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ABSTRACT

RNA secondary structure prediction is often used to develop hypotheses about structure-function relationships for newly
discovered RNA sequences, to identify unknown functional RNAs, and to design sequences. Secondary structure predic-
tionmethods typically use a thermodynamicmodel that estimates the free energy change of possible structures based on a
set of nearest neighbor parameters. These parameters were derived from optical melting experiments of small model ol-
igonucleotides. This work aims to better understand the precision of structure prediction. Here, the experimental errors in
optical melting experiments were propagated to errors in the derived nearest neighbor parameter values and then to er-
rors in RNA secondary structure prediction. To perform this analysis, the optical melting experimental values were system-
atically perturbed within the estimates of experimental error and alternative sets of nearest neighbor parameters were
then derived from these error-bounded values. Secondary structure predictions using either the perturbed or reference
parameter sets were then compared. This work demonstrated that the precision of RNA secondary structure prediction
is more robust than suggested by previous work based on perturbation of the nearest neighbor parameters. This robust-
ness is due to correlations between parameters. Additionally, this work identified weaknesses in the parameter derivation
thatmakes accurate assessment of parameter uncertainty difficult. Considerations for experimental design are provided to
mitigate these weaknesses are provided.
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INTRODUCTION

Noncoding RNAs (ncRNA) are RNAs that function by
means other than being translated into protein. These func-
tions for ncRNAs include enzymatic catalysis (ribozymes)
(Doudna and Cech 2002), regulation of gene expression
(siRNA, miRNA, and riboswitches) (Wu and Belasco 2008;
Serganov and Nudler 2013), and target identification
(guide RNAs) (Yu andMeier 2014). These diverse functions
are often the result of specific structures.

RNA structure can be characterized at both the second-
ary and tertiary levels. Secondary structure is defined as
the set of canonical base pairs (including Watson–Crick
and GU pairs), whereas tertiary structure is classified as
the set of additional contacts that determine the full
three-dimensional structure. The secondary structure, in
addition to sequence, provides enough information to

identify a functional RNA (Nawrocki and Eddy 2013) and
develop hypotheses about function (Seetin and Mathews
2012). Compared to tertiary structure, secondary structure
tends to be more thermally stable and tends to form faster
(Tinoco and Bustamante 1999). This allows RNA secondary
structure to be predicted independently of tertiary struc-
ture (Tinoco and Bustamante 1999).

The Turner nearest neighbor rules and their associated
parameters can be used to estimate the folding energy
of an RNA secondary structure. The stability of a given mo-
tif, such as a stack of a base pair on an adjacent pair or a set
of unpaired nucleotides and its closing base pairs, called a
loop, is assumed to be determined by the sequence of the
motif and the adjacent base pairs. The thermodynamic
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parameters were determined using linear regression on
a database of small RNA sequences with stabilities mea-
sured by optical melting experiments (Andronescu et al.
2014). The most recent complete set of Turner rules was
assembled in 2004 (Mathews et al. 2004; Turner and
Mathews 2010) and includes the Watson–Crick terms de-
termined in 1998 (Xia et al. 1998).
The nearest neighbor parameters are widely used in

software for RNA secondary structure prediction (Andro-
nescu et al. 2003; Zuker 2003; Reuter and Mathews
2010; Lorenz et al. 2011). A popular approach to structure
prediction is to use a dynamic programing algorithm to
predict a lowest free energy structure (Seetin andMathews
2012; Hofacker 2014) or base-pairing probabilities across
an ensemble of structures for a given sequence (McCaskill
1990; Mathews 2004). Additionally, methods that infer
folding parameters from the set of sequences with known
structure generally use the same functional form (Do et al.
2006; Andronescu et al. 2010; Rivas et al. 2012). The cur-
rent set of RNA folding parameters are enumerated in
the nearest neighbor database (NNDB), along with exam-
ples of their use (Turner and Mathews 2010). Subsequent
to the determination of the latest set of Turner rules, a
number of optical melting experiments have demonstrat-
ed that improvements in the nearest neighbor parameter
models and values are possible (Huynen et al. 1997;
Znosko et al. 2002; Chen et al. 2004, 2005, 2006, 2009,
2012; Vecenie and Serra 2004; Bourdelat-Parks and War-
tell 2005; O’Toole et al. 2005, 2006; Chen and Turner
2006; Vecenie et al. 2006; Wilkinson et al. 2006; Badhwar
et al. 2007; Blose et al. 2007; Davis and Znosko 2007,
2008, 2010; Shankar et al. 2007; Carter-O’Connell et al.
2008; Christiansen and Znosko 2008, 2009; Clanton-Arro-
wood et al. 2008;Miller et al. 2008; Nguyen and Schroeder
2010; Sheehy et al. 2010; Thulasi et al. 2010; Liu et al.
2011; McCann et al. 2011; Hausmann and Znosko 2012;
Lim et al. 2012; Vanegas et al. 2012; Kent et al. 2014; Mur-
ray et al. 2014; Kwok et al. 2015; Stromet al. 2015; Tomcho
et al. 2015; Crowther et al. 2017; Phan et al. 2017).
This study focuses on how uncertainty in parameter val-

ues can result in uncertainty in structure prediction. It has
been established that free energy minimization is ill-condi-
tioned. In other words, changes in the nearest neighbor
parameter values, within experimental errors, can change
the resultant predicted structure (Layton and Bundschuh
2005). Moreover, it has been established that base-pairing
probabilities and centroid structures are more robust to
these changes in nearest neighbor parameter values
(Layton and Bundschuh 2005; Rogers et al. 2017). To pro-
vide these insights, previous studies treated each parame-
ter as independent of the other parameters (Layton and
Bundschuh 2005; Rogers et al. 2017). However, because
the parameters are not independent from each other,
there is more to learn about parameter uncertainty.
Parameters can be correlated within a regression. For ex-

ample, in the regression for estimating stacking values
for adjacent Watson–Crick pairs, stacks that can share
a base pair are more likely to appear adjacent to each
other in the set of helices that were experimentally studied,
resulting in a correlation between the stacking parameters.
Additionally, there are complex interdependent relation-
ships across regressions. For example, the Watson–Crick
stacking terms are used in the derivation of the terms
that estimate hairpin loop and internal loop folding
stabilities.
In this work, the experimental uncertainties in the optical

melting experiments are mapped to uncertainties in the
nearest neighbor parameters, and their impact on RNA
secondary structure prediction is quantified. It shows that
the uncertainties in the parameter values have a smaller ef-
fect on uncertainty in secondary structure prediction than
previously estimated. This study reveals previously undoc-
umented correlations between the nearest neighbor pa-
rameters, and provides guidance about the design of
future optical melting experiments.

RESULTS

Overview

In this study, the nearest neighbor parameters are per-
turbed to estimate the uncertainty in secondary structure
prediction. The nearest neighbor parameters are per-
turbed either indirectly, by perturbing the values of the un-
derlying optical melting values within the bounds of
experimental error, or directly, by perturbing the values
of the nearest neighbor parameters (Fig. 1). When perturb-
ing the experimental values, changes in the underlying op-
tical melting experimental data are propagated through
the regression procedures to derive new values for the
nearest neighbor parameters. When these perturbations
are randomly sampled within the error of the original ex-
periments, the resulting set of perturbed nearest neighbor
parameter values are necessarily as equally valid as the cur-
rent set of nearest neighbor parameter values, called the
reference values. Secondary structure predictions using
the perturbed and reference nearest neighbor parameter
sets can then be compared. In contrast, perturbing the pa-
rameters directly treats the parameter values and errors as
though they are uncorrelated.
This study focuses on the Turner 2004 parameter set,

which is composed of 294 parameters (Mathews et al.
2004), and uses the nearest neighbor models from that
work. Those parameters were derived from a set of 802
optical melting experiments, with 109 Watson–Crick heli-
ces, 39 helices including G-U base pairs, 136 hairpin
stem-loop structures, 304 internal loops, 49 bulge loops,
18 coaxial stacks, 45 helices with dangling ends, 33
helices with terminal mismatches, and 69 multibranch
loops. The sequences and the experimentally determined
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folding free energy changes are provided in Supplemental
Tables 1–8.

In this work, base pair probabilities are estimated using a
partition function calculation (McCaskill 1990; Mathews
2004), which uses thermodynamics to estimate the Boltz-
mann ensemble of secondary structures. Subsequently,
secondary structures are predicted using ProbKnot predic-
tion from the estimated base pair probabilities (Bellaousov
and Mathews 2010). ProbKnot assembles a structure com-
posed of base pairs between nucleotides that are mutually
maximal base-pairing partners. Compared to minimum
free energy structure prediction, pairs predicted by Prob-
Knot can include pseudoknots.

Review of nearest neighbor parameter derivation

To generate the 294 nearest neighbor parameters from
optical melting experiments, a series of linear fits are
performed (Xia et al. 1998; Mathews et al. 1999, 2004).
The parameters for Watson–Crick stacks are fit by linear

regression to the 109 stabilities for duplexes composed
of only Watson–Crick helices. Then, parameters for
stacks including G-U base pairs are fit by linear regression
to a set of duplexes composed of both Watson–Crick
pairs and G-U pairs. In this regression, the values for the
folding free energy change of stacks composed of only
Watson–Crick pairs are taken from the first regression.
These first two regressions provide the set of nearest
neighbor parameters needed to estimate the stabilities
of helices.

The parameters for dangling ends, unpaired nucleotides
at theendof a helix oneither the5′ endor 3′ endof a strand,
are determined as the difference in stability for duplex that
forms a helix with a dangling end and a duplex that only
forms the helix. These parameters are sequence depen-
dent, but not all dangling end sequences were measured.
No dangling end measurements were made for nucleo-
tides dangling fromaG-UorU-G closing base pair. In those
cases, the parameter was assumed to be equal to the same
dangling nucleotide off of an A-U or U-A closing base pair.

FIGURE 1. Experimental outline. The nearest neighbor parameters are derived from 802 optical melting experiments on small model systems, as
illustrated in the first column, where each circle represents approximately five experiments. A total of 294 independent nearest neighbor param-
eters are fit, as illustrated in the second column, where each square stands for approximately five nearest neighbor parameters. The arrows show
how nearest neighbor parameters depend on the experiments and also on each other. The third column illustrates the total number of parameter
table entries that are used by the RNAstructure software package. In this work, perturbed thermodynamic data tables are generated by either
perturbing the experimental values used to generate the nearest neighbor parameters based on the experimental uncertainty, or by directly per-
turbing the nearest neighbor parameters based on the standard error of the regression (for parameters determined by linear regression) or un-
certainty values calculated by the propagation of error from the underlying experiments (Zuber et al. 2017). Parameter tables using these
perturbed nearest neighbor parameter sets are then used to predict base-pairing probabilities and secondary structures for an archive of
1650 sequences. The pair probabilities and structures are then compared to those obtained using the reference parameter set.
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For example,
[
5′-GA-3′

3′-U -5′
]

is assumed to be equal to[
5′-AA-3′

3′-U -5′
]
. Additionally, neither

[
5′-A -3′

3′-UG-5′
]
nor

[
5′-A -3′

3′-UU-5′
]

were measured. Those dangling end parameters were

both estimated as the average of
[
5′-A -3′

3′-UC-5′
]
and

[
5′-A -3′

3′-UA-5′
]
.

Terminal mismatches occur when there are unpaired nu-
cleotides at the end of a helix at both the 5′ end and 3′ end
of the two strands that compose the helix end. These are
also determined by the difference in stability of a duplex
with a helix and terminal mismatch and a duplex with
only the helix. These are sequence dependent, and 33 of
60 terminal mismatches weremeasured.When amismatch
sequence was not measured, its stability is estimated as
the sum of the 5′ and 3′ dangling ends plus a 0.2 kcal/
mol penalty for purine–purine mismatches, except for mis-
matches with a G-U or U-G base pair. For those cases, the
parameter was assumed to be equal to the corresponding
mismatch on an A-U or U-A base pair. Because the parti-
tion function samples all possible secondary structures, in-
cluding structures with a terminal mismatch that can base
pair, folding free energies of pairing capable mismatches
need to be defined. In those cases, the folding free energy
change of a A-C or C-Amismatch on the same closing base
pair is used, depending on the purine–pyrimidine orienta-

tion. For example, the
[
5′-GU-3′

3′-CG-5′
]
mismatch is given the en-

ergy from the
[
5′-GC-3′

3′-CA-5′
]
mismatch.

Next the loop parameters are determined. Loop stabili-
ties are determined from optical melting experiments on
small model systems by subtracting the stability of helices
from the stabilities determined for systems with one loop
and helices. Parameters for hairpin loops, internal loops,
bulge loops, and multibranch loops parameters are fit in
six separate linear regressions. Hairpin loops with 3, 4, or
6 unpaired nucleotides whosemeasured folding free ener-
gy changes differ by more than 1 kcal/mol from predicted
folding free energy changes are included in separate data
tables. These nearest neighbor parameters have depen-
dencies on the optical melting experiments, on the helical
nearest neighbor parameters, and on each other. These
dependencies are illustrated by the arrows to nearest
neighbor parameters in Figure 1.
From the 294 parameters, a set of tables is generated

for use in secondary structure prediction. These tables
are composed of 13,172 total parameters, where the extra
entries are used to accelerate secondary structure predic-
tion. A total of 4095 parameters are repeated in the reverse
orientation. For example, the Watson–Crick stack of[
5′-UG-3′

3′-AC-5′
]

also appears as
[
5′-CA-3′

3′-GU-5′
]
. The independent

nearest neighbor parameters are also used to generate ta-
bles that contain the free energy changes for all internal

loop sequences of sizes 1×1, 1×2, and 2×2. In this
way, these can be looked up during calculations rather
than being calculated.

Comparison between structure prediction using
reference and perturbed parameter sets

To quantify the differences in predicted secondary struc-
tures between the reference and a perturbed parameter
set, four scores are used. The first is a root mean squared
deviation (RMSD) calculation of the differences in the
base-pairing probabilities when using perturbed data ta-
bles versus reference data tables for a sequence. To com-
pare the secondary structures between the reference and
perturbed parameter sets, the differences are quantified
as sensitivity and positive predictive value (PPV). The sen-
sitivity (also known as recall) is the percent of pairs pre-
dicted using the reference parameters that are also
predicted using the perturbed parameters. The PPV
(also known as precision) is the percent of pairs pre-
dicted using the perturbed parameter set that are also
predicted using the reference parameter set. A sensi-
tivity and PPV of 100% would indicate that the structures
predicted using perturbed parameters are identical to
those predicted using the reference parameter set.
Conversely, a sensitivity and PPV of 0% would indicate
that the structures predicted using perturbed parameters
share no pairs with those predicted using the reference pa-
rameter set.

Single experiment sensitivity analysis

To assess the impact of uncertainty in single experimental
values on the nearest neighbor parameter values, each ex-
perimental value was individually perturbed by both +3 σ
and −3 σ, where σ is the experimental uncertainty for that
experiment. A set of perturbed nearest neighbor parame-
ter values were calculated using the procedure reviewed
above. The perturbed parameter sets were used to esti-
mate base pair probabilities and predict secondary struc-
tures for each sequence in a database. The sequence
database includes 1650 RNA sequences, with both struc-
tured RNAs (detailed in the Materials and Methods) and
unstructured RNAs (mRNAs and shuffled RNAs).
The base pair probabilities were compared to those pre-

dicted using the reference parameter set to determine
base pair probability RMSDs. The mean RMSD value for
each parameter set is shown in Figure 2. A summary of
the experiments and their impacts is available in an interac-
tive Excel spreadsheet provided in the Supplemental
Materials.
The effect of perturbing single optical melting experi-

ments by +3 σ was also mapped onto the parameter
space. Each perturbed parameter set was compared to
the reference parameter set to generate a difference
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map to illustrate how individual experiment values impact
the nearest neighbor parameters (Fig. 3). Mapping exper-
imental values to parameter values illustrates the interrela-
tionship of the nearest neighbor parameters and the
underlying optical melting experiments. For example,
the effects of perturbing the folding free energies of
Watson–Crick duplexes can be seen on the values of near-
est neighbor parameters across many parameter classes
(including hairpin loop parameters, bulge loop initiation
terms, internal loop parameters, and multibranch loop
terms). Additional experiments were performed by per-
turbing single experimental values by −3 σ. The results
were highly symmetric to those in which the values were
perturbed by +3 σ (Supplemental Fig. S1). On average,
each experimental measurement impacts the values
of 38 of 294 parameters in the nearest neighbor rules,
though individual optical melting experiments can im-
pact as few as one or as many as 243 nearest neighbor
parameters.

Covariance of parameter values

To measure parameter covariation,
100,000 perturbed parameter sets
were generated by simultaneously
perturbing every experimental value
within its experimental uncertainty,
assuming a Gaussian distribution of
errors. The perturbed experimental
values were then propagated through
theprocedure reviewedabove togen-
erate nearest neighbor parameters
with perturbed values. This method
accounts for the inherent relationships
between the nearest neighbor param-
eters. Each of these parameter sets
could reasonably be the true values
of the nearest neighbor parameters.
A covariance matrix and Pearson cor-
relation matrix were then calculated
from the 100,000 parameter sets
(Fig. 4). Average parameter values
were also calculated from the set of
parameter values and the observed
variance in parameter values could
be extracted from the diagonal of the
covariance matrix.
Computing the covariance matrix

with 10% of the perturbed parameter
sets, i.e. 10,000 sets, resulted in a
mean absolute value difference of
less than 0.01 for the computed
Pearson correlation value (the values
range from +1.0 to −0.86) as com-
pared to 100,000 sets, indicating a
reasonable level of convergencewith-

in the 100,000 sets.
Generally, there was agreement between the parameter

uncertainty values estimated by propagation of error (as
done previously Zuber et al. 2017) and values determined
from observed parameter standard deviations. Over 75%
of the estimates agreed within 0.05 kcal/mol, compared
to an average observed parameter standard deviation of
0.31 kcal/mol (Supplemental Fig. S2). Of those parameter
uncertainties that differed by more than 0.05 kcal/mol,
most had an observed standard deviation that was smaller
in magnitude than predicted using propagation of uncer-
tainty (52 of 65). Significantly, this means that the previous
study, which used error estimates from the propagation of
uncertainty, tended to overestimate rather than underesti-
mate the uncertainty (Zuber et al. 2017).

The covariation between parameters is largely due
to the use of reference duplexes. Parameters that rely
on the same reference duplex will have a positive correla-
tion with each other (shown as red cross-peaks among

FIGURE 2. Sensitivity analysis by perturbing single optical melting experiments. Experiment
indices are along the x-axis, organized by the type of RNA motif, denoted by the letters in the
circles that correspond to the experiment codes in Supplemental Tables 1–8. Mean base pair
probability RMSD for the entire sequence archive (except randomized sequences) is shown for
the perturbation of ±3 σ. Randomly shuffled sequences were excluded so that the sensitivity
scores would more accurately reflect the uncertainty in the structure predictions of natural
ncRNAs. The RMSDs for +3 σ are shown above the x-axis, while the RMSDs for −3 σ are shown
below the x-axis. The details of each experiment are available in Supplemental Tables 1–8.
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dangling end, terminal mismatch, and
specific internal loop parameters in
Fig. 4). Hairpin loop parameters use
the stacking parameters to estimate
the folding free energy change contri-
bution of the hairpin stem, resulting in
a negative correlation between the
hairpin parameters and the stacking
parameters (shown as blue cross-
peaks in Fig. 4).

Structure prediction effects
of simultaneous perturbation
of experiment values

Using 1000 of the perturbed nearest
neighbor parameter sets generated
by randomly perturbing every optical
experiment value, base pair probabil-
ities and secondary structures were
predicted for the set of 1650 RNA

C

A

B

FIGURE 3. Experiment mapping. This figure shows the effect of perturbing each single experiment based on the experimental error. (A) Mean
base pair probability RMSD, averaged between ±3 σ perturbations of the experimental values. The x-axis, which is shared with subplot B, shows
the experiment number. This shows how perturbing a single experiment and then propagating the perturbation through the nearest neighbor
parameters values alters the predicted base-pairing probabilities. The experiment codes are shown below the x-axis and correspond to the ex-
periment labels in Supplemental Tables 1–8. (B) The impact of changing an individual experimental value by +3 σ on the parameter values.
Independent parameters are along the y-axis, organized by motif type, and the experiment number is shown on the x-axis. This shows how per-
turbing each experiment perturbs the nearest neighbor parameters. Note that the scale is clipped at ±0.05 kcal/mol to highlight some of the
weaker interactions. A list of the independent parameters and their values is available in the Supplemental Excel file. (C ) Mean base pair prob-
ability RMSD, averaged between ±3 σ perturbations of the parameter values. Parameter indices are along the y-axis, grouped by parameter type
and shared with subplot B. A list of the parameters and their impact on secondary structure prediction can be found in the interactive tables in the
Supplemental Files. An interactive version of this figure is available at http://rna.urmc.rochester.edu/publications.html.

FIGURE 4. Observed Pearson correlation coefficients (r) across perturbed sets of nearest
neighbor parameter values. A total of 100,000 parameter sets were randomly generated by
simultaneously perturbing all experiment values within their uncertainty and then using those
experiment values to derive new parameter sets. On the x- and y-axes are the independent
parameter indices for the 294 independent parameters in the nearest neighbor rules (Zuber
et al. 2017). The positive correlations between parameters are shown in red and negative cor-
relations between parameters are shown in blue. An interactive version of this figure is avail-
able at http://rna.urmc.rochester.edu/publications.html.
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sequences. These structure prediction calculations, when
compared to a calculation using the reference parameter
set, provide estimates for the uncertainties in RNA second-
ary structure prediction due to uncertainties in the experi-
mental optical melting data.

Additionally, 1000 perturbed parameter value sets were
generated by directly perturbing the nearest neighbor pa-
rameters within their errors, randomly sampling from a
Gaussian distribution. In these parameter sets, the param-
eters are treated as though they are independent as a con-
trast to calculations where the experimental values are
perturbed. Base-pairing probabilities and secondary struc-
tures were predicted using these parameter sets for each
of the sequences in the archive.

Table 1 shows the mean change in predictions using
perturbed parameter sets from both of these approaches
versus the reference parameter sets, characterized as
RMSD of base-pairing probabilities, sensitivity, and PPV.
Structure predictions using parameter sets generated by
perturbing experimental values had an average agree-
ment of ∼90% to the structures predicted using reference
data tables (Score distributions are shown in Supplemental
Fig. S3 and RMSD distributions are shown in Supplemental
Fig. S4). Generally, perturbing parameter values has a larg-
er impact on predicted base pair probabilities and second-
ary structures than perturbing experiment values. Plots of
cumulative RMSD values indicate that sufficient sampling
was achieved (Supplemental Fig. S5).

Estimated base-pairing probabilities correlate
with the frequency with which pairs are
observed in perturbed parameter sets

To assess which pairs were most likely to be predicted us-
ing multiple perturbed parameter sets, the frequency at
which each possible base pair appeared in secondary
structures predicted using 1000 parameter sets generated
from randomly perturbed experiment sets was calculated.
The frequency distributions for base pair probability bins
were then determined (Fig. 5). As expected, the frequency

at which a base pair is observed in the secondary structures
predicted using the perturbed parameter sets is directly
related to the base pair probability predicted using the ref-
erence parameter set.

Influence of precision on the accuracy of RNA
secondary structure prediction

To assess the extent to which the uncertainties in nearest
neighbor parameters influence the accuracy of RNA sec-
ondary structure prediction, we calculated the mean accu-
racy of RNA secondary structure prediction using the 1000
perturbed parameter sets used to generate Table 1.
Supplemental Figure S6 shows the distribution of sensitiv-
ity and PPV across nearest neighbor parameters sets. The
reference parameter set results in a mean sensitivity and
PPV of 65.5% and 58.6%, respectively. The perturbed
sets have a range of sensitivity from 60.9% to 67.7%,
with a mode of 66.7%. The range of PPV is from 53.9%
to 60.0%, with a mode of 58.4%. One interesting observa-
tion is that the sensitivities and PPVs are positively correlat-
ed with each other (Supplemental Fig. S7), contrasting
with most modifications to structure prediction algorithms,
which usually involve a trade-off between sensitivity and
PPV. The reference parameter set outperforms 78.2% of
the perturbed parameter sets in PPV, but only 38.6% of
the perturbed parameter sets in sensitivity.

Top experiments with largest impact on parameters

The effect of the perturbation of a single experimental val-
ue is not uniform across the optical melting experiments.

TABLE 1. Average metrics for 1000 perturbed parameter sets
as compared to the reference parameter set

Experiment
perturbed

Parameter
perturbed

Mean RMSD (Pair
probability)

1.87%±0.40% 3.84%±2.21%

Mean sensitivity 89.60%±2.13% 77.03%±12.40%
Mean PPV 89.19%±2.21% 78.33%±14.31%

Parameter sets were perturbed either by sampling experimental values
within their experimental errors, and then the errors propagated to the
nearest neighbor parameters by rederiving the parameter values, or by
sampling parameters within their error estimate.

FIGURE 5. Base pair frequency is correlated with predicted base pair
probability. The secondary structure for each sequence in the archive
was determined using 1000 parameter sets that were generated by
randomly perturbing experimental values within experimental uncer-
tainty. The frequency of prediction was calculated for each possible
base pair and plotted against the base pair probability predicted us-
ing an unperturbed (reference) parameter set. The shades of gray in-
dicate the proportion of the base pairs in the pair probability bin that
are observed with that frequency. The blue line plots the average pair
frequency for that pair probability bin. Bins have a width of 1% in the
probability and frequency dimensions. Note that scale has been
clipped to highlight detail.
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A subset of experiments has a larger impact, and these are
generally experiments that are used to determine multiple
parameters. As expected, the class of experiments with
the greatest impact on the RNA structure predictions are
the optical melts of canonical helices because these pa-
rameters are used most frequently in structure prediction
(Zuber et al. 2017). The five optical melting experiments
with the greatest impact remained consistent regardless
of the metric used, whether base pair probability RMSD,
sensitivity, or PPV.
The experimental value with themost impact on the pre-

cision of secondary structure prediction is for a Watson–

Crick duplex (experiment ID# R95
[
5′-UGACCUCA-3′

3′-ACUGGAGU-5′
]
, Peritz

et al. 1991). This experimental value was used to deter-
mine the stabilities of 42 internal loops for which it was
the reference duplex, out of set of 304 total internal loop
measurements, including 21 that were explicitly entered
into the 1×1, 1×2, or 2×2 internal loop data tables
(Peritz et al. 1991; Schroeder et al. 1996). In determining
internal loop stabilities, the free energy change of the ref-
erence duplex without the loop is subtracted from the free
energy change of the duplex with the internal loop, and
then the stability of the base pair stack that is present in
the reference and absent in the loop duplex is added. It
is common practice to use the same reference duplex for
more than one loop experiment. Additionally, this R95 du-
plex was used in four regressions, including the Watson–
Crick stack parameter regression and all three internal
loop regressions used to determine internal loop nearest
neighbor parameters. Significantly, for one of the internal
loop regression tables, this particular experimental value
was used in the determination of 17 of 20 regressands
(the values that are fit by the linear regression). At the
same time, the free energy change of this experiment
has a relatively large uncertainty of 0.58 kcal/mol (ranked
18th highest out of 802).
The second most impactful experimental value is for a

duplex with a 3′ dangling nucleotide on each end (exper-

iment ID# D42
[
5′- GCGGCGA-3′

3′-ACGCCGC -5′
]
, Longfellow et al. 1990).

This duplex was not used in the determination of dangling
end parameters, but was used as a reference duplex for
four bulge loop structures (Longfellow et al. 1990). As
with internal loops, the free energy change of a bulge
loop was determined by using the free energies for two
duplexes, onewith a bulge loop and another reference du-
plex without the bulge loop. The experiment D42 served
as the reference for four bulge loop measurements that
contributed to the values of bulge loop initiation parame-
ters for bulge loops of sizes two (two of six total measure-
ments) and three unpaired nucleotides (two of six total
measurements) (experiment ID#’s B12-B15, Longfellow
et al. 1990). Previous work had identified the uncertainty
in those two parameters as having a large impact on the

precision of secondary structure prediction (Zuber et al.
2017). Combined with the relatively large uncertainty for
this experiment (5th highest at 0.76 kcal/mol), this explains
the large impact of this experiment despite the relatively
few parameters influenced by it.
The experiment with the third largest impact on second-

ary structure prediction is a Watson–Crick duplex (experi-

ment ID# R109
[
5′-GAGGAG-3′

3′-CUCCUC-5′
]
, Xia et al. 1997). This

experimental value is used similarly to experiment R95,
the experiment with the greatest impact. It was used as a
reference helix in the determination of 52 internal loop
folding free energies, including 50 that are directly includ-
ed in the parameter tables for 1 ×1 and 2×2 internal loops
usedbyRNAstructure. This value is used in two regressions,
one used to determine base pair stacking parameters and
another that determined multiple internal loop parame-
ters. The lower impact of this experimental value compared
to R95 is likely due to the smaller uncertainty associated
with this experiment (0.36 kcal/mol versus 0.58 kcal/mol).
In agreement with the impact that bulge loop initiation

parameters have on the precision of secondary structure
prediction, many of the experiments that were used to
determine those parameters were also found to be individ-
ually impactful. Of the 16 experiments used to determine
the bulge loop initiation parameters for loop sizes two
and three, 13 of them ranked in the top 100 experiments
for impact and four in the top 20 most impactful experi-
ments, including the experiment with the fourth greatest

impact (experiment ID# B19
[

5′-GCGaaaGUCA-3′

3′-ACGC CAG-5′
]
, Longfel-

low et al. 1990).
The experimental value with the fifth greatest impact is

another Watson–Crick duplex (experiment ID# R162[
5′-GAGCCGAC-3′

3′-CUCGGCUG-5′
]
, Schroeder and Turner 2000). It was

used as a reference helix for 30 internal loop energies,
eight 2×3 internal loops and twenty-two 3×3 internal
loops. Although these energies for these sizes of internal
loops are not enumerated in the parameter tables, they af-
fect the values of 17 nearest neighbor parameters that are
determined by linear regression, including internal loop
initiation energies for loops of 4, 5, and 6 unpaired nucle-
otides. The initiation term for loops of six unpaired nucle-
otides is important because the initiation free energy
changes for all larger loops are extrapolated from that
term using polymer theory (Jacobson and Stockmayer
1950).
Additional interesting experiments are two dangling

end duplexes (experiment ID# D15 and D16, Freier
et al. 1983, 1986), which were used to determine the

value of the
[
5′-CA-3′

3′-G -5′
]
dangling end parameter. This par-

ticular dangle also appears in the possible multibranch
loop configurations for 56 out of 69 measuredmultibranch
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loop systems, possibly appearing multiple times within a
single system (Diamond et al. 2001; Mathews and Turner
2002). Therefore, changes to this dangling end stability af-
fect the values of the multibranch loop parameters, which
have previously been shown to have a large impact on
RNA secondary structure predictions (Zuber et al. 2017),
contributing to their relatively high ranking (38th and
56th when using the RMSD metric).

Some of the most impactful experiments were used to
determine the values of many different nearest neighbor
parameters while others only impacted one or two param-
eters. Eleven experiments in the top 50 most impactful ex-
periments only affected two or fewer parameters, nine of
which were those used to determine the bulge loop initia-
tion parameters for loops of size two and three unpaired
nucleotides. The two that were not involved in bulge
loop parameters were a helical duplex (experiment ID#

R87
[
5′-GAGUUGAG-3′

3′-CUCGGCUC-5′
]
, He et al. 1991) and a dangling end

duplex (experiment ID# D1
[
5′- UGCGCAA-3′

3′-AACGCGU -5′
]
, Sugimoto

et al. 1987). The helical duplex R87 was used in the linear
regressions that determined the values of the stacking
parameters with GU base pairs. The helical duplex is nota-
ble in that it is the only duplex in the regression with the[
5′-GG-3′

3′-UU-5′
]
nearest neighbor. Hence, any variation in this ex-

periment value is directly reflected in the
[
5′-GG-3′

3′-UU-5′
]
nearest

neighbor. The dangling end duplex was used to deter-

mine the value for the parameter for a
[
5′-AA-3′

3′-U -5′
]
dangling

end. Due to a lack of experimental data, this parameter

was also used to estimate a
[
5′-GA-3′

3′-U -5′
]
dangling end and

several terminal mismatch parameters that did not have
experimental data.

Other experiments achieve high impact by affecting
many parameter values. For example, the most impactful
experimental value (experiment ID# R95) affected the val-
ues of 232 of 294 parameters. Of the top 50most impactful
experiments, half affected the values of 230 or more
parameters.

There are some optical melting experiments that were
asymmetric in their effect, where making the experimental
value more stable had a different magnitude of effect than
making the experimental value more unstable (Supple-
mental Fig. S8). The most asymmetric melting experiment
was for the helical duplex R95, where increasing the fold-
ing free energy had a greater effect than decreasing the
folding free energy. Increasing this experimental value de-
creased the folding free energy of those parameters that
used this duplex as a reference duplex. This is in agree-
ment with a previous analysis that found, in general, de-
creasing the folding free energy contribution of a nearest

neighbor parameter generally had a greater impact than
increasing them (Zuber et al. 2017). The next most asym-
metric experiment was the melt of duplex B19 (a bulge
loop with three unpaired nucleotides), which had a greater
impact when the folding free energy was decreased. This
direction of perturbation results in reducing the energetic
penalty for initializing larger bulge loops, which had al-
ready been shown to have a greater impact than increasing
the energetic cost of large bulge loops.

The results from this analysis are largely consistent with
the sensitivity analysis that studied the impact of each of
the single parameters (Zuber et al. 2017) and identified
the bulge loop initiation parameters and the stacking pa-
rameters as being among the most impactful. However,
this analysis also highlighted the impact that the reference
duplexes have on the precision of RNA structure predic-
tion. Many of the most impactful experiments are refer-
ence duplexes that were repeatedly used to determine
multiple nearest neighbor parameters.

DISCUSSION

Parameters are not independent of each other

One assumption that has been made in previous assess-
ments of the impact of parameter uncertainty on RNA sec-
ondary structure predictions is that each parameter is
independent of all others (Layton and Bundschuh 2005;
Stern and Mathews 2013; Rogers et al. 2017). However,
this does not account for the correlations between param-
eters due to the functional forms used and the exact se-
quences used in the parameter derivations.

There are eight linear regressions that are used in the
determination of the nearest neighbor thermodynamic pa-
rameters. Of those regressions, most have regressands
that are correlated with each other because of the practice
of using the same reference helices in hairpin loops, inter-
nal loops, bulge loops, andmultibranch loop stems in mul-
tiple measured sequences. One consequence of the
correlation of the nearest neighbor parameters is that the
observed standard deviations in the values for 22 of the
parameters differ by more than 0.1 kcal/mol from the stan-
dard errors returned by their linear regression fit. The GU
base pair stacks demonstrate this effect, with an average
0.17 kcal/mol lower standard deviation than standard error
of the regression (Supplemental Fig. S1).

Another striking example is the initiation energy of 1×2
internal loops, which has an observed standard devia-
tion that is 0.44 kcal/mol larger than the standard error of
the regression. This term is determined from a linear re-
gression using 20 internal loop melting experiments.
However, 17 of the 20 experiments use the same reference
helix, meaning the experimental value for that helix has a
strong effect on the initiation term in the regression.
Indeed, the observed variance for that initiation term is
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closer to the variance of the reference experiment than the
standard error of the regression. Here, the standard error
of the regression fails to accurately describe the uncertain-
ty in the parameter because the observations are not inde-
pendent, breaking one of the underlying assumptions of
linear regression.
Additionally, there are inherent correlations in the pre-

dictor variables used in the stacking regressions because
any given base pair will appear in two different base pair
stacks (with the exception of terminal base pairs).

Comparison of parameter perturbation versus
experiment perturbation

Comparing the effects of perturbing the nearest neighbor
parameters directly versus perturbing the experimental
data and rederiving the parameters on RNA secondary
structureprediction revealed severaldifferences. Thesedif-
ferences show that the nearest neighbor parameters are
more robust for RNA secondary structure prediction than
suggested by previous studies that treated each parameter
as independent. On average, perturbing every parameter
independently results in greater differences in predicted
secondary structures than perturbing every experimental
value and then recalculating the nearest neighbor parame-
ters (Table 1). Additionally, the distribution of the average
scores for the parameter sets differed between the two
groups. Perturbing independent parameters resulted in a
much greater range of observed scores, with a minimum
mean similarity in predicted secondary structures of nearly
20% fromthose structurespredictedusing theunperturbed
parameter set, compared to a minimum mean similarity of
more than 70% using parameter sets derived from per-
turbed experimental values (Supplemental Fig. S3).
When perturbing experimental values, the resulting pre-

dicted secondary structures had on average an agreement
of 90% with those structures predicted using reference pa-
rameter sets. Because the experimental values were per-
turbed using the experimental errors to determine the
distribution of each experimental value, this agreement
represents the estimated precision in secondary structure
prediction using the nearest neighbor thermodynamic
rules. Further analysis showed that the frequency at which
each base pair is predicted by the ensemble of parameter
sets can be reasonably approximated by the predicted
probability of the base pair (Fig. 5).

Analysis of observed parameter variance

In addition to parameter correlations, average parameter
values and observed parameter variance from the data
set of 100,000 parameter sets derived from randomly per-
turbed experimental values were calculated. Surprisingly,
there were 10 parameters whose mean value differed by
more than 0.01 kcal/mol from the value calculated with un-

perturbed experimental values (Supplemental Fig. S2).
Most strikingly, the multibranch loop offset parameter
had an average value that was 0.12 kcal/molmore unstable
than the reference value. Other notable parameters in this

analysis are the
[
5′-UA-3′

3′-GA-5′
]
terminal mismatch, multibranch

loop strain, and GGG hairpin bonus.
There are 64 parameters whose observed variances dif-

fered by more than 0.05 kcal/mol than those predicted us-
ing propagation of errors or using standard error of the
coefficient from linear regression, and 53 parameters that
differ by more than 0.10 kcal/mol (Supplemental Fig. S2).
Therewere two underlying causes for the differences in ob-
servedversus predicted variances. First, the propagationof
errors method treats each input value as independent.
Therefore, those nearest neighbor parameters that de-
pended on correlated nearest neighbor parameters to
determine their values inaccurately estimated their varianc-
es. Themost common case is when the energy of the refer-
ence helix was calculated using the nearest neighbor rules
(as in the case for one terminal mismatch and a number of
internal loops). In that case, the strong negative covariance
between the intermolecular initiation term and the other
stacking terms resulted in a lower observed variance than
predicted when treating each parameter as independent.
Another case is when an experimental value and a pa-

rameter correlatedwith that experiment are used in the de-
termination of another parameter. For example, as noted
above, the folding free energy change for all measured in-
ternal loops is calculated using the folding free energies
of a reference duplex and a Watson–Crick stacking param-
eter (Wu et al. 1995). Often, the reference duplex is also
used in the regression that calculated the valueof the stack-
ing parameter, resulting in a correlation between the two
terms, making the error estimation by propagation of un-
certainty inaccurate when assuming independent values.
Another underlying cause for a difference between cal-

culated and observed variance is if the regressands in a lin-
ear regression are not independent of each other. The
most striking example is the regression for 1×2 internal
loop parameters, which has already been discussed.
Another example is the intercept parameter for hairpin
loops composed of all cytidines. The value for this param-
eter is determined from four hairpin melts that are added
to the hairpin loop regression tables. However, all four of
these hairpins share the same hairpin stem and first mis-
match. As a result, the observed variance in this parameter
value is approximately 0.7 kcal/mol lower than the regres-
sion calculates.

Recommendations for future optical melting
experiments

One of the striking observations from this study is that the
unintended correlations in the input experiments have had
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a greater impact on parameter estimation than previously
expected.Most notably, the effect of reusing reference he-
lices breaks the underlying assumption of linear regression
that the errors in the dependent values are uncorrelated. In
many cases, this results in inaccurate standard error of the
coefficients.

Previously, the time and expense that was involved with
synthesizing the oligonucleotides used in the optical melt-
ing experiments meant that reusing reference duplexes
was a practical necessity. However, advances in oligonu-
cleotide synthesis mean that it is now feasible and, as
this study suggests, desirable to use a wider array of refer-
ence duplexes in future studies to minimize correlations.

Additionally,many parameters are being used in general
situations where the experimental data is either from a sin-
gle context or biased toward a single context. For example,
only eight hairpin stems account for 84% of the hairpin
loops used in the hairpin regression tables. Additionally,
all the oligo-cytidine loops share the same hairpin stems.
Anotherexample is theopticalmeltingexperiments ofmul-
tibranch loops. Those experimentswere conducted by syn-
thesizing multiple oligonucleotides that could be mixed in
different combinations to produce different potential mul-
tibranch loops.Oneeffect of this combinatorial approach is
that the possible configurations of dangling ends, terminal
mismatches, and coaxial stacks in the multibranch loop are
severely constrained. For example, of 48 possible dangling
ends, four dangling ends (a 5′ or 3′ A on a GC or CG base
pair) account for 256 of 278 dangling ends in the sampled
multibranch loop measurements. Possible terminal mis-
match and coaxial stacking configurations are similarly
undersampled. These biased input data sets are then
used to generate parameters that might not accurately re-
flect the energies of the general ensemble of secondary
structures.

Application to RNA structure prediction

Predicted secondary structures are commonly annotated
by base-pairing probability or Shannon entropy, to pro-
vide information about reliability of individual base pair
predictions (Huynen et al. 1997; Mathews 2004). Previous-
ly, the reliability estimations were intuitive, but were only
supported empirically, where predicted base pairs with
higher predicted probabilities are observed to bemore ac-
curate than predicted base pairs with lower predicted
probabilities. Figure 5 shows the base pair frequency in
structures predicted using the 1000 sets of equivalent
nearest neighbor parameters derived from perturbing all
experiments as a function of estimated base-pairing prob-
ability using the reference nearest neighbor parameter val-
ues. It shows that highly probable base pairs are also more
reliably predicted across the equivalent nearest neighbor
parameter sets. This supports the use of base-pairing
probability as a proxy for estimating reliability.

Although the frequency at which a base pair appears in
predicted secondary structures is correlated with the base
pair probability calculated by the partition function, the re-
lationship is not absolute. There are substantial popula-
tions of high probability base pairs that are infrequently
predicted and low probability base pairs that are frequent-
ly predicted (Fig. 5). Algorithms that can identify base pairs
whose frequencies are poorly predicted by their calculated
probability and can then incorporate that information into
RNA structure predictionmay be able to increase the accu-
racy of secondary structure prediction by identifying struc-
tures that are representative of the ensemble of potential
parameter sets.

Summary

This work developed several new insights into the predic-
tion of RNA secondary structure. First, the identity of the
specific optical melting experiments with the greatest im-
pact on RNA secondary structure predictions were deter-
mined. Secondly, the correlation between nearest
neighbor parameters has been empirically calculated for
the first time to the authors’ knowledge. Additionally, the
relationship between base pair probabilities calculated
by the partition function and the frequency at which the
base pair is observed in predicted secondary structures
was determined. Finally, a measure for the precision of
the RNA secondary structure predictions was estimated.

MATERIALS AND METHODS

Software

Calculations were performed using the RNAstructure package
(Reuter and Mathews 2010), specifically a CUDA-enabled parti-
tion function (program partition-cuda) (Mathews 2004; Stern
and Mathews 2013). partition-cuda predicts both the base pair
probabilities using a partition function and secondary structures
using the ProbKnot algorithm (Mathews 2004; Bellaousov and
Mathews 2010). Exact pairing probabilities are calculated. The
ProbKnot algorithm includes all base pairs (i–j) such that the high-
est probability pairing partner for nucleotide i is j and likewise the
highest probability pairing partner of j is i (Bellaousov and
Mathews 2010).

Sequence archive

There were 1650 sequences used in this analysis. The sequence
families in this collection include 5S rRNA (309 sequences;
119.5 nt mean length), 16S rRNA (21 sequences, 1512.7 nt
mean length), 23S rRNA (4 sequences, 2577.5 nt mean length),
tRNA (484 sequences, 77.5 nt mean length), tmRNA (462 se-
quences, 366.0 nt mean length), Group I Introns (25 sequences
343.0 nt mean length), Group II Introns (3 sequences, 668.7 nt
mean length), RNase P RNA (15 sequences, 378.7 nt mean
length), SRP RNA (91 sequences, 267.9 nt mean length),
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mRNAs (100 sequences, 1078.3 ntmean length), telomerase RNA
(37 sequences, 444.5 nt mean length), and shuffled sequences
(100 sequences, 241.5 nt mean length). The structural RNA se-
quences were previously assembled for structure prediction accu-
racy benchmarks (Bellaousov and Mathews 2010). The mRNAs
were from the RefSeq database and included 5′- and 3′-UTRs
(Pruitt et al. 2007). The mRNAs were randomly selected from ap-
proximately 90,000 human mRNA sequences, limited to those
that were less than 1.5 kb in length. The shuffled RNA sequences
were randomly selected from the 1650 sequences and shuffled
such that the dinucleotide frequency was maintained, using the
Python module uShuffle. This module implements the Euler algo-
rithm to randomly permute a sequence while maintaining k-let
frequencies for an arbitrary k (Jiang et al. 2008).

Parameter tables

To generate thermodynamic parameter tables from sets of exper-
imental values, a new data table format was implemented. The ta-
bles are similar in structure to those used by the software
RNAstructure. However, the tables do not contain any explicit pa-
rameter values. Instead each parameter is defined in terms of ex-
periment values and other parameter values. Additionally
regression tables were created for those parameters defined
through linear regression. The free energy values that are fit by
the linear regression are similarly defined in terms of experiment
and parameter values. For example, the values in the internal loop
regression tables are defined in terms of values from internal loop
optical melts, reference helix optical melts, and stacking nearest
neighbor parameters.

To determine the multibranch loop parameters, functions were
written to determine the optimal configuration of dangling ends,
terminal mismatches, and coaxial stacks for each multibranch
loop, because the optimal configuration depends on the specific
parameter values for those secondary structure motifs.

With these data tables and regression tables, a set of experi-
ment values can be used to generate new thermodynamic tables
through automated linear regressions and by propagating exper-
iment and parameter values. The uncertainty for the ΔG values for
each optical melting experiment were determined by propagat-
ing the errors from the experimentally determined ΔH and ΔS val-
ues using:

s2
DG = s2

DH + T× s2
DS − 2× r × sDH × T× sDS,

using 0.9996 for the correlation coefficient (r) between ΔH and ΔS
(Xia et al. 1998).

Covariance analysis

For each parameter set used to calculate the covariancematrix, all
experimental values were simultaneously perturbedwithin the ex-
perimental uncertainty. An inverse cumulative distribution func-
tion was used to map a random probability between 0 and 1 to
a perturbation value, in terms of σ, assuming a normal distribu-
tion. 100,000 parameter sets were calculated from randomly per-
turbed sets of experiment values. The covariance matrix and
Pearson correlation matrix were then calculated using the
NumPy Python module. Observed parameter value variances
were extracted from the diagonal of the covariation matrix.

Sensitivity analysis

Three types of sensitivity analyses were performed by perturbing
single experiment values, all experiment values simultaneously,
or all parameter values simultaneously (Fig. 1). For the single ex-
periment value sensitivity analysis, data tables were generated by
perturbing each experiment value individually by −3 or 3σ, where
σ is the experimentally determined standard error for the
experiment.
For the sensitivity analysis where every experimental value is

perturbed simultaneously, experimental value sets were generat-
ed by perturbing each experiment value using a percent point
function (an inverse of the cumulative density function) to assign
a random normally distributed z-value to each experiment value.
The z-value is then multiplied by σ, where σ is the standard error
for the experiment, to determine the perturbation to the experi-
mental value. The new experimental values were then used to
generate new data tables of thermodynamic parameters for use
in RNAstructure.
For the parameter value sensitivity analysis, the values of the

294 independent nearest neighbor parameters (Mathews et al.
2004; Zuber et al. 2017) were directly perturbed. New parameter
sets were generated by assigning a random normally-distributed
z-value to each independent parameter value. The z-value is then
multiplied by σ, where σ is the standard error for the parameter,
determined either by the linear regression or by the propagation
of uncertainty through the equations used to calculate the param-
eter values. The new independent parameter values were then
used to populate the entirety of the data tables.
For each sensitivity analysis, the new data tables were used to

calculate the partition function for an archive of 1650 sequences
using the program partition-cuda, resulting in base-pairing prob-
abilities and secondary structures calculated using the ProbKnot
algorithm. These base pair probabilities were compared to those
predicted using reference data tables to generate pair probability
root mean squared deviations (RMSDs). The secondary structures
were compared to those predicted using reference data tables to
measure the similarity of the secondary structures, reflected in the
metrics sensitivity and PPV.
The root mean squared deviations (RMSDs) were calculated

using:

RMSD =
��������������������∑

All BP (PN − PR)
2

NBP

√
,

where PN is the probability of a base pair calculated using the per-
turbed data tables, PR is the probability of a base pair calculated
using the reference data tables and NBP refers to the number of
base pairs. Additionally, a corrected RMSD (cRMSD), which cor-
rects for the effect of sequence length on base pair RMSDwas cal-
culated for each sequence using the following equation (Zuber
et al. 2017):

cRMSD =
��������������������∑

All BP (PN − PR)
2�����

NBP
√

√
.

This equation corrects for the fact that the number of possible
base pairs scales with the square of the number of bases in the se-
quence but the number of probable base pairs scales linearly with
the sequence length.
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To compare predicted secondary structures, sensitivity defect
and PPV defect are calculated using the following equations:

Sensitivity = 100%× NBP with both tables

NBP with reference tables

( )
,

PPV = 100%× NBP with both tables

NBP with perturbed tables

( )
.

When scoring, a base pair between nucleotides i and j in one
structure was considered to be present in the other structure if
one of the following pairs exist: i− j, (i ± 1)−j, i−(j ± 1). This is
done to reflect the perturbations to the secondary structure due
to thermal fluctuations as well as the difficulty in discriminating
between these base pairs via comparative sequence analysis,
used to determine the set of known structures (Mathews et al.
1999).

When calculating the accuracy benchmarks, average sensitivity
and PPV were calculated for each RNA family, where the predict-
ed secondary structures are compared against known secondary
structures. The scores for each family were then averaged to gen-
erate the scores for the parameter set.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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