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Life is built on cooperation between genes, which makes it vulnerable to

parasitism. Selfish genetic elements that exploit this cooperation can achieve

large fitness gains by increasing their transmission relative to the rest of the

genome. This leads to counter-adaptations that generate unique selection

pressures on the selfish genetic element. This arms race is similar to host–

parasite coevolution, as some multi-host parasites alter the host’s behaviour

to increase the chance of transmission to the next host. Here, we ask if, simi-

larly to these parasites, a selfish genetic element in house mice, the

t haplotype, also manipulates host behaviour, specifically the host’s

migration propensity. Variants of the t that manipulate migration propensity

could increase in fitness in a meta-population. We show that juvenile mice

carrying the t haplotype were more likely to emigrate from and were

more often found as migrants within a long-term free-living house mouse

population. This result may have applied relevance as the t has been

proposed as a basis for artificial gene drive systems for use in population

control.
1. Introduction
The genes within a genome must work together to produce a viable organism,

but their interests are not identical [1]. This causes conflict because not all genes

in an organism will be transmitted equally to the next generation. Conse-

quently, a fair chance of transmission is necessary for cooperation within the

genome over evolutionary time. Genes that violate this rule by increasing

their chance of transmission can gain large fitness advantages at the cost of

those that transmit in a Mendelian fashion [2]. This leads to selection for selfish

adaptations and, as a result, counter-adaptations to this selfishness, initiating an

arms race between selfish genetic elements and the rest of the genome. This

arms race is similar to the one between hosts and parasites, where some para-

sites even manipulate their hosts. For example, a parasite of the paper wasp

Polistes dominula manipulates the behaviour of its host through changes in

gene expression [3]. Instead of behaving as a member of the ‘worker’ caste, a

parasitized female will behave more like the nest-founding ‘gyne’ caste. How-

ever, she will not actually found nests, but will instead transmit the parasite

to other nests. Other manipulations have been observed, for example, in

fungi-infected ants that climb vegetation and remain latched onto it post-

mortem. The fungus will then produce spores, which disperse out of the

dead ant’s body [4].

Host defences against parasites and ‘parasitic’ [5,6] selfish genetic elements

range from behavioural changes to increased resistance in infected populations.

For example, populations of the amphipod Gammarus pulex that are not natu-

rally infected with the parasite Pomphorhynchus laevis are more sensitive to

the parasite’s manipulation than naturally infected populations [7]. This is evi-

dence of an arms race. A similar counter-adaptation to selfish genetic elements

is the suppression of the drive mechanism. For example, in systems with X
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chromosome drive in Drosophila, which lead to the killing of

Y-carrying sperm, some (Y) chromosomes suppress the drive,

restoring production of sons [8–11]. Behavioural adaptations

are also evident, especially in mating preferences that reduce

transmission of parasites or selfish genetic elements. In the

woodlouse Armadillidium vulgare, males discriminate against

‘neo-females’ infected with feminizing Wolbachia bacteria,

another type of selfish genetic element [12]. Similarly,

females discriminate against individuals carrying a selfish

genetic element in stalk-eyed flies (Cyrtodiopsis) [13].

Male meiotic drivers are selfish genetic elements that

manipulate spermatogenesis to favour the sperm that carry

them by harming the sperm that do not [14,15]. This is

expected to decrease the competitiveness of a male carrying

the meiotic driver by decreasing the number of viable

sperm and potentially damaging the driver-carrying sperm

as a by-product [15,16]. In consequence, driver-carrying

individuals will perform worse [17,18] in sperm competition,

in which sperm of different males compete over fertilization.

Additionally, females evolve higher remating rates

in response to the presence of a selfish genetic element in

Drosophila pseudoobscura, which increases sperm competition

and reduces the element’s fitness [19]. Potentially, the

driver carriers might not sire a single offspring despite

mating [16] and the driver could go locally extinct [20].

Because of this strong disadvantage, females can be selected

to increase sperm competition to decrease the risk of trans-

mitting a driver to their offspring [19,21,22]. In response,

the driver could manipulate the male host’s reproductive

behaviour, as may be the case in Wolbachia-infected Drosophila
that show higher mating rates [23]. Not much is otherwise

known about how male meiotic drivers respond to this

counter-adaptation that increases the risk of their extinction.

The t haplotype (t) is a male meiotic driver in the house

mouse Mus musculus. It consists of a set of genes, making

up about 1.5% or 40 Mb of the mouse genome, that are

linked by inversions [2,24] and distort Mendelian inheritance

patterns so that 90–99% of the offspring inherit the t from a

heterozygous sire [25,26]. It harms its host in at least two

ways. The t carries recessive lethal alleles, so that t/t die pre-

natally [16,27]. In addition, t heterozygous (þ/t) males are

very poor sperm competitors, siring only 11%–24% of off-

spring when mating with a female who also mates with a

wild-type male in the same oestrus cycle [16,28]. In house

mice, sperm competition intensity varies between popu-

lations [29] and is higher in larger populations [30], so that

fitness losses of þ/t males from sperm competition are

likely to vary with population demography. This is consistent

with a negative association between population size and t fre-

quency found in a trapping study [31]. In an intensively

monitored free-living large house mouse population, the fre-

quency of the t decreased significantly over 6 years until

no þ/t were left [20] while population size increased [32].

Experimental evidence shows that t frequency decline in

this population is not linked to mate choice against the t hap-

lotype [33,34], as found by Lenington et al. [35] in another

population, but is influenced by sperm competition [16,20].

The decline of the t in the population was even more

rapid than predicted by a model based on sperm competition

[20]. One additional contributing factor could be that þ/t
individuals are more likely to emigrate from the population

than þ/þ. We will use the term ‘emigration’ when we

mean leaving the natal population (the first step of dispersal
[36]), ‘migration’ when we mean leaving and entering

another deme or population [37] and ‘dispersal’ when we

mean migrating and then breeding. Early theoretical work

predicted that increased dispersal rates should be beneficial

for the t haplotype by preventing it from becoming extinct

owing to drift and allowing it to increase in frequency rapidly

when dispersing to a suitable population [38]. In this view, a

suitable population would be one that has no þ/t in it,

because the fitness of the t is frequency dependent, with

lower fitness at high t frequencies [39]. This is owing to nega-

tive fitness effects (up to homozygous lethality) of deleterious

mutations on the t [25]. Combined with the more recent

discovery of low sperm competitiveness, the most suitable

population for the t would therefore be one with as few

þ/t and as little sperm competition as possible, which is

expected in smaller populations [30]. A t variant that is

more likely to disperse to such a population should therefore

be at a selective advantage compared to other variants.

We hypothesized that a t mutant that increases the

migration propensity of its host generally would more often

disperse to suitable populations and would thereby be

selected. The increase in migration propensity could be a func-

tion of population density (i.e. þ/t might only emigrate more

than þ/þ out of dense populations where sperm competition

is more common [29,30]). This has not yet been tested, but for

parasites, theoretical work has demonstrated that they would

benefit in general from manipulating their host’s migration

propensity [40,41]. We analysed juvenile disappearances

from and juvenile migration within an open population of

wild house mice (the same as analysed for t frequency

dynamics by Manser et al. [20]) to investigate if þ/t individ-

uals are more likely to disappear than þ/þ. We found that

þ/t juveniles were more likely to disappear from the popu-

lation than þ/þ, particularly when juvenile densities were

high. To our knowledge, this is the first evidence of increased

migration propensity of carriers of any selfish genetic element

in a free-living population. Our research is particularly timely,

as the t haplotype is proposed as a basis for artificial gene

drive systems to eradicate house mouse populations [42,43]

and behavioural differences in migration propensity between

þ/t and þ/þ would need to be considered in modelling and

implementing such systems.
2. Methods
(a) The population
We analysed data that were collected between the years 2004 and

2012 in a free-living house mouse Mus musculus domesticus popu-

lation in an old barn near Zurich, Switzerland [44]. We provided

a human-made and provisioned environment similar to that

found in barns housing animals, but easier to monitor. We pro-

vided food and water regularly ad libitum. The barn is divided

into four similarly sized sectors [44]. However, mice can easily

travel between these sectors and also freely enter and leave the

barn. Thus emigration could not be monitored directly owing

to the numerous and unpredictable exit routes that mice use

(that were however small enough to exclude predators). Instead,

we used an indirect measure of emigration (see §2b). We con-

sidered individuals from 1 to 16 days as pups, then (when they

began to be weaned) as juveniles before reaching 17.5 g in

body mass, which is when we classified them as adults, as

females do not breed until they exceed this body mass [32].

The sex ratio of the population was roughly equal (48% female).
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(i) Monitoring
When pups reached 13 days of age (allowing for +2 days of

difference from this), they were ear-punched to provide a DNA

sample. Every 10–13 days, the barn was searched for new litters.

Every seven weeks, on average, every individual in the barn was

caught. On this occasion, all individuals above 17.5 g in body

mass received a radio-frequency identification (RFID) transpon-

der and were then considered adults. On average in the years

studied, 16.1% of the population received a transponder (was

newly classified as an adult) on such a capture event. Addition-

ally, we regularly searched the barn visually and with

transponder scanners for dead individuals or lost transponders.

When found, dead individuals were removed and identified via

their transponder or a new genetic sample. Finally, there has

been an automatic antenna system in the population since 2007

that tracks exits and entries of transpondered mice into and out

of 40 nest boxes [44]. We used these data in addition to data from

manual checks to determine when an adult individual was last

detected in the population if it was never found dead. This was

relevant for the population size calculations; see §2c.

(ii) Identification
We genetically identify each individual as a pup, as a newly classi-

fied adult, or as a corpse if found dead without a transponder. We

do so based on multi-locus genotypes based on 25 micro-satellite

loci [45]. The genotypes allow us to link individuals as pups to

their adult transponder ID or to a corpse, allowing for one allelic

mismatch using the software CERVUS [46]. We use the micro-

satellite locus Hba-ps4 that has a 16-bp t specific insertion [47]

to identify the t haplotype. Sexing of individuals was per-

formed by testing for the presence of Y-chromosome-specific

micro-satellite markers Y8, Y12 and Y21 [48].

(b) Definitions of migration
(i) Disappearing from the population
Individuals that fulfilled all of the following criteria were classi-

fied as juveniles that disappeared from the population: (i) the

individual was genotyped as a 13 + 2 day old pup, (ii) its geno-

type never matched to an adult’s sample, and (iii) also never to a

corpse’s sample. Following this definition, the time at which the

individual disappeared must have been between 13 + 2 days of

age and an adult age (defined by body mass as described earlier)

and therefore the individual was a juvenile. Consequently, indi-

viduals that disappeared from the barn as adults were not

classified as disappeared in this analysis, but are instead treated

as juveniles that stayed until adulthood. We excluded individuals

born in the year 2005 from the analysis because monitoring was

considerably less intense in this year and thus there is a larger

potential to misclassify individuals that died within the popu-

lation as ones that disappeared. Therefore, we analysed 7

birthyears (2004 and 2006–2011) in which the t was present in

the population (it then went extinct). We also excluded individ-

uals about whom we did not have enough information (such

as incomplete genotype or conflicting sex information) from the

analysis. Furthermore, we removed those that died as juveniles,

because we cannot know whether they might have emigrated

later. Following these exclusions, 261 þ/t and 2677 þ/þ
remained for the analysis (see the electronic supplementary

material, S1, for an overview).

(ii) Migration within the population
We defined the four distinct sectors within the population

described earlier as sub-populations between which mice can

migrate. We did so because from earlier analyses [49] we know

that the dividing walls between the four sectors are social bar-

riers for the mice. While mice are regularly seen moving within
each sector, movements and social interactions between the sectors

are less frequent [49]. Furthermore, 61% of adults (in their adult

lifetime) that were located at least nine times were found within

the same sector every time. Thirty-one per cent were found in

two sectors in total, 7% in three and less than 1% in all four. We

defined juvenile within-population migrants as individuals that

were first found as adults in a different sector from where they

were last seen in as pups. Thus, these individuals migrated in

the same age range as those that disappeared. The dataset was

based on the same restrictions made for the disappearance analy-

sis, except that only those individuals that stayed in the population

until adulthood could be analysed.

(c) Controlling variables
Mice were counted towards the population size from birth until

death or until they were last seen in the population. When they

were last seen was based on both manually locating the animal

(in regular population monitoring) or information from our auto-

matic antenna system. A large proportion of the individuals

disappeared from our population before they received their

RFID transponder (the disappearances analysed in this study).

These mice were counted for 30 days from the time of their

birth on as part of the population. This cut-off is based on a

handful of individuals that reached the body mass we designate

as minimum for the transponder (17.5 g) at 35 days of age,

reports of an early dispersal phase in 30-day-old juveniles [50],

and a weaning age (nutritional independence and end of active

maternal care) in mice of about 23 days [51,52]. Therefore, it is

a conservative estimate of the minimum amount of time an emi-

grant would spend in the population after birth. However, the

results of this study do not change fundamentally when this

time frame is increased (we used 50 days of age as an alternative

cut-off; see the electronic supplementary material, S1).

We subdivided the population size into adult and juvenile popu-

lation sizes. We did so because we do not know how individual mice

decidewhether they migrate, therefore we wanted to disentangle the

current and the future reproductive environment reflected by these

two variables. The two population sizes are correlated, but do

not explain much of each other’s variation (linear model with

R2¼ 0.08). Individuals that remained in the population until adult-

hood were counted from age 31 days on as part of the adult

population (and before as juveniles), whereas individuals that

were never found as adults were only counted for 30 days as juven-

iles and never as adults. We also considered using local adult

population sizes in the four sectors, but overall did not find that to

be more informative for the questions asked here (see electronic sup-

plementary material, S2). Similarly, we tested whether controlling

for relatedness would influence the results, but concluded that this

was not the case (see electronic supplementary material, S3).

We defined the months April to September as the main

breeding season, because these are the six months with the high-

est counts of new pups. The remaining months (October to

March) were defined as the off-season. Eighty-seven per cent of

the birth dates in our dataset fall within the main breeding

season. To account for inter-annual variation in the environment

(like temperature or noises in the area) that could possibly affect

migration propensity, we added the year of birth (N ¼ 7) as a

random effect in the disappearance models. Finally, we also con-

trolled for the age when individuals were first sampled (between

11 and 15 days of age, with most being sampled at 13 days). We

did so because preliminary data visualizations revealed a relation

between this age and disappearances.

(d) Statistical analyses
(i) Disappearing from the population
We used a generalized mixed effect model with a binomial dis-

tribution, a logit-link function, and fit by maximum-likelihood.
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Figure 1. Predicted probabilities of juvenile disappearance out of the study
population (lines) with 95% confidence intervals and actual data points (top
and bottom, jittered) of þ/t (orange, dotted line) and þ/þ (grey, solid
line) individuals in varying juvenile population sizes (N ¼ 2938). This
example plot is based on predictions from the most informative disappear-
ances model (model 2) for a female born in the off-season in average
adult population size for no specific birthyear (fixed effects only). The vertical
line indicates the mean juvenile population size.
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All statistical analyses and figures were done in R 3.4.4 [53] with

RStudio [54] and the packages ggplot 2 2.2.1 [55], and lme4 1.1–17

[56], the latter using the function glmer. The dependent variable

was binary (1 when the individual disappeared as a juvenile and

0 if it did not). The independent variables were adult and juven-

ile population size (each standardized and fitted as linear and

quadratic terms), the season, the sex and the genotype. The

population sizes and the season were taken from 30 days after

an individual’s birth to reflect the environment that the juvenile

was exposed to around the time when it either did or did not

emigrate. The year of birth was used as a random effect. We

used predictInterval of merTools 0.3.0 [57] with its integrated boot-

strapping method with 10 000 simulations, using the median and

a confidence interval of 95% for figure 1.

We used pbkrtest 0.4–7 [58] for parametric bootstrapping-

based model comparisons with a significance level of 5%. Each

dataset was simulated 10 000 times. The p-value is based on

the PB statistic provided by the function PBmodcomp. It rep-

resents the fraction of likelihood ratio test (LRT) values of the

simulated (bootstrapped) datasets that were larger or equal to

the observed LRT value. Some of the runs can result in negative

values of the LRT statistic. These runs are excluded automati-

cally. We tested the significance of the genotype’s effect and

the interaction between genotype and the population sizes by

comparing a model with the respective predictors to a model

without them (see table 1; electronic supplementary material,

S1 for all comparisons). We list DAIC values in the table to

ease understanding, but did not use them for interpretation.

We tested interactions of genotype and season as well as geno-

type and sex to explore potential relationships that we did not

hypothesize (electronic supplementary material, S1).

To test whether pup condition differences could be an

alternative explanation for the disappearance differences, we

used the same environmental variables to set up a linear mixed

model that predicts pup body mass and then compared this

model to one that also included the genotype as an effect (elec-

tronic supplementary material, S4). We then added pup body

mass as a predictor to our disappearance null model and our

most informative disappearances model (electronic supplemen-

tary material, S1) to test whether (a) disappearance is predicted

by pup body mass and (b) the genotype explains the same vari-

ation as does the pup body mass. All analyses that included body

mass are reduced in their sample size by 40 individuals for

whom we did not have this information.

(ii) Migration within the population
For this analysis, we have a reduced sample size because only

mice that stayed alive and remained within the population

until adulthood can be analysed. We also excluded one more

birthyear because in 2011 no þ/t stayed in the population until

adulthood. We analysed 873 mice. The number of þ/t in this

dataset is small (60), which complicates statistical analyses. We

compared the numbers of juvenile migrants between the geno-

types with Pearson’s x2 test using R. We also used generalized

linear models to control for the same variables as in the disap-

pearance analysis. The smaller sample size made this approach

less informative. These results can be found in electronic

supplementary material, S5.
3. Results
(a) Disappearances from the population
Fifty-six per cent of all individuals born (N ¼ 2938) in the

years of this analysis who were alive shortly before weaning

disappeared (overview in electronic supplementary material,

S1). The most informative disappearance model included the
genotype and an interaction between the genotype and the

juvenile population size (model 2, see table 1 and electronic

supplementary material, S1). This model indicated that þ/t
were more likely to disappear, particularly with increasing

numbers of juveniles in the population (figure 1). At mean

juvenile densities, the probability that a þ/t juvenile disap-

pears was 47.5% higher than the probability for a þ/þ
juvenile (based on model predictions used for figure 1). A

standard deviation increase in juvenile population size

increased this difference by 13.3 percentage points. As can

be seen in figure 1, þ/t and þ/þ were similar in their prob-

ability to disappear when there were few juveniles in the

population, but then diverged with increasing juvenile den-

sity. Disappearance probability decreased with increasing

adult population sizes, but was not differently affected in

þ/þ and þ/t. Similarly, being born in the main breeding

season and being female increased the probability of disap-

pearance for both genotypes (electronic supplementary

material, S1).

To test possible alternative explanations (other than

migration propensity) for the disappearance probability of

þ/t (like a mortality or condition bias), we analysed data

on dead juveniles found in the same time frame. We analysed

data on 218 dead juveniles. We compared the number of dead

juveniles with the number of individuals that were found

alive as adults between þ/þ and þ/t and found no differ-

ence (þ/t: 17.8% of 90 died as juveniles, þ/þ: 14.2% of

1424, x2¼0.62, p¼0.43). We decided not to conduct a more

detailed model for this comparison because of the limited

amount of juvenile þ/t corpses found (16). For better com-

parison of this simple mortality analysis with the

disappearance model, we used the same simple statistical

test for the disappearance data used in the model and

again found the difference between þ/t and þ/þ (71.6% of

261 þ/t and 54.4% of 2677 þ/þ disappeared as juveniles,

x2 ¼ 28.16, p ¼ 1.1� 1027). We also tested whether there

were any differences in the individual body mass as a pup



Table 1. Excerpt overview of models of juvenile disappearances out of the study population (see electronic supplementary material, S1 for the full table). LRT
indicates the likelihood ratio test statistic of the observed dataset. The p-value is the fraction of simulated datasets with LRT larger than the observed LRT. Runs
indicate the absolute values on which the p is based. The superscripted ‘2’ in the formula refers to quadratic terms. The ‘x’ indicates model term interactions.

models formula comparison LRT p-value runs DAIC

null model with covariates � juvenile population size n.a. n.a. n.a. n.a. n.a.

þ juvenile population size2

þ adult population size

þ adult population size2

þ season þ sex

þ age when sampled

model 1 � genotype null model 16.00 0.0003 1/5869 214.0

þ null model variables

model 2 � genotype � juv. pop. size model 1 11.62 0.005 26/5815 27.62

þ genotype � juv. pop. size2

þ model 1 variables
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(as a measure of the condition of the pup) between þ/þ and

þ/t. We found that þ/t pups were slightly heavier than þ/þ
pups (b ¼ 0.17g, p¼0.03, intercept ¼ 6:46g, details in elec-

tronic supplementary material, S4), but did not find that

the body mass as a pup predicts disappearances, either

when the genotype was in the model or when it was absent

(models 7 and 8; electronic supplementary material, S1).

Thus, we concluded that differences in juvenile disappear-

ances between the genotypes cannot be explained by

differences in juvenile mortality or condition.

(b) Migration within the population
Of the 873 individuals analysed, 9.4% migrated as juveniles

within the population, i.e. they were found in a different

sub-population as adults from where they were last seen in

as pups. Within the population, 16.8% of the 60 þ/t migrated

as juveniles compared to 8.9% of 813 þ/þ, a statistically sig-

nificant difference (x2 ¼ 4.01, d.f. ¼ 1, p ¼ 0.045). Controlling

for other explanatory variables in a generalized linear model

(GLM) was more challenging owing to the reduced sample

size. We found overall that the genotype remained an infor-

mative predictor in interactions with juvenile population

size and sex (comparison with null model: p ¼ 0.01, DAIC ¼

27.22, details in electronic supplementary material, S5). Par-

ticularly, male þ/t had a high migration propensity in the

smallest population sizes.
4. Discussion
We provide evidence for a higher migration propensity of

þ/t juveniles compared to þ/þ juveniles. We found that car-

rying the t haplotype is a strong positive predictor for

juvenile disappearances out of our study population. Our

hypothesis that þ/t should be selected to increase migration

propensity was also modestly supported by a þ/t bias in

migratory movements within the population. Given that vari-

ation in behaviours related to dispersal is generally heritable

to moderate degrees [59], a manipulation by the t in the t’s
favour is a probable explanation. Our results further suggest

that the rates of þ/t disappearances are increased particu-

larly in denser populations. This is consistent with previous
results because the t was found to be less fit in denser

populations owing to an increase in sperm competition

[20,30]. The þ/t that did not disappear from the popu-

lation were found to be more likely to migrate within the

population when juvenile densities were low. A possible

explanation for this could be that there was more open habi-

tat available when fewer juveniles were in the population and

the migration-prone þ/t were able to migrate within the

population instead of needing to leave it.

We did not find a different effect of sex between the

genotypes in our disappearance analysis, but did find one in

the within-population migration analysis. The lack of difference

agrees with a theoretical model that showed that t migration

propensity manipulation need not be biased towards males (in

which t drives), because migration of both male and female

þ/t was found to be more effective than male-only migration

[38]. However, þ/t males were more likely than females to

migrate within the population as juveniles. The test of this inter-

action was exploratory and not driven by a hypothesis. The

result may reflect sex-specific costs and benefits of within-

population migration for þ/t mice, which have yet to be fully

elucidated. It is interesting, but needs further verification,

particularly given that the disappearance analysis with its

larger dataset does not show this pattern.

One drawback of our disappearance analysis is that it is at

best an indirect measure of emigration, which we expect to be

less precise. Despite that, we detected a strong signal. We

considered alternative explanations of the strong þ/t disap-

pearance bias. We tested for a difference in juvenile

mortality but did not find one, which is further supported

by a lack of difference in pup survival until weaning from

laboratory-bred mice taken from the same population [26].

We found a slightly increased pup body mass for þ/t, but

showed that this was not predictive of the disappearances

(electronic supplementary material, S1) and migration

events (electronic supplementary material, S5). Furthermore,

there is evidence from another laboratory study that þ/t
and þ/þ from the same study population do not differ in

adult body mass (males and females) [16]. Differences in

social dominance could be another explanation for disappear-

ance patterns. Studies looking at dominance either found less

dominant þ/t males [60], more dominant þ/t males [61], or
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no difference in dominance between males and less dominant

þ/t females [35,62]. However, if dominance differences were

the cause of our disappearance results, we might expect to

see an informative interaction between sex and genotype.

Furthermore, we know from previous analyses that þ/t
males do not differ in survival from þ/þ, but þ/t females

live longer than þ/þ in our population [20]. Survival can

predict dominance in house mice [62] and thus there is no

clear evidence that dominance differs between the genotypes

in our population. Finally, the mice in our population could

go on exploratory trips outside the barn. Some of the explor-

ing mice could be preyed upon on their trips. In that case, our

results would in part reflect differences in exploration

propensity. However, studies in mammals indicate that indi-

viduals that are more likely to explore are also more likely to

migrate [63–65] and if that is true in the study population we

would still measure migration propensity indirectly through

exploration propensity. Alternatively, if þ/t juveniles are

somehow more likely to be preyed upon than þ/þ, it

would cause them to disappear more often without necess-

arily an increased migration or exploration propensity. We

cannot test this idea with the data that are available to us.

However, we believe that this alternative explanation is

weaker than the one we offer. The difference between the

genotypes in disappearances is larger in denser populations.

This is more consistent with a density-dependent migration

propensity than with predation risk. Furthermore, we

found evidence that þ/t may also migrate differently

within the population from þ/þ, which provides further

support for a difference in migration propensity. We cannot

completely rule out a difference in predation risk as an expla-

nation, but we argue that it is less likely than differences in

migration propensity.

Generally, an increased migration propensity of þ/t
could help to explain why the t continues to exist in nature

despite its homozygous and heterozygous fitness costs

owing to recessive lethals and low sperm competitiveness.

Compared to a t variant that does not influence migration,

variants of the t that increase migration propensity could

have an increased chance of reaching or founding popu-

lations where there are few other þ/t and polyandrous

matings are less frequent. The t is expected to rapidly increase

in frequency given such circumstances [20,31,66–68]. Thus, it

would likely out-compete t variants that did not affect

migration. Competition between t variants is consistent

with genetic evidence that a single t haplotype variant

recently replaced previous variants in a sweep [69]. We do

not know how an increased migration propensity could be

encoded within the t haplotype, but the t comprises several

hundred genes that are protected from recombination [25].

Alternatively, instead of manipulation by the t, the increased

migration propensity could also be an evolved response by

the rest of the genome to the presence of the t, if increasing

migration propensity is increasing the fitness of the rest of

the genome when t is present. More work is needed to

better understand this interesting dynamic.

Emigration is only the first step of successful dispersal.

Emigrants also need to breed as an immigrant or founder,

which is challenging for mice [70]. Unfortunately, there

were too few þ/t that migrated within the population for

us to analyse their breeding success. However, Anderson

et al. [71] were able to ‘infect’ an island population with the t
haplotype by manually migrating þ/t. Although the t was
able to establish itself in the initial area over a period of a

few years, it did not spread much across the island. For

Pennycuik et al. [72], introducing the t to an enclosure was

more difficult. However, they managed to do so when there

were open territories in the population. They also reported

many of the þ/t males and females migrating between sub-

populations. However, the t was almost extinct 2 years later,

at the end of the study. It is evident from these experiments

that there will be many populations to which the t cannot dis-

perse successfully. In our study population, we have no

evidence for immigration of any individuals (unpublished).

This makes increased migration propensity counterintuitive

because the migration will often fail. Still, because not

migrating is also not beneficial for the t, it makes migration

attempts potentially even more necessary for the t’s fitness.

When house mice invade an island that has evolved with-

out mammalian predators, their presence can be very

damaging to the ecosystem [73–75]. Recently, efforts have

been made to use a modified t haplotype for potential eradi-

cation of such house mouse populations [42,43,76,77]. The

tSRY variant is a t haplotype that is synthetically combined

with the male-determining gene SRY. Every þ/tSRY individ-

ual is thus expected to be male. Owing to the t’s transmission

advantage, more than 90% of the offspring of a þ/tSRY are

then male, which could then drive populations extinct via

lack of one sex [42,78,79]. So far, only some of the t’s charac-

teristics have been explicitly considered in trying to facilitate

the use of tSRY to eradicate wild populations [42]. However,

accounting for the entirety of the known attributes of the t
is crucial to successfully predict how a synthesized variant

works in the field. Increased migration propensity would

likely aid in the distribution of þ/tSRY mice to target

locations, but could also increase the possibility of tSRY

reaching populations it was not intended for.
5. Conclusion
We found that juvenile mice carrying the t haplotype were

more likely to disappear from the population at high den-

sities and were over-represented in migrants within the

population. To our knowledge, this is the first evidence of a

change in migration propensity that is linked to a selfish gen-

etic element. Our results should be of broad interest. First,

they have implications for research on other selfish genetic

elements, considering that low sperm competitiveness is

expected in many male meiotic drive systems like the t
[14,15,17,18,80]. Recessive deleterious alleles and therefore

frequency-dependent fitness would also be expected in

other meiotic drivers, because without negative fitness effects

the driver would spread to fixation [81,82]. This would pro-

vide further advantages for migratory variants of these

drivers. Similarly, parasites could also benefit from manipu-

lating dispersal behaviour [40]. Second, the recent work on

artificial gene drive systems based on the t haplotype will

benefit from incorporating as many traits of the t as are avail-

able. A difference in migration propensity could have

important implications for such a system. Third, a selfish gen-

etic element affecting migration propensity could be an

important finding for research on dispersal and migration

in general. Dispersal attempts are risky [83] and the different

selective pressures for the t and similar elements could help

to explain better when this behaviour—which often results
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in no fitness gains—is most beneficial. Therefore, arms races

like the one studied here could be a causal mechanism driv-

ing the evolution of dispersal. We will further investigate this

new direction in t haplotype research with theoretical and

experimental approaches.
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