as in the adverse action notices of the Fair Credit
Reporting Act (FCRA) and the Equal Credit Opportunity Act (ECOA) in the USA, and
in the Article 13–15 rights to data access and correction in the GDPR in Europe. Beyond
individual decisions, examination of group-level system outcomes is a cornerstone of quantitative
evaluation for policy interventions of all kinds. While there are limits, courts have even
held that group-level extensional evaluation is an important approach to counteracting
discrimination [44].



9

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20180084

.........................................................

It is tempting to believe that the presence of information for review will naturally lead to
accountability for any observable issues. But this is not the case: holding parties responsible
for the behaviours of computer systems can be challenging for many reasons, and it is not
always the case that the presence of robust audit data will, on its own, create the context for
accountability [16,32]. Here, we see another kind of inscrutability which, on closer inspection,
proves to be the result of power dynamics rather than deriving from the technology itself—
systems can become opaque even when the data necessary to reason about values of interest
are available, simply because appropriate authorities fail to act on those data.

(a) Transparency as a solution to inscrutability
The natural antidote to opacity is transparency, and transparency is often cited as at least
a component of a solution to problems of governing computer systems [1,16,45,46]. While
transparency is often taken to mean the disclosure of source code or data, possibly to a trusted
entity such as a regulator, this is neither necessary nor sufficient for improving understanding
of a system [15], and it does not capture the full meaning of transparency (though transparency
is often equated with disclosure of system internals in technical communities and scholarship).
Disclosure does serve the interests of transparency, however; transparency demands a mix of
understanding how a system works, understanding why it works in that way, and a perception
on the part of affected people that the mechanisms and processes of a system function to achieve
the correct goals.4 To that end, sufficient transparency may simply mean disclosing the fact and
scope of data processing in a computer system, as is required by the GDPR in the EU. However,
when transparency is demanded, it is important to be clear over what transparency is required
and to whom that transparency is intended.

Achieving transparency requires considering who must learn what in order to find a system
understandable. Nearly always, this will encompass the fact of the system’s existence and the
scope of the things it considers, at least in an abstract sense. Sometimes, it will also involve general
claims about the mechanisms underlying the system or properties of the system. The concept
of ‘open-source’ software, or software which has source code that is both freely available and
permissively licensed, strengthens transparency by combining detailed source code disclosure
with the ability to derive additional knowledge by recompiling or modifying the software.5

This stands in contrast to regimes where source code is merely disclosed or is disclosed under
conditions or to specific parties. However, transparency neither requires nor is provided by either
open source or source availability alone.

Transparency is generally served by reproducibility, or the ability to reconstruct the actions
of some computer system on multiple occasions [47].6 Lack of reproducibility is a source of
inscrutability which differs from those we have seen above, in that it is due to the technology
in use, though indirectly. Nonetheless, it is still a choice: all systems, even those that require
randomness, can be built to be fully reproducible. Computers are deterministic machines, and
so any lack of reproducibility is due to poor engineering practices (many specialized tools exist to
track what a system has done to make it possible to reproduce that series of behaviours [48]).
Reproducibility is especially important in the context of scientific research and public-sector
analyses or decisions, where the ability to reconstitute a particular outcome is a public good.
Because the reproducibility of computer outputs is a design choice, we can again say that failing
to make a system reproducible when it should be constitutes malpractice.

4For example, Freedom of Information laws serve to provide transparency although they do not generally cover the internals
of computer systems. Similarly, System of Record notices, required by the Privacy Act in the USA, disclose only the existence
and scope of a system, not its detailed mechanisms.
5However, this openness only breeds understanding insofar as there are enough people to examine the available code.

6While it may seem as though computers, being entirely deterministic machines, would give rise easily to reproducible
systems, this is often not the case for many of the same reasons that give rise to practical inscrutability [3].
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4. Explanation, understanding, validation and policy interventions
Another approach to defeating inscrutability which many scholars have proposed is the use of
explainable systems, which provide an explanation of their outputs [4,5,30,49,50]. While these
technologies promise much in the way of making systems more trustworthy, good explanations
require careful consideration of who receives the explanation and what facts those people must
extract from the explanations. Explanations need not relate mechanistically to the operation of the
system they are explaining, though they often do. Any system is a model of the world, and too
often the called-for explanation is only a description of that model. In some cases, a mechanistic
description of how a system computed a particular output will sufficiently explain that output. In
other cases, as with human decision-makers, it is sufficient to produce an unrelated justification of
the result or a general description of how it was reached. Explanations can be intended either to
improve the collaboration between humans and machines, or to help subjects and non-subjects of
a computer system believe in the validity of the outputs of that system. In either case, explanations
must create understanding by humans of computer systems in context, though they are not on
their own necessary or sufficient to create that understanding.

One reason that explanation might not improve human trust of a computer system is that
even incorrect answers from a computer system receive explanations, which may seem plausible
especially if the system’s incorrect output is plausible. Because of automation bias, the phenomenon
in which humans become more likely to believe answers that originate from a machine [51], such
misleading explanations can have outsized weight. Rather than simply treating explanation as
an unalloyed good, calls for explanation as a principle of software governance must be tempered
by an analysis of whether explanations improve the human-machine hybrid performance on a
particular task. The choice of this task can also dispel inscrutability, as it takes the focus off of
possibly complex software systems and puts it on the sociotechnical system involving humans
and their tools, concentrating analysis on where trustworthiness is necessary.

In shifting focus away from the technology and toward the overall system including people,
it is additionally important to maintain focus on whether a system is fit for a purpose and meets
its design goals and specification. Fidelity to a system’s specification is one aspect of determining
whether that system is correct, although we might also demand that the specification itself satisfy
design goals or relate properly to the real world [16]. It is important both to validate that a system is
faithful to its specification and to verify that fact to affected parties. Connecting concerns along this
line is a large part of how we define correctness and how we measure whether systems are correct.
Both contribute heavily to how well we can understand and introspect on a system. As we saw
with reviewing design and specification documents, when a system appears to be inscrutable,
it is important to examine the way in which correctness has been defined for that system
and how that correctness has been validated against the real world. If a system’s specification
properly reflects the system’s requirements and design goals—that is, if the system is the result
of proper requirements engineering—then fidelity to that specification demonstrates fitness
for purpose.

5. Conclusion
Thus, we see that the idea of a purely opaque, ‘black-box’ computer system is a category error,
placing too much focus on understanding the mechanics of a tool when the real focus should be on
how that tool is put to use and in what context. The design efforts that chose that tool as the right
one for that context—and such efforts exist at least at an informal level for all systems—explain
who believes that tool is the proper one and why it is correct to make use of it.

Of course, this does not mean that all computer systems are easily analysable. Systems
must be designed to support analysis and, in particular, should be designed to facilitate
the verification to outsiders of properties of interest, including important values such as
accountability, transparency and fairness. But it does mean that claims that computer systems
are pure, opaque black boxes should be met with scepticism, as they generally confuse layers
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of abstraction. Systems become trustworthy because of how they are validated and how that
validation is verified either directly to end users or indirectly through governance bodies. Opacity
in sociotechnical systems results from power dynamics between actors that exist independent of
the technical tools in use. No artefact is properly comprehended without reference to its human
context, and software systems are no different.

We describe an approach to engineering computer systems in a way that combats opacity,
highlighting open questions and areas for further examination and research. Responsible system
design must begin with careful requirements engineering that considers how best to approach
a problem with technology, not taking more common approach of simply trying to automate
processes which were designed to be operated by humans without computers. Requirements
engineering can learn from human-driven processes what a particular problem needs to be
solved successfully, and should attempt to enable validation that a system captures important
human values such as ethics or fairness in developed requirements. Such requirements gathering
should also be aware of procedural requirements, such as requirements that certain steps in a
process complete before others begin or that certain entities be informed or given the opportunity
to offer input or contest a result as a process progresses. Modifying traditional requirements
engineering to reflect human values remains an important open problem, especially in contexts
where values trade off against each other and the decision about which values to incorporate into
the requirements is a political one.

Once a system’s requirements are established, it becomes necessary to digest them into a
design and to develop an explicit set of goals or invariants for that design to uphold. Again,
accomplishing this while maintaining the values captured at the requirements phase remains an
under-explored problem, although more research effort has been applied here, especially to the
question of eliminating unintended biases. The design must then be further refined into a full
technical specification, either formal and explicitly written down or informal and kept in the
mind of the development team. In either case, it is important to choose key metrics of success and
measures of output appropriateness for later validation. In building the design and specification,
care should be taken to facilitate appropriate levels of accountability and transparency and to
attempt to foresee what information downstream observers, users, or overseers will need to learn
about the system and to design it to support that targeted disclosure.

In particular, design must consider both intensionally and extensionally how well the system
will fit in its sociotechnical context and how well its intended goals will be served. Designers
should consider to what extent explanations of the system’s behaviour are necessary and support
these goals. Further, to facilitate robust accountability, designers should consider what audit trails,
provenance data, and accountings must be built into the system [15]. The design of such systems
which are efficient and respectful of both recordkeeping goals and other important values such
as privacy and security is an active research area with many important open questions.

Systems must be tested and evaluated for consistency with their design goals and satisfaction
of their requirements. Such testing may need to engage multiple stakeholders, including
stakeholders beyond the controller of the system such as affected groups of users, representatives
of groups of non-users, or civil society at large. Evaluation of various sorts of software systems
is also an active research area, and the discipline of algorithmic auditing is emerging to provide
the tools for reviewing data-driven software systems, however many important questions remain
open—for example, the question of how to build effective white-box testing regimes for machine
learning systems is far from settled.

Finally, many research questions exist around reviewing responsibly designed systems. For
example, even well-designed systems following the pattern above may in some cases err or
cause negative outcomes for their subjects. For these cases, it is important to develop a theory
of software malpractice to match malpractice regimes in other fields such as medicine, law
and professional engineering. Importantly, the mere fact of a mistake is insufficient to define
malpractice; rather, malpractice involves situations where bad outcomes could have been avoided
by more responsible behaviour on the part of a system’s controllers. As yet, the question of what,
concretely, constitutes sufficiently responsible behaviour is almost entirely unexplored.
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Importantly, when dealing with data-driven software systems such as those that make use
of data analytics, data science and machine learning, it is imperative to maintain the ‘science’
in data science. That is, data must only be interpreted and acted on as far as they can be
meaningfully analysed. Data collected under a particular set of assumptions must not be re-
used in a context where those assumptions are violated. When products of data analysis
are presented, they must disclose the assumptions made during collection and analysis and
must also disclose the limitations of those processes. Finally, attention must be paid to the
design of experiments, the structure of analyses and potential systematic biases within the
data. Ideally, bias is accounted for as assumptions are passed through a system; explicitly de-
biasing data risks inventing counterfactuals which are not supportable or testable during later
validation phases.

In particular, it is important to consider when data analysis can determine when discovered
relationships between variables are causal and when they are merely the by-product of the
particular setting or data set [52]. Non-causal reasoning is possible, but the way in which such
systems can be validated is limited by their lack of undergirding mechanism and the extent
to which their constructs are valid. Failure to understand why relationships exist between
data elements risks designing systems which codify existing unfairness and which reinforce
problematic power dynamics. Typical machine learning workflows are ill suited to reasoning
about causality, though active research on this topic is creating new logics of causality which
can support the creation of robust, meaningful models.

Inscrutability is a difficult problem in practice, in no small part because software systems
have become incredibly powerful. As policy and engineering practice evolves to deal with the
newfound importance of software systems, it is critical to avoid attributing lack of understanding
of computer systems to their massive technical complexity. Rather, we must use the context and
history of systems to build a more complete understanding that avoids the fallacy of inscrutability.
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