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Introduction

Urban natural environments containing trees and/or forested areas provide a wide range of 

ecological benefits including air and water pollution mitigation, protected habitat for 

wildlife, and storm water runoff reduction (Alberti, 2005; Nowak and Dwyer, 2007; Nowak 

et al., 2006; Newman et al., 2014; Berke et al., 2015), as well as social benefits to 

neighborhoods by decreasing crime rates and promoting community involvement (Kuo and 

Sullivan, 2001; Troy et al., 2012). Various health benefits of urban green space include the 

prevention of obesity, asthma relief, shorter recovery times for patients, and increases in 

mental health and quality of life (Hartig et al., 1991; Kaplan, 1995; Kim et al., 2014; Kim et 

al., 2016; Lovasi et al., 2008; Matsuoka, 2010; Sugiyama et al., 2008; Ulrich, 1984).

In addition to the ecological, health and social benefits, much empirical economic based 

research suggests that urban green space can increase the value of nearby residential 

properties (Conway et al., 2010; Li and Saphores, 2012; Morancho, 2003; Payton et al., 

2008; Sander et al., 2010; Sander and Polasky, 2009; Saphores and Li, 2012). Positive 

correlations between urban green space and housing price have been consistently 

documented. Prior studies, however, have primarily relied only on the total amount of 

aggregated green areas using land use data and/or proximity to green space near a single 

property. This approach has not fully captured the quality of urban green space regarding 

broader landscape and ecological patterns. Simultaneously, most research on landscape 

patterns has not fully controlled for spatial autocorrelation effects. This research assesses the 

relationships between residential property sale prices and landscape spatial patterns. It seeks 

to identify the strongest predictors for housing sale prices, positing that ecologically 

healthier landscape patterns can contribute to increases in property sale prices.
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Literature Review

Urban Green Space and Housing Sales Prices

Housing proximity to urban green space has been continuously found to contribute to 

increased home sale prices; larger proportions of total green space have also been shown to 

have a positive influence on sales prices (Bolitzer and Netusil, 2000; Geoghegan, 2002; 

Irwin, 2002; Luttik, 2000; Lutzenhiser and Netusil, 2001; Tyrväinen, 1997; Tyrväinen, 2001; 

Tyrväinen and Väänänen, 1998; Morancho, 2003; Mansfield et al., 2005; Sander and 

Polasky, 2009). Mansfield et al. (2005) further clarified these findings, showing that 

proximity to forests and percentage of forested areas surrounding parcels, with the exception 

of institutional forests, increased home sale prices. Size and amount, however, are not the 

only factors related to green space influencing sales price; variety of open space can also 

have an effect. Lutzenhiser and Netusil (2001) reported that natural parks and other types of 

open spaces (including urban parks and golf courses) had a positive influence on housing 

sale prices.

Recent studies have paid more attention to relationships between different land cover types 

and housing property values rather than using aggregated size and/or distance to urban green 

space (Conway et al., 2010; Saphores and Li, 2012). Different land cover measurements 

such as percentage of distinct types of land cover (Saphores and Li, 2012) or number of 

street trees fronting a house (Donovan and Butry, 2010) have been used to estimate the value 

of urban green space surrounding a property, at different scales. Sander et al. (2010) 

assessed the relationship between urban tree cover and 9,992 homes in Dakota and Ramsey 

Counties, Minnesota, USA, finding that a 10% increase in tree cover in the 100 meters radii 

of a house increased home sale price by $1,371, on average. Kadish and Netusil (2012) 

assessed the associations between single-family residential sale price and four different land 

cover types including high structure vegetation (trees), low structure vegetation (shrubs and 

lawns), water and impervious surfaces, finding that trees showed a statistically positive 

contribution to increasing housing sale prices.

Some recent studies have attempted to analyze green space with more objective measures, 

incorporating remote sensing techniques with aerial photographs or satellite imagery (Li and 

Saphores, 2012; Sander et al., 2010; Saphores and Li, 2012; Payton et al., 2008; Li et al., 

2015b). Saphores and Li (2012) analyzed 20,660 single family detached homes in Los 

Angeles, California, USA, and found that additional tree canopy cover slightly increased 

sales prices in tangential properties, at the neighborhood level. Payton et al. (2008) used the 

Normalized Difference Vegetation Index (NDVI) to assess the influence of green space on 

housing prices. Similarly, the results showed that greener vegetation around a property had a 

positive effect on housing price at the neighborhood level.

Previous studies, however, have concentrated primarily on individual green spaces and have 

not adequately addressed these findings in regards to landscape spatial patterns. The effects 

of the ecological quality of urban trees and forests on surrounding properties nor how to 

measure spatial heterogeneity in the entire urban green structure ecosystem are not yet fully 

understood. Only a few studies have examined the role of urban landscape patterns on 

housing prices. A study by Geoghegan et al. (1997) was one of the first attempts to show 
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that landscape patterns economically effected nearby parcels. They used landscape ecology 

indices in a hedonic pricing model and reported that the proportion of open space within a 

0.1km radius of a parcel positively impacted its sale price. They also found that an increase 

in heterogeneity in land uses (diversity) and more subdivided land uses (fragmentation) in 

the immediate neighborhood of the house did not have a positive impact on land values 

(Geoghegan et al., 1997). Geoghegan (2002) also documented that open spaces within a 

1,600km radius from a parcel had positive correlations on housing price. In addition, Kong 

et al. (2007) assessed the value of urban green space on housing prices in Jinan City, China. 

They analyzed urban landscape patterns using six landscape metrics, and found that both the 

proximity to green spaces and the percentage of green space were positively associated with 

housing prices. Those studies, however, did not fully control for spatial autocorrelation 

effects. Considering spatial variables measuring landscape configuration using the hedonic 

pricing model helps capture the detailed quality of landscape patterns of urban natural 

environments surrounding properties and offers the potential for producing richer estimation 

models (Geoghegan et al., 1997; Kong et al., 2007).

Quantifying Landscape Spatial Patterns

Research in the field of landscape ecology has improved the understanding of the 

interactions between the causes and effects of spatial patterns in natural and human-

dominated landscapes (Turner, 2005; McGarigal and Marks, 1995; Turner et al., 2001). The 

goals of landscape ecology include reducing habitat fragmentation and connecting fractured 

landscapes to build more functional patterns which have greater ecological resilience and 

sustainability (Marsh, 2005). There are numerous physical, biological and social forces 

which contribute to spatial patterns in landscapes. Almost all landscapes have been affected 

by human activities. As such, the resultant landscape patterns occur through a complicated 

mixture of natural and human-dominated patches characterized by various sizes, shapes, and 

arrangements (Turner, 1989).

Since landscape ecology has focused on the reciprocal interrelationships between spatial 

patterns and processes (Gustafson, 1998; Turner, 1989; Forman and Godron, 1986), 

quantification of landscape patterns and their effects is one of the most significant issues in 

research on the topic (Haines-Young and Chopping, 1996; Li and Reynolds, 1995; Li and 

Wu, 2004; McGarigal and Marks, 1995; O’Neill et al., 1988; Riitters et al., 1995; 

Schumaker, 1996; Turner et al., 1989; Gustafson, 1998). Interests in measuring landscape 

patterns have been linked to the premise that ecological processes are connected to, and can 

be estimated by, various broad-scale spatial patterns (Gustafson, 1998).

One method of examining ecological quality is through assessing and interpolating 

landscape patterns. Landscape patterns, or arrangements, are determined by the functional 

flow and movements of nutrition, energy, animals, and materials through the landscape 

elements, over time. In addition, the pattern and process of the landscape is generated by 

simultaneous factors such as patch size and shape, the characteristics of corridors, 

connectivity and edges (Forman, 1995a; Forman, 1995b; Turner, 1990). There have been 

notable efforts made to develop principles to assess and indicate ecologically healthy 

landscapes. The theory of island biogeography (McArthur and Wilson, 1967) emphasized 
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that patterns of immigration and extinction of species are strongly associated with the size of 

a given island. This principle has been repeatedly applied to the design/planning of projects. 

Diamond (1975), Shafer (1994), and Forman (1995b; 1995a) all developed slightly different 

suggested guidelines for spatial patterns in order to compare and explore the relationships 

between higher and lower quality landscapes based on this theory. From these guidelines, 

several criteria have been proposed for creating sustainable and ecologically sound 

landscape conditions: 1) larger patches (a relatively discrete area having homogeneous 

environmental conditions with a nonlinear shape) than smaller patches, 2) less-fragmented 

landscape patterns, 3) irregularly shaped boundaries of patches, 4) closer distance between 

single patches avoiding isolated patches, and 5) well-connected patches and corridors (a 

linear and narrow landscape element connected to a patch) (Shafer, 1994; Diamond, 1975; 

Dramstad et al., 1996; Forman, 1995a; Forman, 1995b; Haines-Young and Chopping, 1996).

The Patch-Corridor-Matrix model (P-M model) analyzes landscape patterns by 

characterizing landscape in three spatial components: patches (green spaces), corridors 

(connections of green spaces) and the matrix (the built environment that the corridors must 

traverse through), is a useful theoretical framework to evaluate and indicate ecologically 

viable landscape spatial patterns (Forman, 1995a). The P-M model highlights the 

heterogeneity of landscape elements, and each component provides a specific ecological 

function. In the P-M model, a pattern (structure) is identified by the landscape process 

(function) (Forman, 1995a).

The study of landscape patterns, processes and changes is a common concentration in 

landscape ecology research. The application of landscape indices to landscape ecology 

allows researchers to evaluate the quality of landscape patterns through quantitative 

approaches (Gustafson, 1998; Turner, 1989; Turner, 2005). Landscape indices are algorithms 

quantifying the spatial attributes of landscapes recognized by proportion, size, density, 

richness, proximity, shape and complexity. They are useful in estimating the 

interrelationships between human activities and ecosystems; more accurate quantitative 

values can also be derived by applying objectively measured analytical approaches reflecting 

and interpolating landscape patterns (Gustafson, 1998; Haines-Young and Chopping, 1996; 

Li and Wu, 2004; O’Neill et al., 1988; Riitters et al., 1995; Turner, 1989; McGarigal and 

Marks, 1995). There are, however, inherent limitations of using landscape indices such as 

uniqueness, sensitivity, redundancy and scale issues (Gustafson, 1998; Haines-Young and 

Chopping, 1996; Li and Wu, 2004; O’Neill et al., 1988; Riitters et al., 1995) because the 

basic formula for most landscape indices is based on the number, area and perimeter of each 

patch. Thus, to be useful for quantifying landscape patterns, a set of landscape indices 

should meet several criteria. For example, the selected indices should have a particular 

purpose to their analysis and the indices should be independent of each other. In addition, 

the behavior of the indices should be discrete and the measured values should cover the full 

range of potential values (Haines-Young and Chopping, 1996; Turner et al., 2001).

Research Objectives

To address the aforementioned literature gaps, this study assesses the relationships between 

residential property sale price and landscape spatial patterns shaped by urban trees and 
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forests, through objective measurements. The research seeks to identify which 

characteristics of landscape patterns are the strongest predictors of capturing housing sale 

price. To quantify the quality of landscape spatial patterns, this research used landscape 

indices after classifying land cover types surrounding a property. Based on current literature 

findings and theoretical backgrounds, it was hypothesized that housing sale price would be 

positively associated with landscape spatial patterns having larger size, less-fragmented, 

less-isolated, and/or less clumped conditions. For developing appropriate models by 

controlling the spatial autocorrelation effects, this research employed the spatial Cliff-Ord 

model and compared its results with an ordinary least squares (OLS) model (Cliff and Ord, 

1981; Li et al., 2015b; Saphores and Li, 2012).

Methods

Study Location and Data Collection

As the capital of Texas, the city of Austin is one of the fastest growing U.S. metropolitan 

areas and is the 11th largest city in the U.S. (it was only the 42nd largest in 1980) (U.S. 

Census Bureau, 2010). The total population of Austin was estimated to be over 912,000 in 

2014, a 20% increase since 2000 (U.S. Census Bureau, 2016). In addition to the population 

growth, Austin shows one of the highest growths in economy of all U.S. geographic areas, 

increasing nearly 6% in 2013 (Carlyle, 2014). The city has a relatively diverse physical 

environment setting with a wide range of natural and built environments from newly 

developed or historic communities.

Data to analyze the study site included housing transaction variables from January 2010 to 

December 2012 which was based on the Multiple Listing Service (MLA) data provided by 

the Austin Board of REALTORS®. The study collected 12,158 single-family home sale 

transactions in Austin. The original MLS data included detailed information about housing 

characteristics with variables such as living area, built year, lot size and numbers of 

bedrooms, full/half bathrooms, stories, fireplaces and garage spaces. The MLS data also 

contained binary variables including the existence of a pool and water frontage. Among the 

full data set, this research ultimately selected 11,326 home sale transaction samples after 

excluding any missing or mistyped records. To remove outliers in the sample selection, 

single-family houses with a lower sale price than $63,000 (the 1 percentile of the sample) or 

higher than $1,485,000 (the 99 percentile of the sample) were also excluded.

In order to control for the numerous factors which might influence property sale prices, we 

collected various variables of the neighborhood data to represent the social and 

environmental attributes. Based on Geographic Information Systems (GIS) data from the 

City of Austin, we calculated the distances to major infrastructure and/or amenities using 

both Euclidian distance (lakes and ponds, highways, and railroads) and street network 

distance (rail stations). We also analyzed locations of traffic accidents involved with 

pedestrians or cyclists and crime rates. To capture the school performance in the study area, 

we collected Texas Assessment of Knowledge and Skills test scores from the Texas 

Department of Education.
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Measuring Landscape Spatial Patterns

This research used landscape indices as environmental variables to examine the relationship 

between landscape spatial patterns and sale price of single family homes. Utilizing 

landscape indices enables to generate sets of quantitative data examining landscape patterns 

by comparing the differentiation and various groups of forms (McGarigal and Marks, 1995; 

Antrop, 2000). To assess the quality of landscape spatial patterns, we acquired Digital 

Orthophoto Quarter Quadrangles (DOQQ) aerial photograph images (1-meter color infrared 

high resolution imagery taken in 2010) from the Texas Natural Resource Information 

System (TNRIS). The collected DOQQ imageries were classified into 40 different land 

cover classes using the ISODATA unsupervised classification method based on the spectrum 

of the light band similarity using a remote sensing program, EVNI 4.3 (ITT Visual 

Information Solutions, White Plains, New York). The 40 classes were then grouped into 

three main land cover types: tree, grass and impervious areas. To improve accuracy in the 

classifying outcome, post classification processes including sieving, clumping, and filtering 

were conducted (Gong et al., 2003; Mas et al., 2010). Using ArcGIS 10.2 (ESRI, Redlands, 

California) software, the final classified imagery with three land cover types was converted 

into GRID files with the 1 by 1-meter pixel size. To determine the neighborhood of this 

study, we used 800 meters radius Euclidian buffers from the centroid of each property to 

capture the quality of landscape spatial patterns in the neighborhoods (Figure 1). The 800m 

distance has been widely used in many previous studies; it is the distance that neighborhood 

residents, including both adults and children population groups, would likely be willing to 

walk (Ewing, 1995; Lee and Moudon, 2006; Lee et al., 2006; Timperio et al., 2004; Kim et 

al., 2014). Then, to compute values of landscape indices, each GRID file was analyzed using 

FRAGSTATS 4.1, a spatial pattern analysis program applying the four-cell rule, which uses 

only orthogonal neighbors of a cell considering only the four adjacent cells sharing each side 

(McGarigal and Marks, 1995).

To quantify the quality of landscape spatial patterns, this research selected a series of diverse 

landscape indices. Based on previous studies and guidelines from the landscape ecology 

literature, this research selected five main criteria representing the quality of landscape 

spatial patterns: size, fragmentation, shape, isolation, and connectivity (Dramstad et al., 

1996; Forman, 1995b; Forman, 1995a; Shafer, 1994; Haines-Young and Chopping, 1996). 

Then, the eight most appropriate landscape indices including total area (TA), percentage of 

tree cover (PLAND), number of tree patches (NP), mean patch size (MPS), mean shape 

index (MSI), mean nearest neighborhood distance (MNN), patch cohesion index 

(COHESION) and area-weighted mean radius of gyration (GYRATE, a measure of patch 

context examining how far a patch traverses across a landscape) were selected for 

representing each criterion (Table 1).

Data Analysis

This research used the hedonic pricing framework to investigate the relationship between the 

quality of landscape spatial patterns and housing prices. Hedonic pricing models have been 

most widely applied to analyze the effects of various environmental attributes on housing 

price (Cropper et al., 1988; Rosen, 1974; Tse, 2002). They rely on regression analysis and 

are based on the fact that heterogeneous housing goods are affected by a number of factors, 

Kim et al. Page 6

Environ Plan B Urban Anal City Sci. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such as housing, neighborhood and locational characteristics (Conway et al. 2010; Payton et 

al. 2008; Geoghegan, 1997). The coefficients which a hedonic model generates for a certain 

characteristic can be interpreted as the implicit price that residents are willing to pay for 

such a characteristic (Morancho, 2003). The following equation describes our hedonic 

modeling framework:

P = SβS + LβL + NβN + QβQ + MβM + ε (1)

where P is a vector of sale transaction prices; S, L, N, and Q are matrices representing the 

variables of housing structural characteristics (e.g. square footage, number of bedrooms), 

locational characteristics (e.g. proximity to neighborhood facilities/amenities), neighborhood 

characteristics (safety and school quality), and landscape spatial patterns (landscape indices 

in Table 1) respectively; M is a matrix of the monthly binary variables to control for the 

housing market situations between 2010 and 2012. βS, βL, βN, βQ and βM are vectors of 

their corresponding coefficients to be estimated; and ε is a vector of error terms.

When estimating hedonic pricing models, it is important to account for spatial 

autocorrelation, which refers to the correlation of variable with itself throughout the sample 

space. When a house is listed for sale, the offer price could largely depend on the sale prices 

of neighboring properties. Contemporarily, a buyer could utilize a realtor and/or various 

professional real estate websites to easily obtain the sales and some structural information of 

neighboring properties. The sale prices of neighboring properties can also influence 

appraisal/assessment values of a home; for example, the commonly used “sales comparison” 

method in real estate appraisal calculates the appraisal value of a home based on the sales 

information of similar houses in the neighborhood.

Spatial autocorrelation effects can exist in the dependent variable and cause biased 

estimates; they can also lead to inconsistent estimates when they occur in the error term. In 

order to examine whether such effects exist in our housing sample, we performed the 

Moran’ I test and obtained a highly significant Moran’ I statistic (11.39 at the 0.01 level). In 

order to control for spatial autocorrelation effects, we estimated the Cliff-Ord spatial model, 

also known as the general spatial model or SAC (Anselin, 1988; Arraiz et al., 2010; 

Saphores and Li, 2012; Li et al., 2015a; Li et al., 2014; Cliff and Ord, 1981). Our spatial 

hedonic model is as follows:

P = λWP + SβS + LβL + NβN + QβQ + MβM + ε,
ε = ρWε + e,

(2)

where W is a spatial weight matrix; λ and ρ are spatial lag coefficients; e ~ N (0, σ2In) is a 

vector of error terms in which the spatial autocorrelation effects are mitigated. Following 

Saphores and Li’s (2012) approach, we developed our spatial weight matrix so that all 

neighboring properties located in the same census block group had an equal weight of 

influence on one’s property price. There are two reasons to choose such a spatial weight 

matrix for this research. First, the census block group, which includes one or more 
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contiguous city blocks, fits well with the neighborhood definition by the commonly used 

real estate appraisal approach – the comparable sales method. When real estate professionals 

use the method to appraise the value of a non-complex residential property such as the single 

family homes, they generally select comparable properties which are located within a few 

blocks of the subject. Second, various test results (e.g. Moran’s I, Lagrange Multiplier Tests, 

etc…) confirm that our selection of the weight matrix can well reflect spatial autocorrelation 

in the data. We used the STATA package SPPACK by Drukker et al. (2011) to estimate our 

spatial model, with maximum likelihood as the estimator.

To assess the risk of multicollinearity issues in our model, we conducted preliminary 

correlation analyses between the selected landscape indices. Since all landscape indices 

were calculated based on size, perimeter, and numbers of patches, some of them showed a 

high correlation each other. Thus, this research tested several different combinations of eight 

selected landscape indices to determine the most appropriate set to be added in the final 

model. We also calculated the Variance Inflation Factor (VIF) for each independent variable 

to mitigate the risk of multicollinearity in the final model.

Results

Characteristics of the Housing Sample

Table 2 shows the descriptive statistics for sale prices and the four categories of variables in 

Equation 1. For the housing structural characteristics, the average home sale prices ranged 

from $63,000 to $1,480,000 with a mean sale price of about $300,000. The average size of 

living area was about 180 m2 (1,950 sf) with about three bedrooms and two full bathrooms. 

The mean lot size of houses was about 960 m2 (0.24 acres) and they were, on average, 33 

years old at the time of sale. Only a few houses had a pool or were located at the waterfront. 

Among the variables measuring locational characteristics, the selected houses were, on 

average, about 10 km (network distance) away from Metro rail stations, while located in 767 

meters (direct distance) away from the nearest lake or pond. Regarding neighborhood 

characteristics, the average school quality score was 70.38 ranging from 28 to 95. There 

were, about 260 property crimes (e.g., burglary, larceny-theft, and motor-vehicle theft) and 

20 violent crimes (e.g., robbery, murder, and aggravated assault) around sample properties. 

In terms of landscape spatial patterns, over 39 percent of area within an 800 meter-radius 

buffer was covered by trees or urban forests, on average. There were about 4,000 tree 

patches, on average, and the mean distance between the two closest patches of the same type 

within each spatial setting was 2.59 meters.

Influence of Landscape Spatial Patterns on Single-family Housing Sale Prices

In Table 3, we presented the primary results estimated with the Ordinary Least Square 

(OLS) model and the spatial Cliff-Ord model. The spatial Cliff-Ord model achieved a higher 

performance over the OLS based on the measures of Akaike Information Criterion (AIC: 

5,837.172 lower than the OLS model) and Bayesian Information Criterion (BIC: 5,822.503 

lower than the OLS model), and was considered the optimal modeling form for this study. 

Our study showed that the OLS model generated biased estimations on several variables. For 

example, the age of house at year of sale was positively associated with housing price in the 
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OLS model; such an estimate is counter-intuitive and the bias might be because homes 

within the same census block group would probably have been built around the same time, 

resulting in a clustering effect. Another counter-intuitive finding from the OLS model is that 

having more garage spaces would significantly reduce property values. However, both of the 

above variables showed expected signs in the spatial regression model. In addition, the OLS 

model has considerably overestimated the magnitude on the living area, numbers of full/half 

bathrooms, school quality, traffic safety, violent crime rate, as well as some landscape spatial 

characteristics (MSI and MNN); on the other hand, the OLS model has underestimated the 

magnitudes on the proximity to railroad, property crime and the total area of landscape (TA).

The above inconsistency occurs because the term λWP is omitted in OLS; this term 

influences the sale price and is correlated with several independent variables as listed above, 

resulting in the omitted variable bias (Wooldridge, 2009). The OLS model also generated 

misleading significance levels on variables such as the proximity to railroad, total landscape 

area (TA), and patch cohesion index (COHESION). This typically occurs because spatial 

autocorrelation exists in the error terms and inflates the standard errors on these variables.

In the final spatial regression model, the effects of housing structural characteristics on 

transaction values were highly significant and showed expected signs. A single-family house 

would be sold at a significantly higher price with larger living area and lot size, younger age 

and a larger number of full and half bathrooms, while the number of bedrooms would be 

negatively associated with sale price. With keeping other factors constant, the property sale 

price significantly benefited from having more garage space, a pool and a waterfront 

location, whereas having two or more stories negatively affected sale prices.

Among variables assessing the correlations between locational and neighborhood 

characteristics, and housing transaction value, the closer network distance to Metro rail 

stations contributed to higher transaction values, while houses located within 400 meters of 

railroad showed significantly less valuable in the spatial regression model. This is a 

consistent finding from previous research (Armstrong and Rodríguez, 2006). The direct 

distance to the nearest lake or pond was negatively associated with property sale price at 

the .01 level, which means that a closer distance to a water body was more desirable by 

Austin residents. In addition, higher school quality based on the Texas Assessment of 

Knowledge and Skills test scores significantly benefited transaction values.

Interestingly, positive relationships were found between property sale price and two 

variables: the number of traffic accidents involved with cyclists and the number of total 

property crime in neighborhoods. These results were shown to be related to neighborhood 

characteristics. Many previous researchers found that pedestrian/cyclist friendly and transit-

oriented development positively influenced property price (Bartholomew and Ewing, 2011; 

Litman, 2003), and a higher volume of pedestrians/cyclists was associated with more crashes 

(Dumbaugh et al., 2013). Thus, we assume that a wealthier community may have more 

cycling supportive facilities, which may cause induced demand for cycling and accordingly 

increase the chance of crash incidents. In addition, a wealthier sub-division could be a more 

attractive target for certain types of property crime (burglary, larceny-theft, and motor-

vehicle theft), while less violent crime (robbery, murder, and aggravated assault) occurred in 
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the neighborhood. However, either or both of the above two variables may serve as a proxy 

for other unobserved neighborhood characteristics which are positively associated with 

property values.

The effects of landscape spatial patterns on property sale price were highly significant and 

generally consistent with findings from previous studies. The spatial regression model 

showed the size of urban forests and tree patches (TA) was positively associated with the 

property transaction value. This suggests that larger tree areas within an 800 meter-radius 

buffer would be likely to increase the single-family housing transaction price. The final 

spatial regression model also represented that the number of tree patches (NP) was 

negatively associated with housing price at the 0.01 level, indicating that fragmented 

landscape spatial patterns in a neighborhood could decrease property sale price. MSI showed 

a negative relationship, which indicated that irregularly shaped landscape patterns were 

harmful to property sale price. MNN measuring the status of isolation was negatively 

associated with housing price. This finding suggests that less isolated patterns with closer 

distances between the nearest tree patches positively contributed to property sale price. 

There was a statistically negative association between COHESION and transaction value. 

The COHESION assesses the physical connectivity of the corresponding patch. The value of 

COHESION increases as the corresponding patch type have more clumped or aggregated in 

the given spatial distribution as the same patch type is more physically connected 

(McGarigal and Marks, 1995; Schumaker, 1996; McGarigal et al., 2012). This finding could 

be interpreted in that that more clumped tree areas would be less valuable to increase 

housing transaction value. This result may be associated with safety concerns about 

landscape structure in neighborhoods. Previous studies found that more open space with 

landscape structure having less dense understories and cleaner edge conditions would 

improve a sense of safety than closed landscape patterns in neighborhoods (Jorgensen et al., 

2002; Ulrich, 1986). Thus, the landscape patterns by more clumped urban forests nearby 

properties may not be desirable to increase transaction values.

Discussion and Conclusions

This research used spatial regression models to estimate the value of landscape spatial 

patterns on housing transaction prices using objective and quantitative measurements. Most 

previous hedonic studies about urban green space only measured the proximity to and/or the 

total size of green space (Irwin, 2002; Lutzenhiser and Netusil, 2001; Tyrväinen, 1997; 

Tyrväinen and Väänänen, 1998; Morancho, 2003; Mansfield et al., 2005; Sander and 

Polasky, 2009). Some studies have relied on NDVI measures as a proxy of the health and 

quantity of green space (Payton et al., 2008); however, there are some limitations when 

applying the NDVI measures into planning policy development, as NDVI cannot reflect 

spatial configurations of green space. Only few studies have examined the relationship 

between landscape ecological patterns and property values (Geoghegan et al., 1997; Kong et 

al., 2007); however, in these studies, the potential spatial autocorrelation issue was not fully 

addressed.

The results from our spatial regression model indicated that larger urban green space (TA) 

surrounding a single-family house was positively correlated with the transaction prices, 
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while more fragmented- (NP), isolated- (MNN), or irregularly shaped (MSI) landscape 

spatial patterns were negatively associated with property sale price. In addition, there was a 

positive impact of less clumped (COHESION) tree areas on housing prices. According to 

previous landscape ecology research, larger patch sizes, less fragmented and less isolated 

conditions indicate healthier status of landscape and better environmental quality (Dramstad 

et al., 1996; Forman, 1995b; Forman, 1995a; Riitters et al., 2002). Our study suggested that 

ecologically healthier landscape patterns in neighborhoods were actually desirable among 

residents and could positively contribute to property sale price.

This research used several landscape indices using FRAGSTATS software. Landscape 

indices are useful variables generating more accurate statistical evidence with quantitative 

forms to estimate the ecological quality by measuring landscape spatial characteristics 

(Bogaert et al., 2000; Gustafson, 1998; Haines-Young and Chopping, 1996; Li and Wu, 

2004; O’Neill et al., 1988; Riitters et al., 1995; Turner, 2005). A number of landscape 

indices have been developed and tested for monitoring natural resources and estimating the 

interrelationship between human activity and the ecosystem. However, there is no ideal 

single index that performs better than the others, and landscape patterns cannot be captured 

by any singe index. Understanding the nature and limitations of using landscape indices is 

necessary to select an appropriate set of landscape indices regarding the main purpose of 

research analysis. To quantify the quality of landscape patterns, spatial guidelines and 

theories from previous studies should be extensively reviewed. In addition, the easiness of 

applying landscape indices using spatial statistic software and the simplicity of interpolating 

outcomes should be considered to select an appropriate set of landscape indices. 

FRAGSTATS is a widely used software program to compute a series of values of landscape 

indices. From the results of this research, we agreed the program can offer analytical 

benefits of comparing diverse spatial aspects of landscapes. Utilizing FRAGSTATS allowed 

us to interpolate and describe a certain landscape pattern intuitively with quantitative 

approaches evaluating spatial patterns based on the existing landscape ecology principles 

and theories. The methods of this research confirmed the potential of using FRAGSTATS. 

The program provides opportunities to design more comprehensive methods to analyze 

multiple aspects of ecological conditions in the built environment by offering quantitatively 

analytical approaches to urban landscape pattern analyses with values from diverse 

landscape indices.

In this study, we compared results from the conventional OLS model and the spatial 

regression model to obtain robust estimates. The two modeling forms generated different 

estimates on several variables, including house age, garage space, the total area of trees and 

urban forests (TA) and the patch cohesion index (COHESION). Real estate market property 

values were determined through a complex mechanism; the sale prices and characteristics of 

neighboring properties may have spatial autocorrelation effects on one’s property sale price. 

These effects could not be controlled in the OLS modeling form and therefore introduced 

omitted variable biases to OLS estimation results. Our study, however, did demonstrate that 

the spatial regression model mitigated the risk of spatial autocorrelation and achieved higher 

modeling performance than OLS.
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This research has several limitations. First, the study area was limited to the City of Austin 

and the results focused on only single-family houses. Thus, our findings may not be able to 

be fully generalizable to other housing forms and geographic areas. Second, although we 

tried to collect the most appropriate variables to represent the neighborhood characteristics 

associated with determining housing prices, the final model may not fully include some of 

the key control variables potentially representing neighborhood characteristics. Third, this 

research utilized DOQQ imagery to measure the quality of landscape spatial patterns. 

DOQQ images only allow classifying land cover types with two-dimensional information 

which does not show the full layers of landscape structure under the tree canopy. Future 

research should consider more advanced media such as the Light Detection and Ranging 

(LIDAR) imagery to fully capture the full layers of landscape structure. Fourth, this study is 

a cross-sectional study. The future research needs to continue monitoring and measuring the 

effect of landscape spatial changes on housing transaction value through time. Finally, this 

study focused only on Austin’s city-wide single family market. We expect that residents’ 

preference on landscape spatial patterns may differentiate depending on heterogeneous 

socio-economic, demographic and geographic characteristics; these characteristics will 

change based on locations such as the inner city downtown areas and suburban 

neighborhoods. Thus, future research should explore such disparities in more depth.

Despite these limitations, however, this research is one of the first empirical studies in which 

the spatial regression modeling approach was applied to assess the impact of landscape 

spatial patterns on property sale price. The findings of this research call for future 

investigation to shed insights on whether and to what extent landscape ecological patterns 

are valued by residents based on property sale price analysis.

Rapid urban expansion has become one of the major issues in the U.S. Cities increasingly 

recognize the benefits of urban green spaces to enhance overall environmental quality and 

public health. To respond to this challenge, planners and policy makers should reconsider 

their decision-making processes for land use planning by including the arrangement and 

connectivity of urban natural environments. The application of the principles of landscape 

ecology has influenced diverse planning areas such as natural resource management and 

land use planning. In addition, since the primary focus of landscape ecology research is 

associated with large areas, large scales and long-term changes, it can provide a foundation 

for designing and planning, with a more sustainable future in mind (Forman, 1995a). Our 

results suggested that residents in urban areas would likely pay a premium for houses 

located in larger tree areas with less fragmented-, less isolated-, less clumped, and more 

regularly shaped landscape spatial patterns. These results suggested that preserving natural 

environment systems in neighborhoods could not only enhance ecological quality, but also 

generate economic benefits by potentially increasing property tax revenues; assessment of 

property value regarding the impact of neighborhood green spaces can therefore assist policy 

makers in understanding the fiscal sustainability of urban greening policies. These findings 

could be used to produce community landscape design and/or development guidelines to 

address the challenge of rapid urbanization.
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Figure 1. 
Euclidian buffer to measure landscape spatial patterns
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Table 1.

Selecting criteria, landscape indices, and formulas

Criteria Landscape Indices (Acronym) Formula
a Description Unit (Range)

Size Total area (TA)
Σ

j = 1

a
aij × 1

10, 000
Higher TA 
and PLAND 
values 
indicate 
larger patch 
sizes.

Hectares

Percentage of tree cover 
(PLAND) Σ

j = 1

a
aij ∕ A × 100

%

Fragmentation Number of patches (NP) ni Higher NP 
values and 
lower MPS 
values 
indicate 
more 
fragmented 
conditions.

Count

Mean Patch size (MPS)
Σ

j = 1

n
aij ∕ ni

Square-meter 
(MPS≥0, 
without limit)

Shape Mean shape index (MSI)
Σ

j = 1

n
0.25pij ∕ aij ∕ ni

Higher MSI 
values 
indicate 
more 
irregular 
shapes.

None 
(MSI≥1, 
without limit)

Isolation Mean nearest neighbor distance 
(MNN) Σ

j = 1

a
hij ∕ ni

Higher 
MNN 
values 
indicate 
more 
isolated 
patterns.

Meter

Connectivity Patch cohesion index 
(COHESION) 1 − Σ

j = 1

n
pij ∕ Σ

j = 1

n
pij aij × 1 − 1 ∕ A

−1
× 100

Higher 
COHESION 
values 
indicate 
more 
connected 
patterns.

%

Area-weighted mean radius of 
gyration (GYRATE) Σ

i = 1

m
RiPi

Higher 
GYRATE 
values 
indicate 
longer 
expected 
distance of a 
particular 
patch.

Meters 
(GYTARE≥0, 
without limit)

ni= number of patches in the landscape of patch type I; aij = area (m2) of patch ij; A = total landscape area; pij = perimeter of patch ij; hij = 

distance (m) from patch ij to nearest neighboring patch of the same type, based on edge-to-edge distance; R = patch radius of gyration; P = 
proportion of landscape; Cijk = joining between parch j and k of the corresponding patch type i

*
Adopted and revised from Kim et al. (2014)

a
See McGarigal and Marks (1995) for more details.
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Table 2.

Summary Statistics (N = 11,326)

Variables (units) Mean SD Min. Max.

Home sale price ($) 301,008.73 200,795.17 63,000.00 1,480,000.00

Structural characteristics

 Living area (m2) 181.19 77.58 33.17 666.56

 Lot size (m2) 964.32 1077.01 141.64 37,761.22

 House age at year of sale 33.48 23.21 0.00 123.00

 # of bedrooms 3.27 0.74 1 11

 # of full bathrooms 2.01 0.68 1 7

 # of half bathrooms 0.33 0.49 0 9

 Binary: 1 = having 2 or more stories 0.38 0.48 0 1

 Binary: 1 = having one or more garage space 0.66 0.48 0 1

 Binary: 1 = having one or more fireplace 0.60 0.49 0 1

 Binary: 1 = having pool 0.07 0.25 0 1

 Binary: 1 = located at the waterfront 0.01 0.11 0 1

Locational characteristics

 Network distance to rail stations (m) 9,840.01 6,249.10 251.64 24,452.02

 Direct distance to nearest lake or pond (m) 767.81 500.00 0 2,734.56

 Binary: 1 = highway within 400m 0.61 0.49 0 1

 Binary: 1 = railroad within 400m 0.15 0.35 0 1

Neighborhood characteristics

 School quality score in the past year (0-100) 70.38 13.66 28.00 95.00

 # of traffic accidents involving pedestrians within 800m 1.23 1.66 0 17

 # of traffic accidents involving cyclists within 800m 1.21 1.67 0 16

 # of total property crime within 800m 263.49 235.39 0 1,961

 # of total violent crime within 800m 20.88 30.85 0 319.67

Landscape spatial characteristics (acronym, unit)

 Total area (TA, ha) 80.89 20.61 11.09 157.69

 Percent of tree cover (PLAND, %) 39.77 10.13 5.45 77.53

 # of tree patches (NP) 3,991.79 1,465.58 1,109 9,028

 Mean patch size (MPS, m2) 251.30 167.71 41.00 1,331.00

 Mean shape index (MSI) 1.24 0.03 1.15 1.35

 Mean nearest neighborhood distance (MNN, m) 2.59 0.40 1.96 5.85

 Patch cohesion index (COHESION, %) 99.21 0.56 95.72 99.98

 Area-weighted mean radius of gyration (GYRATE, m) 143.88 90.60 18.98 521.00

Note: SD = standard deviation; min. = minimum; max. = maximum. The monthly binary variables are not listed in this table for brevity
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Table 3.

Housing sale price estimation results

Variables (units)
OLS Spatial Regression

Coefficients Robust SE Coefficients Robust SE

Structural characteristics

 Living area (m2) 1.729*** 0.038 1.305*** 0.022

 Lot size (m2) 0.005** 0.002 0.006*** 0.001

 House age at year of sale 0.211** 0.085 −0.751*** 0.053

 # of bedrooms −40.966*** 2.275 −17.208*** 1.414

 # of full bathrooms 54.685*** 3.323 35.254*** 1.829

 # of half bathrooms 15.083*** 3.346 9.526*** 1.993

 Binary: 1 = having 2 or more stories −20.937*** 3.368 −26.688*** 2.173

 Binary: 1 = having one or more garage space −6.335** 2.910 10.013*** 2.143

 Binary: 1 = having pool 34.946*** 5.534 28.540*** 3.036

 Binary: 1 = located at the waterfront 51.901*** 18.530 50.398*** 6.547

Locational characteristics

 Network distance to rail stations (m) −0.011*** 0.001 −0.009*** 0.001

 Direct distance to nearest lake or pond (m) −0.017*** 0.002 −0.012*** 0.003

 Binary: 1 = railroad within 400m −0.556 2.951 −14.693*** 3.113

Neighborhood characteristics

 School quality score in the past year (0-100) 2.034*** 0.101 0.464*** 0.144

 # of traffic accidents involved in cyclists within 800m 10.535*** 1.014 4.460*** 1.168

 # of total property crime within 800m 0.030*** 0.066 0.066*** 0.013

 # of total violent crime within 800m −1.352*** 0.066 −0.506*** 0.094

Landscape spatial characteristics (acronym, unit)

 Total area (TA, ha) −0.020 0.112 0.231* 0.127

 # of tree patches (NP) −0.020*** 0.002 −0.011*** 0.002

 Mean shape index (MSI) −311.235*** 48.323 −202.982*** 56.230

 Mean nearest neighborhood distance (MNN, m) −74.928*** 5.390 −27.839*** 5.934

 Patch cohesion index (COHESION, %) 1.208 3.047 −11.752*** 0.760

Constant 544.532 336.041 1511.751 -

Akaike information criterion (AIC; value) 135,863.472 130,026.300

Bayesian information criterion (BIC; value) 136,310.894 130,488.391

Note: SE = standard error. The dependent variable is the housing sale price ($1,000) with 11,326 single-family transactions during 2010-2012. The 

adjusted R2 for the OLS model was 0.77. The monthly binary variables and statistically insignificant variables were not reported for brevity.

*
p < .10;

**
p < .05;
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***
p < .01
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