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Abstract

There is substantial interest in understanding the impact of gestational weight gain on preterm 

delivery (delivery <37 weeks). The major difficulty in analyzing the association between 

gestational weight gain and preterm delivery lies in their mutual dependence on gestational age, as 

weight naturally increases with increasing pregnancy duration. In this study, we untangle this 

inherent association by reframing preterm delivery as time to delivery and assessing the 

relationship through a survival framework, which is particularly amenable to dealing with time-

dependent covariates, such as gestational weight gain. We derive the appropriate analytical model 

for assessing the relationship between weight gain and time to delivery when weight 

measurements at multiple time points are available. Since epidemiologic data may be limited to 

weight gain measurements taken at only a few time points or at delivery only, we conduct 

simulation studies to illustrate how several strategically timed measurements can yield unbiased 

risk estimates. Analysis of the study of successive small-for-gestational-age births demonstrates 

that a naive analysis that does not account for the confounding effect of time on gestational weight 

gain suggests a strong association between higher weight gain and later delivery (hazard ratio: 

0.89, 95% confidence interval = 0.84, 0.93). Properly accounting for the confounding effect of 

time using a survival model, however, mitigates this bias (hazard ratio: 0.98, 95% confidence 

interval = 0.97, 1.00). These results emphasize the importance of considering the effect of 

gestational age on time-varying covariates during pregnancy, and the proposed methods offer a 

convenient mechanism to appropriately analyze such data.

Maternal weight gain is a potentially modifiable determinant of maternal and child health 

outcomes. Current Institute of Medicine recommendations concerning optimal weight gain 

are designed to minimize maternal and child risk of adverse short- and long-term outcomes.1 

However, available evidence surrounding the association between weight gain and preterm 

delivery, arguably one of the most important predictors of neonatal morbidity and mortality,2 

is critically lacking. Existing research surrounding this association is potentially biased due 

to methodologic challenges in dealing with the inherent correlation between pregnancy 

weight gain and length of gestation.
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Previous studies have reported a modest U-shaped relation between total gestational weight 

gain and preterm delivery, where both low and high weight gain are associated with 

increased risk.1 As demonstrated by Hutcheon et al,3 using a single measure of total weight 

gain at delivery can lead to a biased estimate of the risk of preterm, where low weight gain is 

ostensibly associated with increased risk, as women who delivered earlier had less time to 

gain weight. Some investigators have attempted to avoid this issue by calculating an average 

rate of weight gain or an adequacy ratio relative to the Institute of Medicine 

recommendations.4–8 These methods, however, rely on additional assumptions concerning 

the weight gain trajectory and may not completely eliminate this potential source of bias.3 

One major issue with using a single measure of total weight gain as the exposure is that, 

among the women who deliver at term, some of the weight is gained after 37 weeks, when 

they are no longer at risk for preterm delivery.

We propose an alternative means to address the correlation between weight gain and 

gestational age at delivery by reframing the binary outcome of preterm (<37 vs. ≥37 weeks 

of gestation) as time to delivery (i.e., gestational age at delivery), and incorporating this 

semicontinuous outcome of interest into a survival framework. Studies of preterm delivery 

rarely use time-to-event analysis, despite its methodological advantages.9–11 The survival 

approach has the additional advantage of discriminating week-specific delivery risk across 

the continuum of gestational age. This could prove particularly useful in light of recent 

research suggesting that neonatal morbidities are differential even within the “term” period,
12 reflecting important distinctions that would be missed under the dichotomous outcome of 

preterm delivery. Furthermore, survival models are compatible with repeated measurements 

and time-dependent exposures, such as gestational weight gain. By simulating nonlinear 

trajectories of weight gain during pregnancy, we evaluate the performance of this survival 

approach with time to delivery as the outcome of interest, and compare it with a binomial 

model of preterm delivery. In addition, we demonstrate that using repeated measures of 

gestational weight gain, instead of weight gain at delivery, can improve precision.

METHODS

When quantifying the association between a time-independent predictor, X, and preterm 

delivery, the following regression model may be applied, where preterm delivery is 

represented by a binary indicator, or equivalently, by gestational age at delivery (t) being less 

than 37 weeks:

g[Pr(preterm ∣ X)] = g[Pr(t < 37 ∣ X)] = α + Xβ,

where g is the link function (e.g., log for Poisson regression, logit for logistic regression) 

and calculation of the risk or odds (eβ) associated with X is straightforward. Comparatively, 

when X is time-dependent and varies with gestational age, such as weight gain, bias can be 

induced if gestational age is not accounted for. Simple adjustment for gestational age at 

delivery when modeling preterm delivery as the outcome will result in numerical instability, 

since preterm delivery is a deterministic function of gestational age at delivery.13,14 Even if 

convergence appears successful, the interpretation of the estimated risk can be misleading. 

Later, we return to this issue to discuss alternative measures to total gestational weight gain 
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that can effectively eliminate this confounding effect of time. First, however, we propose an 

alternate and more powerful structure to assess the risk associated with gestational weight 

gain.

Survival Analysis

As an alternative to the binary outcome of preterm delivery, we propose application of the 

Cox proportional hazards model, where the outcome of interest is time to delivery. Survival 

models are naturally suited to incorporate the time-dependent nature of the outcome as well 

as any time-varying covariates. In addition, they are conducive to handling measurements of 

weight gain at multiple time points. Under a proportional hazards model:

logh(t ∣ Xt) = logh0(t) + Xtβ,

where h(t∣Xt) represents the hazard of delivering at time t, given the value of the predictor X 
at time t, and h0(t) is the baseline hazard function, which captures the natural time course of 

the hazard of delivery. More details on the implementation of this method are provided in 

the section describing the simulation studies.

Binomial Regression

There may be circumstances in which the outcome of preterm delivery as a binary event, as 

opposed to time to delivery, remains of interest. While a survival model will estimate the 

instantaneous hazard of delivering at any given gestational week per one-unit increase in the 

exposure (e.g., 1 extra kilo of weight), a binomial model will estimate the risk of delivering 

before 37 weeks given a one-unit increase in the exposure. Although the risk of delivering 

preterm can be derived from the survival model, the binomial model can directly estimate 

the relative risk, so long as all exposure measurements included in the model occur before 

37 weeks, when women are still at risk for preterm delivery. The following model can be fit:

g[Pr(preterm ∣ X)] = g[Pr(t < 37 ∣ GWGGA)]

= α + (GWGGA)β + (GA)γ,

where GWGGA is the gestational weight gain recorded at gestational age GA. Note that 

under a proportional hazards model with a time-fixed covariate, the probability of delivering 

preterm is given by

p = Pr(t < 37 ∣ X) = 1 − S(37 ∣ X) = 1 − exp( − H(37 ∣ X))
= 1 − exp( − exp(α + Xβ)),

where S represents the survival function, and H the cumulative hazard. Thus, a binomial 

model with a complementary log–log link is directly comparable to the survival model, since 

estimates of β under this model are equivalent to the log-hazard ratio estimated under a 

survival model (see Ref. 15 for more details). This model can be extended to directly 

estimate the relative risk or odds ratio of preterm delivery using a log or logit link, 

respectively. In the following simulation studies, we compare hazard ratio estimates from a 

Mitchell et al. Page 3

Epidemiology. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



survival model on time to delivery with those from model (2) using the complementary log-

log link and the binary outcome of preterm delivery.

Simulation Study

We performed a simulation study to compare the performance of the survival and binomial 

models in estimating the hazard ratio, as well as to determine the extent to which hazard 

ratio estimates are affected when only a limited number of weight measurements are 

available. To do this, nonlinear weight gain trajectories across gestation and time to delivery 

were simulated for 1,000 women. The dataset was then reduced to resemble more realistic 

scenarios of intermittent weight gain collection in cohort studies. These datasets were 

generated to resemble the study of successive small-for-gestational-age births described 

below. Gestational weight gain was generated to mimic minimal weight gain in the first 

trimester, followed by linear weight gain in the second and third trimesters.1 While existing 

strategies to generate time-dependent covariates in a survival setting focus on binary 

predictors (such as treatment switching) or a known function of time (e.g., cumulative dose),
16–18 we explicitly incorporated a random component into the simulated weight gain 

trajectories to better resemble actual weight gain data.

After simulating gestational weight gain trajectories for each participant, we simulated time 

to delivery based on various levels of a prespecified hazard ratio. To do this, we generated 

the hazard of delivery at each week as a Weibull random variable with shape v and scale = 

λexp(Xtβ), to mimic the nonconstant hazard of delivery, where

h t ∣ Xt = νtν − 1λexp(Xtβ)

The cumulative hazard at time T is then given by

H T ∣ Xt = ∫
0

T
h t ∣ Xt dt

= ∫
0

T
νtν − 1λexp Xtβ dt ≈ ∑

j = 1

k
t j
ν − t j − 1

ν λexp Xt j − 1
β ,

where T = tk represents gestational age at time point k. This approximation to the integral is 

equivalent to a Riemann sum, where the time intervals t j
ν − t j − 1

ν  can be arbitrarily small. In 

our study, we choose each time interval to represent 1 week of gestation. Next, the 

gestational age at delivery was selected based on inverse transform sampling, where U is 

generated from a uniform distribution between 0 and 1, and t is found by solving the 

equation U = S(t) = exp[−H(t)].19 This simulation process was conducted for hazard ratios 

(i.e., eβ) of 0.7, 0.9, 1.0, 1.1, and 1.3, corresponding to a 1 kg increase of weight gain. The 

shape and scale parameters of the Weibull distribution were altered accordingly to maintain 

an expected preterm prevalence of 12%–13%. Each simulation scenario was repeated 5,000 

times.
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Intermittent Visits

In most epidemiologic studies, it is rare to have weight measured at each week during 

pregnancy. To approximate a scenario where participants are observed at intermittent time 

points, the simulated dataset was reduced to contain weight gain measurements at four visits, 

randomly selected for each individual to coincide with a first (10 to 12 weeks), second (18 to 

23 weeks), and third trimester visit (25 to 36 weeks), as well as weight recorded at delivery. 

For this simulation, the exact week of measurement for each woman was randomly selected 

to fall within the prespecified range, and weight at delivery was retained for each woman. 

Under this realistic scenario of intermittent weight gain measurements, one crucial step for 

appropriate estimation under the survival model is that weight gain must be linearly 

interpolated between the observed time points, to approximate weight gain at each week. If 

weight gain were not interpolated, the default model in most standard software packages 

(e.g., SAS and R) would treat the weight observed at each time point as being constant over 

the entire interval between measurements, and the resulting trajectory would resemble a step 

function. While any weight gain measurements before the first event or censoring time will 

not affect hazard ratio estimates, these values can inform the linear interpolation strategy, 

particularly if later weight gain measurements are unavailable.

In addition to assessing the performance of the survival model on intermittent time points, 

the binary regression model with complementary log–log link is also considered, where the 

outcome is preterm delivery (<37 weeks) and weight gain measurements after 37 weeks are 

excluded. Table 1 provides the average hazard ratio estimate, standard error, and coverage 

rates for each of these models.

The results of the simulations suggest that the survival model with interpolated gestational 

weight gain performs extremely well under various effect sizes, with no discernable bias and 

nominal coverage. This result implies that even when weight is measured only intermittently, 

an unbiased and precise hazard ratio estimate can be achieved. Since the success of this 

interpolation strategy depends on the approximate linear trajectory of weight gain between 

observed time points, adequate spacing of weight measurements can greatly improve 

estimation by providing a more precise representation of the weight gain trajectory.

If only one measurement of weight is available, the hazard ratio can still be effectively 

estimated using a binomial model with complementary log–log link, so long as weight is 

measured at a time point before 37 weeks for each woman. In general, estimates under these 

models are approximately unbiased, with close to nominal coverage. In particular, the model 

fit with the third trimester visit weight performs remarkably well, although this model does 

not achieve the level of precision of the survival model, which is able to incorporate weight 

gain measurements at multiple time points for each woman. Thus, the binomial model 

performance tends to improve with a weight measurement taken later in pregnancy. Thus, so 

long as weight gain is measured before 37 weeks, a binomial model adjusted for the 

gestational age at measurement can effectively untangle the inherent time dependency 

between weight gain and preterm delivery. This performance extends readily to log-linear 

models to directly estimate the relative risk.
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Total Weight Gain at Delivery

For this simulation, we reduce the dataset to include only the observation at the time of 

delivery, as is common in many cohorts or vital records data. These results illustrate the 

potential consequences of naively estimating the risk of preterm delivery using only total 

gestational weight gain, and help determine whether the proposed survival model can 

effectively mitigate the potential effect of time when weight gain is linearly interpolated at 

every gestational week. Since weight gain, and not total weight (where total weight = 

prepregnancy weight + weight gain), is the exposure of interest, weight gain at conception is 

assumed to be 0. Weight gain can then be interpolated assuming linear gain from conception 

until delivery. For this simulation, the binomial model with complementary log–log link is 

also fit to assess the potential bias of failing to account for the intrinsic correlation between 

total weight gain and preterm delivery. Results from these models are provided in Table 2.

The binomial model with complementary log–log link produces biased estimates of the true 

hazard ratio. Coverage is poor for this naive model, and the effect of higher weight gain 

appears to be protective when it is actually not (e.g., when HR = 1.1). Alternatively, when 

weight gain is interpolated in a survival model, risk estimates are close to the true hazard 

ratio. Even though the interpolated weight gain trajectory was misspecified by assuming a 

constant linear rate of weight gain instead of minimal gain in the first trimester, coverage is 

still fairly high, surpassing 86% in all scenarios. Thus, when only gestational weight gain at 

delivery is available, a linear interpolation of weight gain could still prove useful, 

particularly with respect to point estimation. Improvements on the standard error estimates 

(and subsequently, coverage) could be achieved by obtaining at least one additional time 

point, preferably around the end of the first trimester, when previous evidence suggests that 

the rate of weight gain is likely to change.

Application to Motivating Dataset

We applied these methods to the study of successive small-for-gestational-age births, a 

longitudinal cohort study of mothers in Norway and Sweden (1986–1988).20 Women were 

eligible if they had parity of 1 or 2, were of Caucasian origin, spoke one of the Scandinavian 

languages, had a singleton gestation, and were <20 weeks gestation by enrollment (n = 561). 

All participants provided signed informed consent, and institutional review board approval 

was arranged at each participating hospital for primary and secondary hypotheses.

Antenatal study visits were targeted at 17, 25, 33, and 37 gestational weeks. Gestational age 

was calculated based on the first day of the last menstrual period and confirmed with 

ultrasound estimate.20 At the first visit, women reported their prepregnancy weight and 

height. Subsequent weight measurements were extracted by study midwives based on 

personal health records of regular prenatal visits provided by the participants.

After removing any observations with missing data, the dataset contained information on 

540 women, each of which had weight recorded at least 5, and up to 22 times, during 

gestation. The median time to delivery was 39 weeks, with 11% delivering preterm (<37 

weeks). To determine whether gestational weight gain was associated with time to delivery, 

a survival model with interpolated weight gain values was fit. In addition, the hazard ratio 
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from a binomial model with complementary log–log link was also estimated, where the most 

recent weight measurement before 37 weeks (between 30 and 36) was the main exposure, 

and the gestational age of that measurement was included as a covariate.

Hazard ratio estimates and 95% confidence intervals are given in Table 3. Based on these 

analyses, the survival model with interpolated weight gain suggests that a higher weight gain 

may have a weak protective association with time to delivery. Results from the binomial 

model concur with this inference, although, consistent with the simulation studies, the 

precision of this estimate is slightly lower.

To assess the hazard ratio estimates assuming that only weight gain at delivery was 

available, we fit a survival model with a linearly interpolated weight gain, as well as the 

naive binomial model with total weight gain at delivery as the predictor variable. These 

models disregard all weight measurements before delivery. Results from the survival model 

with interpolated weight gain using only weight measured at delivery (Table 3) are almost 

identical to the results when multiple weight measurements for each woman were included 

in the model. Both survival models suggest only a weak association between weight gain 

and time to delivery in this cohort.

Comparatively, the hazard ratio estimate under the naive binomial model implies a strong 

protective association with higher weight gain. This estimate corresponds almost exactly to 

those from the simulation results in Table 2, where, under a null effect, the binomial model 

based on total weight gain is biased downwards, estimating a risk of around 0.88 when the 

true hazard ratio is 1. The results from this example emphasize the importance of accounting 

for the confounding effect of time. As demonstrated in the simulation studies and reflected 

in the data analysis, not doing so could result in misleading inference, indicating a protective 

effect where none exists or, worse, in the presence of a harmful effect.

DISCUSSION

In this article, we have demonstrated an innovative survival approach to examine the 

association between gestational weight gain and time to delivery. We have demonstrated that 

hazard ratio estimates can be accurately and precisely estimated under a survival model with 

linear interpolation of weight gain, particularly when multiple intermittent time points are 

available for each participant. In addition, a binomial model with preterm delivery as the 

outcome can effectively estimate risk, as long as all exposure measurements are taken before 

37 weeks, and adjusted for gestational age at measurement. Finally, in the scenario with only 

total weight gain at delivery, the survival model with interpolated weekly weight gain can 

supply valid point estimates, but coverage may not be ideal. While minimal weight gain data 

can provide reasonable point estimates, the findings of this article stress the benefit of 

allocating resources to collect strategically timed weight gain measurements to improve 

overall inference.

While modeling preterm delivery as a dichotomous outcome may facilitate interpretation, 

more precision can be gained by retaining the original scale of time to delivery. Since 

preterm is a direct dichotomization of this time-dependent variable, even the step of 
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redefining time to delivery as preterm delivery ignores valuable information. If the goal is to 

directly estimate the relative risk as opposed to the hazard ratio, it is worth noting that when 

the outcome prevalence is small (~10%), these two values are approximately equivalent.21 

Thus, even when estimating the association between a time-fixed exposure and preterm 

delivery, retaining the original time-scale and fitting a survival model on time to delivery can 

improve precision, and translating the hazard ratio to the relative risk is straightforward.22

When longitudinal measurements on time-varying covariates are available, a survival 

analysis on time to delivery is arguably the optimal approach. While previous studies have 

successfully eliminated the confounding effect of gestational age by omitting weight gain 

measurements taken after 28 weeks,23 the proposed survival model easily incorporates 

multiple measurements of weight gain, thus improving precision by retaining all available 

data up to delivery. In addition, survival models are more effective than the binomial model 

at handling truncation, competing risks, and censoring.24–27 For instance, adjusting for left 

truncation when participants enter the study at later gestational ages is straightforward in a 

survival framework. In addition, competing risks to delivery, such as pregnancy loss, can be 

accounted for using existing methods in the survival framework. The binomial model, on the 

other hand, does not enjoy such flexibility.

Of note, the proposed methods are relevant to other time-varying exposures, such as 

maternal exercise or medication use. In addition, a quadratic version of weight gain or a 

spline regression could be tested to capture potential nonlinear associations with weight gain 

and earlier delivery. It is important to note, however, that Cox proportional hazards models 

can be susceptible to bias when predictors of the outcome are not included in the model. If 

this issue is a concern, parametric techniques such as accelerated failure time models can be 

employed, or more advanced causal mediation methods such as g-estimation or marginal 

structural models may be useful.28–30

In some cases, such as with vital records, only a single data point of total weight gain at 

delivery is available. In this situation, estimation of the association with time to delivery is 

possible, but care must be taken when interpreting the results. While a binomial model with 

preterm delivery as the outcome will give statistically biased estimates, the survival model 

with an interpolated weight gain can give reliable point estimates of the hazard ratio. 

Although coverage was not ideal under mis-specification of the weight gain trajectory, 

improvements could be made by applying a joint longitudinal and survival model, where 

weight gain values are approximated by individual level predictors.31 The weight-gain-for-

gestational-age z-score has been proposed as another means to estimate the association 

between total weight gain and preterm delivery.3 However, the utility of this method relies 

on additional assumptions concerning the development of the reference z-score chart, and 

may not adequately mitigate the correlation between gestational age at delivery and weight 

gain when these assumptions are not met (Hinkle et al., unpublished, 2015).

As demonstrated in the simulations, obtaining multiple measurements on pregnant women 

will give the most precise estimates and avoid the potential difficulty of estimating a weight 

gain trajectory when gestational weight gain is measured only at delivery. Intermittent 

prenatal visits are common among pregnant women. Advances in data collection methods, 
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such as electronic medical record abstraction and mobile-based data collection, can facilitate 

attainment of repeated measures during pregnancy. When only two measures are feasible, 

the optimal timing for measurements is at the expected change point in the rate of weight 

gain (around the end of the first trimester), and again late in pregnancy but before 37 weeks.

There is tremendous interest in understanding the impact of gestational weight gain on 

maternal and child health. While low weight gain has been associated with an increased risk 

for small-for-gestational-age birth weight and high weight gain with macrosomia and child 

obesity,1 there is a substantial data gap related to preterm delivery, one of the most important 

outcomes. The methods demonstrated in this study have the potential to enhance studies of 

the relationship between weight gain and time to delivery with the ultimate goal of refining 

recommendations for gestational weight gain.
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TABLE 1.

Simulated HR When Gestational Weight Gain Is Measured at Intermittent Visits

True
HR Model Predictors

Estimated
HR

Standard
Error

95% CI
Coverage

(%)

1.3 Survival Intermittent visits
a 1.30 0.02 94

Binomial 1 st trimester
b 1.29 0.08 95

2nd trimester
c 1.29 0.05 94

3rd trimester
d 1.30 0.04 95

1.1 Survival Intermittent visits 1.10 0.01 95

Binomial 1 st trimester 1.10 0.07 95

2nd trimester 1.10 0.04 95

3rd trimester 1.10 0.03 95

1.0 Survival Intermittent visits 1.00 0.01 95

Binomial 1 st trimester 1.00 0.06 95

2nd trimester 1.00 0.04 95

3rd trimester 1.00 0.03 95

0.9 Survival Intermittent visits 0.90 0.01 95

Binomial 1 st trimester 0.90 0.05 95

2nd trimester 0.90 0.04 95

3rd trimester 0.90 0.03 95

0.7 Survival Intermittent visits 0.70 0.01 94

Binomial 1 st trimester 0.73 0.05 91

2nd trimester 0.72 0.04 90

3rd trimester 0.71 0.03 93

a
Four visits at 1st trimester, 2nd trimester, 3rd trimester, and delivery. Weight gain values are linearly interpolated between visits.

b
Between 10 and 12 weeks.

c
Between 18 and 23 weeks.

d
Between 25 and 36 weeks.

HR indicates hazard ratio; 95% CI, 95% confidence interval.
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TABLE 2.

Simulated HRs When Gestational Weight Gain Is Measured at Delivery Only

True
HR Model

Estimated
HR

Standard
Error

95% CI
Coverage (%)

1.3 Survival
a 1.29 0.02 86

Binomial
b 1.13 0.04 1

1.1 Survival 1.09 0.01 87

Binomial 0.94 0.03 0

1.0 Survival 0.99 0.01 90

Binomial 0.88 0.02 0

0.9 Survival 0.89 0.01 91

Binomial 0.81 0.02 1

0.7 Survival 0.70 0.01 95

Binomial 0.68 0.02 86

a
Weight gain linearly interpolated from baseline (weight gain = 0) to total weight gain at delivery.

b
Total gestational weight gain as measured at delivery.

HR indicates hazard ratio; 95% CI, 95% confidence interval.
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TABLE 3.

Data Analyses When Gestational Weight Gain Is Measured at Intermittent Visits and at Delivery Only

Model Predictor
Hazard Ratio

(95% CI)

Survival Weight gain at multiple visits
a 0.98 (0.97, 1.00)

Binomial Weight gain between 30 and 36 weeks 0.95 (0.89, 1.01)

Survival Total gestational weight gain
b 0.99 (0.97, 1.01)

Binomial Total gestational weight gain
c 0.89 (0.84, 0.93)

a
Weight gain linearly interpolated between visits.

b
Weight gain linearly interpolated from baseline (weight gain = 0) to total weight gain at delivery.

c
Total gestational weight gain as measured at delivery.

95% CI indicates 95% confidence interval.
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