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Advances in microstructural modelling are leading to growing requirements on diffusion MRI acquisitions, 

namely sensitivity to smaller structures and better resolution of the geometric orientations. The resulting 

acquisitions contain highly attenuated images that present particular challenges when there is motion 

and geometric distortion. This study proposes to address these challenges by breaking with the conven- 

tional one-volume-one-encoding paradigm employed in conventional diffusion imaging using single-shot 

Echo Planar Imaging. By enabling free choice of the diffusion encoding on the slice level, a higher tempo- 

ral sampling of slices with low b-value can be achieved. These allow more robust motion correction, and 

in combination with a second reversed phase-encoded echo, also dynamic distortion correction. These 

proposed advances are validated on phantom and adult experiments and employed in a study of eight 

foetal subjects. Equivalence in obtained diffusion quantities with the conventional method is demon- 

strated as well as benefits in distortion and motion correction. The resulting capability can be combined 

with any acquisition parameters including multiband imaging and allows application to diffusion MRI 

studies in general. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

1.1. Increasing requirements on diffusion data 

Diffusion MRI (dMRI) offers a unique observation window into

tissue microstructure in-vivo ( Le Bihan et al., 1986 ). Increasingly

advanced biophysical modelling techniques for dMRI allow in-

sight into microscopic tissue properties, such as axon diameter

( Assaf et al., 2008; Alexander et al., 2010 ), neurite morphology

( Zhang et al., 2012 ), global connectivity patterns ( Tournier et al.,

2012; Wedeen et al., 2008; Steven et al., 2014 ) and cell size and

density ( Panagiotaki et al., 2015 ). These techniques demand a rich

dMRI acquisition for accurate parameter estimation, namely a high

number of samples varying in direction, described by the unit vec-
Abbreviations: TA:, acquisition time; AP:, anterior-posterior; SNR:, Signal to 

Noise Ratio; ADC:, Apparent diffusion coefficient; ROI:, Region of Interest; ssEPI:, 

single-shot EPI; SAO:, slice acquisition order. 
� Slice-level diffusion encoding. 
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or b -vector and strength, expressed in b -value in the diffusion en-

oding space. Typically, a set of different orientations acquired on

ne b -value are referred to as one shell. 

Recently, novel techniques to change the diffusion encoding

tself have emerged, including oscillating gradients ( Baron and

eaulieu, 2014 ) and b -tensor encoding strategies ( Szczepankiewicz

t al., 2015; Topgaard, 2017 ). A common factor across these dMRI

cquisition techniques is the need for higher b -values – containing

mportant information for accurate parameter estimation in bio-

hysical modelling techniques. But the corresponding higher dif-

usion encoding strength, achieved by stronger attenuation with

igher amplitude gradients, poses additional challenges: 

• High- b data is typically low in anatomical contrast and Signal-

to-Noise Ratio (SNR). This hampers important post-processing

steps such as correction for geometric distortion and for arti-

facts due to motion during the acquisition. Both often rely on

registration approaches. 
• The required strong gradients pose significant demands on the

hardware regarding thermal heating (duty cycle) and power

supply, resulting in longer acquisition times to allow for cooling

periods. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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DMRI data is most often acquired using Spin-Echo single-shot

cho-Planar Imaging (ssEPI) ( Turner et al., 1991 ). One common ar-

ifact in EPI is geometric image distortion due to magnetic field

usceptibility. In addition, while EPI techniques are quick enough

o freeze intra-slice motion, they are intrinsically planar tech-

iques and do not resolve inter-slice motion. Therefore, the ac-

uired stacks of slices needed to capture whole volumes typically

eature inconsistent and variable slice locations. Especially rotation

etween slice acquisitions break the intra-volume consistency and

enders interpolation between slices almost impossible. Recent ac-

elerations with multiband imaging, a technique acquiring multi-

le slices at the same time and using geometrical coil information

or subsequent separation ( Barth et al., 2016 ) has the benefit of

ocking multiple slices together. However, novel challenges regard-

ng for example the slice acquisition order and cross-talk artefacts

 Hutter et al., 2018 ) arise. 

Inconsistencies originating from motion and distortion, are,

owever, a major impediment for accurate estimation of biophys-

cal parameters. Variations due to inconsistent slice locations per-

urb these measurements and hamper accurate estimation of any

iophysical parameter. Therefore, a vast body of work has been

roposed to deal with motion and distortion artifacts and to pro-

uce truly 3-dimensional accurate representations of the object. 

Regarding distortion correction, traditional methods often ei-

her acquire additional data to model the distortion - by mapping

he polarising magnetic field (B0) directly, by obtaining separately

cquired reversed phase encoding volumes to estimate the field

 Jezzard and Balaban, 1995 ) or by using information in undistorted

natomical images to provide an estimate for the B0-field through

mage registration strategies. 

However, most previous approaches share the limitation to ob-

ain a static B0-field estimation, relying on data acquired before

r after the scan and thus unable to estimate the dynamic ef-

ects of distortion. Furthermore, all these techniques except the di-

ect mapping of the B0-field, require a registration step in post-

rocessing, hampered for high- b data by the attenuation and thus

imited anatomical contrast. The only methods to overcome these

hortfalls are approaches relying on phase estimation from subse-

uent volumes or echos ( Hutton et al., 2002; Cordero-Grande et al.,

018 ). 

Methods for static motion correction can be split into real-time

pproaches, attempting to measure the motion within the acquisi-

ion ( Aksoy et al., 2011; Kober et al., 2012 ) or to acquire breath-

old data ( Kim et al., 2008 ), and post-processing techniques at-

empting to estimate the motion state from the data itself. 

Extensive research has been dedicated to reconstructing 3D

olumes from scattered slices in anatomical imaging using slice-

o-volume (SVR) techniques ( Rousseau et al., 2006; Kuklisova-

urgasova et al., 2012; Kainz et al., 2015; Gholipour et al., 2010;

ourbier et al., 2015 ). Recent improvements include machine-

earning approaches to predict the motion-state and parameters

 Hou et al., 2017 ). 

When extended to dMRI, all these approaches share the chal-

enge of the strong signal attenuation and the absence of con-

istent anatomical features at high- b , which makes these images

oorly suited for standard image registration ( Ben-Amitay et al.,

012 ). They can be classified according to their proposed treatment

f high- b data: 

(a) Approaches attempting to register high- b data to a refer-

ence low- b volume typically employ mutual information to

accommodate the contrast differences ( Maes et al., 1997;

Oubel et al., 2012; Jiang et al., 2009 ). But they have been

shown to lack in accuracy in regions such as the cortical rim

( Ben-Amitay et al., 2012; Nilsson et al., 2015; Rohde et al.,

2004 ). 
(b) Methods relying on simulating the contrast properties of

high- b data from the low- b data as target for the registra-

tion were proposed based on CHARMED ( Ben-Amitay et al.,

2012 ) CSF-corrected models ( Nilsson et al., 2015 ), Gaussian

processes ( Andersson and Sotiropoulos, 2015 ) or diffusion

encoding ( Scherrer et al., 2012 ). 

(c) Approaches extrapolating the motion parameters obtained

from conventional registration of the low- b data to the high-

b value data based on spatial or temporal proximity. This

was demonstrated with 2D liver imaging ( Mazaheri et al.,

2012 ). Recent work combines (b) and (c) by employing av-

erage targets per shell as an input for sequential slice regis-

tration ( Kurugol et al., 2017 ) or includes multiband imaging

( Marami et al., 2016 ). 

These approaches rely in some way on the anatomically reliable

ow- b data points to estimate motion parameters throughout the

cquisition. 

The spacing of these low- b points is therefore of key impor-

ance but has, to date, not been part of active method develop-

ent. All available studies are based on conventional ssEPI acquisi-

ions. These are, however, restricted in the available sampling free-

om due to the employed volume view rather than planar view . In

onventional dMRI all slices in a volume are acquired with a given

iffusion weighting before repeating all slices with the next cho-

en encoding. This results in a suboptimal non-uniform spacing in

ime of low- b data points. 

.2. Foetal imaging as the application of choice 

All the described challenges, motion and distortion artifacts, are

ajor obstacles for all dMRI acquisitions. While typically less mo-

ion is observed in adult brain scans, applications such as the ac-

uisition of data from abdominal organs tend to suffer from in-

reased motion. The presented methods are general and can be

pplied to any such application. However, in the following we

emonstrate the specific challenges and successful application of

ur technique on in-utero imaging of the foetus. 

In-utero imaging is prone to motion artifacts due to maternal

reathing and the foetal movement itself. Furthermore, changes of

he maternal pose due to respiration, as well as the proximity of

as in the maternal bowel can result in time-varying susceptibility

nduced distortions. Traditional techniques that assume static sin-

le time point field maps are unhelpful in this scenario, and the

ove from 1.5T to 3T for advanced foetal studies has exacerbated

hese problems, particularly with long scan durations needed for

loquent dMRI data. 

.3. Overview 

In this study we propose a fundamental change on the acquisi-

ion side to answer the aforementioned challenges and problems.

e hypothesize that these will contribute to more eloquent data,

uitable for more accurate motion and dynamic distortion correc-

ion. 

We break with the traditional paradigm of one volume, one dif-

usion encoding (described in Section 2 ). Our method offers en-

anced flexibility to choose the diffusion encoding per slice rather

han per volume, and thus allows the sampling of low- b slices

ith a higher and more-uniform density ( Section 2.1 –2.3 ). In ad-

ition, acquisition of a second spin-echo with reversed phase en-

oding at each ssEPI shot ( Section 2.4 ) provides data usable for dis-

ortion correction for each individual slice ( Gallichan et al., 2010 ).

he combination of these elements ensures that there can be

ow- b information suitable for distortion and motion correction

btained at high temporal resolution. Candidate post-processing
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Fig. 1. A schematic illustration of the acquisition scheme for one EPI slice is depicted in (a), consisting of the diffusion encoding in blue, the pulses required for the spin 

echo in black and the read-out train in gray. (b-c) depict a conventional volume-wise acquisition and (d-e) the proposed slice-wise acquisition. The chosen parameters are 

N s = 6 , N d = 3 . Thereby, (b) and (d) are schematics and (c) and (e) depict exemplary axial foetal brain images. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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strategies designed to exploit this new data structure are presented

in Section 2.2 and Section 2.5 . Finally, experiments on phantoms

and in-vivo on adult and foetal subjects, as well as simulations are

presented ( Section 3 ). Their results ( Section 4 ) depict the ability of

the proposed acquisition and processing methods to improve mo-

tion and distortion correction. Possible extensions and limitations

are discussed in Section 5 . 

These concepts were introduced in Hutter et al. (2017) , but have

been significantly extended and tested in this paper. We present

a more general formulation of the proposed diffusion acquisition

approach, and simulations to illustrate its performance and limi-

tations. We also present new motion correction results, and new

phantom and adult scans. 

2. Materials and methods 

ssEPI is an intrinsically planar acquisition - each slice is ac-

quired independently with an EPI sequence block, consisting of the

diffusion preparation (blue in Fig. 1 a) and the EPI read-out (grey in

Fig. 1 a). A full dMRI EPI acquisition with a chosen number of diffu-

sion encodings, d = 1 , ., N d , and a fixed number of slices s = 1 , ., N s ,

consists in total of N t = N d · N s slices. Every slice can be labelled by

its temporal index t with t = 1 , ., N t , within the sequence. 

The acquisition is split in equal blocks or volumes v with v =
1 , ., N d containing N s subsequent slice excitations - each acquiring

all slices specified within one geometric volume. The geometric lo-

cation z , is defined by the slice acquisition order (SAO). SAO relates

the index s to the geometric location z by z = SAO (s ) . Examples are

ascending SAO, resulting in SAO (s ) = s or the frequently used odd-

even SAO ([1,3,5,7,9,.,2,4,6,8,.]). The optimal choice allows sufficient

recovery of the longitudinal magnetization after the excitation and

acquisition of one slice before locations in spatial proximity are ex-
ited. Higher degrees of motion warrant more distant subsequent

xcitations. The same SAO is preserved over all volumes to achieve

 regular excitation pattern. 

.1. Slice parameterization 

Each slice is thus parameterized by its geometric location z , its

rder within the acquisition t and the index of the volume v it

s part of. In addition, each slice acquisition varies by its diffu-

ion preparation – specified by the chosen diffusion encoding d .

his contains for Stejskal–Tanner encoding the diffusion strength

 b -value) and diffusion sensitization direction ( b -vector). 

In conventional dMRI, the choice of d is linked intrinsically to

he volume v by the one volume - one encoding paradigm: Within

olume v = 1 , all N s slices are acquired with encoding d = 1 , as il-

ustrated in Fig. 1 b–c. N s repetitions of the same sequence block

ead to a full volume and define the repetition time (TR) of the

equence. In a next volume ( v = 2 ), diffusion encoding d = 2 is

elected and all slices s = 1 , ., N s are acquired. This process is re-

eated until all encodings N d are acquired. 

The novel proposed slice-level diffusion encoding breaks with

his rigid relation between volume and encoding. Instead, it allows

he intrinsic flexibility of the planar acquisition to be exploited and

onsiders all slices to be independent regarding their diffusion en-

oding. 

Each slice is parameterized by the global slice index t as well

s v, s and z . Thereby, the volume index v and the volume slice

ndex s are calculated from the global index t by division by the

umber of slices: v equals the result rounded to the next integer

nd s equals the remainder after division. The geometric slice index

 is directly obtained from the slice acquisition order SAO : 
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Fig. 2. The structure of the conventional EPI sequence (in (a)) and the proposed Superblock & Interleaving (in (b)) are depicted. In (a) the whole acquisition is shown 

together with a zoom into the last four volumes in the second row. In (b), a whole acquisition ( N s = 12 , N d = 16 , L = 4 is shown in the first row. The second row shows a 

zoom into the superblock l = 3 . Finally, in the third row, volume v s = 2 within this superblock is shown together with all relevant parameters ( i , s , t ). 
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Algorithm 1 Calculate encoding per slice. 

1: procedure Find encoding for slice ( t) 

2: Find current superblock index l = t/ (N s · L ) . 

3: Find current volume within superblock v s = (t − (N s · l)) . 

4: Find current interleave within volume i = (s + v s + f ) mod L 

5: Return d = (t − N s · l) + i 

6: end procedure 
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(t, d, v , s, z) with v = � t/N s � + 1 , 

s = t mod N s + 1 and z = SAO (s ) . (1) 

As illustrated in Fig. 1 d, the diffusion encoding now changes

rom slice to slice, leading to subsequent slices having free diffu-

ion encoding ( Fig. 1 e). 

.2. Superblock & interleaving 

Individual slice encoding allows very great flexibility and can be

ptimised on a variety of time and length scales, including treating

he whole acquisition as a single non-repeating sequence of differ-

ntly weighted slices. However, for the above mentioned goal to

acilitate motion and distortion correction it is helpful to closely

nterleave low and high b -values. It can also be advantageous to

nsures that complete volumes of encoded data are achieved even

f the scan is interrupted or abandoned. Therefore, we present in

he following a Superblock & Interleaving approach. 

S uperblock The sequence of slices is sub-divided into so called

superblocks with length L . Each superblock consists of L · N s 

slices (or L volumes) with L chosen diffusion encodings.

Thereby, L consecutive diffusion samplings were intertwined

so that all slices are acquired with all diffusion weightings

(i.e. b -value shells) after L volumes. The number of required

blocks depends on the total number of diffusion samples:

N l = N d /L . 

I nterleaving Within each superblock, however, every volume in-

terleaves all L diffusion encodings. These are laid out se-

quential in time and shift from one volume to the next by

the shift factor f —chosen in the simplest case as 0. This pro-

cess is formulated in Algorithm 1 and graphically depicted

in Fig. 2 b. 

The interleave & superblock approach reduces to the conven-

ional approach for L = 1 . It enforces one additional constraint: the
uperblock length L needs to be a divisor of the number of slices:

 s mod L = 0 . 

.3. Motion estimation—higher temporal low- b sampling 

The optimal acquisition sequence depends on the nature of the

onsidered motion. The major source of motion in most applica-

ions, breathing motion, is characterized by its smooth and quasi-

egular pattern in time. Assuming a physiological breathing rate of

0–12 inhale-exhale cycles per minute, and thus a nominal period-

city of around 5 s. Respiration induced displacements tend to be

mooth rather than jerky and dominantly in the anterior-posterior

AP) and superior-inferior directions. 

Fig. 3 a visualizes for illustrative purposes the displacements in

P direction of such a typical breathing cycle in parallel to the ac-

uired EPI slices plotted in (undersampled) temporal order of ac-

uisition using a conventional volume-based sequence. With typ-

cal TRs between 6 and 12 sec in foetal imaging, each acquired

olume thus experiences the displacement of 1–3 breathing cy-

les. This corresponds, assuming a single-slice acquisition time of

round 200 ms, to roughly 25 slices. 

Fig. 3 b also illustrates the varying b -values and thus resulting

natomical contrast over the depicted volumes. It indicates the low

ontrast and decreased SNR for higher b -values. This translates into
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Fig. 3. The distribution of the low- b slices is illustrated schematically for conventional (a-b) and superblock and interleaved (c-d) acquisition. Thereby, the displacement in 

anterior-posterior direction originating from a (simplified) exemplary breathing pattern is illustrated schematically in (a) and (c) in black. In green, the temporal indices of 

low- b slices are indicated. In (b) and (d) slices obtained at sub-sampled temporal locations along (a) and (c) are schematically depicted to illustrate the temporal sampling 

density of low- b slices. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Illustrations of the temporal (first row, a,c,e,g) and spatial (second row, b,d,f,h) patterns of low- b (green) and high- b (gray) slices are given. The same odd-even 

slice acquisition order [0,2,4,6.1,3,5,7.] is used for all. The varied parameters include the number of slices N s : 12 in (a–d) and 15 in (e–h) and the superblock length L : 4 in 

(a–b), 3 in (c–d), 3 in (e–f) and 5 in (g–h). The coloured circles mark a suboptimal (red), non-uniform (orange) and to uniformly spread and optimal patterns (yellow). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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a considerable variation in the reliability of the estimated transfor-

mations if using slice-to-volume registrations. The temporal index

of low- b slices is marked on the respiratory plot in green - indicat-

ing the dense sampling of the respiration in the first volume but

globally unbalanced sampling density. 

To improve sampling—specifically to increase the sampling den-

sity of low- b throughout the acquisition, the proposed interleav-

ing diffusion sampling is employed as follows: Within a superblock

with length L , both low- b and high- b encodings are included (there

are L − 1 high b -values). The subsequent interleaving leads to a

uniform spread of the low- b slices over time, as illustrated in

Fig. 3 c and d for a superblock structure with L = 4 encodings, here

illustrated with one b = 0 , one b = 400 and two b = 10 0 0 s 
mm 

2 vol-

umes. The exact parameterization and choice of the ratio of low- b

to high- b depends on the expected motion pattern, the repeat time

(TR) and ratio of low- vs. high- b in the planned diffusion encoding

scheme. 
So far, these concepts were discussed and visualized only as a

unction of the temporal slice index t (or s within the volume) but

ithout considering the geometric location. But to ensure optimal

egistration properties, the low- b value data was spread out not

nly maximally in time to densely sample motion patterns but also

n space to ensure spatial proximity of every high- b slice to a low-

 slice. 

In the following, a geometrical optimal sampling will thus be

haracterized by resulting in equal geometrical distance between

ll acquired slices with the same encoding d per volume v , corre-

ponding to equal inter-slice inter-shot distances. Fig. 4 illustrates

he relation between temporal and geometrical order for odd-even

AO for four settings of N s and L . Thereby, Fig. 4 (a and b) illus-

rate the setting as given in Fig. 2 with N s = 12 and L = 4 , resulting

n a non-uniformly spread distribution in z -direction (b), whereas

ig. 4 (c–d) with N s = 12 and L = 3 show a very suboptimal spa-

ial result with two subsequent slices sampled back-to-back. (e-
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Fig. 5. (a) Sequence diagram (simplified) of the double spin-echo sequence illus- 

trating the gradient objects on Read-out (X), phase encoding (Z) and slice (Z) axis as 

well as radio-frequency pulses. (b) Acquired echoes with opposed phase encoding 

and thus equal-opposite distortions. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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) illustrate an example with N s = 15 , resulting in two different

ut equally nicely spread spatial patterns for L = 3 and L = 5 in (f)

nd (h). As a general rule of thumb, an optimal pattern can, for

iven even-odd slice acquisition order, only be achieved with an

dd number of slices N s as shown in more detail in the Appendix. 
ig. 6. The postprocessing step required to correct for geometric distortions is depicted

hase encoding direction (here AP) is complemented with a subsequent single b = 0 vol

he calculation go a static field map and subsequent (2) correction of all volumes using

nterleaving data is depicted: (1)Sliding window reconstruction extracts b = 0 volumes thro

teps which are finally (3) used to correct every slice with the temporally closest map. 
.4. Double echo for dynamic distortion correction 

A common approach is to acquire the whole acquisition in one

hase encoding direction, for example AP, and then at the begin-

ing or end an additional b = 0 volume with reversed phase en-

oding direction. This data is used to estimate a field map, which

s static with respect to the acquisition ( Andersson et al., 2003;

ezzard and Balaban, 1995 ). Given the dynamic nature of the dis-

ortion field in foetal MRI, as well as other abdominal applications,

 dynamic estimation of the field map is required to allow dynamic

istortion correction. 

The proposed modified EPI sequence features a double spin

cho, as previously proposed by Gallichan et al. (2010) , with the

econd echo obtained with opposed phase encoding direction (see

ig. 5 ). While differing in echo time and thus contrast and sig-

al, the two echoes have matched read-out bandwidth but oppo-

ite susceptibility induced shift effects/distortions. Their temporal

roximity of < 100ms and the need for a coherent signal path-

ay throughout the sequence to obtain signals, ensures that the

wo images produced per slice can be relied upon to have closely

atched (nominally identical) motion states. Susceptibility induced

tretching in the first echo ( Fig. 5 yellow) corresponds to signal

ile-up in the second echo (red). 

.5. Dynamic distortion correction 

Fig. 6 a depicts conventional static distortion correction based

n a B0 field estimate determined using a phase-encoding reversed

 = 0 -volume applied to single phase-encoding dMRI acquisition as

escribed above. The combination of a second echo and the su-

erblock & interleaving diffusion sampling allows for a more dy-

amic approach as illustrated in Fig. 6 b. The acquired superblock &

nterleaving double spin-echo data point pairs represent individual
. In (a), a conventional technique is depicted: The dMRI scan acquired with one 

ume with opposed phase encoding direction (here PA). Correction consists of (1) 

 this map. In (b) the proposed approach based on double-spin echo Superblock & 

ughout the dataset. These are used to calculate (2) dynamic field maps for all time 
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Fig. 7. (a) Schema of the proposed postprocessing of the Superblock & Interleaving data. The first row, consisting only of step sorting sorts the data to a conventional 

volume-view data set. In the second row, a four-step pipeline including motion correction is depicted. In (b)–(d), the weighting approach is illustrated. (b) Depictes the b0 

result as obtained after super-resolution reconstruction, (c) the derived brain mask and (d) the obtained number of voxels within the mask as input for the calculation of 

the weights. 
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samples, differing by geometric location and diffusion weighting.

The data is first re-ordered to assemble low b -value volumes using

a sliding window approach (step 1, Fig. 6 b). Each temporal volume

T v gathers together the temporally closest low- b slices. The win-

dow size equals the superblock length, L , and the maximal tempo-

ral distance to measured distortion correction data thus equals 2TR

for the case of L = 5 illustrated. This data is used (step 2 Fig. 6 b) to

calculate field maps (in Hz) for every time point using FSL topup
( Andersson et al., 2003 ). 

In step 3 ( Fig. 6 b), the temporally closest field map is chosen

to correct each slice for distortions. This operation is performed

in scanner coordinates and the field maps are converted into dis-

placements in mm taking the bandwidth of the sequence and the

EPI factor into account. 

2.6. Postprocessing—motion correction 

In Step 1 ( Fig. 7 ) all the low- b slices are combined as input to

a SVR alignment. A brain mask is obtained by thresholding of the

voxel intensities, followed by largest connected component anal-

ysis and median filtering - all implemented using MRtrix3 image

processing commands (Tournier et al., 2012). A manual refinement

step is performed, which is required especially in cases of anterior

placentas. 

Then, SVR implemented in MRtrix3 (Step 2, Fig. 7 ) is em-

ployed ( Tournier et al., 2012 ). The process intersperses a registra-

tion step to progressively refine the position estimate of each slice

in anatomical space, with a 3-D reconstruction step that uses all

newly aligned data to generate a 3D volume that can then be used

as a registration target for the next iteration. While this is not the

focus of this study, the used reconstruction algorithm allows for

super-resolution reconstruction to increase the target resolution. To

aid convergence, the temporally closest b = 0 slices are combined

to b = 0 volumes and registered in a first volume-to-volume regis-
ration until finally every individual slice is registered. This allows

he position of each slice to be refined while accounting for tem-

oral proximity. The outcome of this processing step are a motion-

orrected low- b volume, transformation parameters for each indi-

idual low- b slice, and a weight assigned to each slice. This weight

epends on the number of voxel within the brain mask for every

lice. The fewer voxel within the mask, the less stable the registra-

ion and especially the less robust regarding rotation parameters.

herefore, the weights are obtained as the number of voxel within

he brain mask divided by the number of total voxel per slice. (See

ig. 7 b–d.) Any slices with less than 1% of voxels within the brain

ask are given a weight ”0” and thus effectively marked as out-

iers. 

In Step 3 ( Fig. 7 ), all high- b slices are individually assigned

 positional transformation obtained by weighted interpolation of

he transformations for the two closest low- b slices in time. Specif-

cally, rigid transformation matrices R 0 and R 1 are interpolated lin-

arly at time 0 < t < 1 as: 

 (t) = exp (t log (R 1 ) + (1 − t) log (R 0 )) , (2)

here exp and log are matrix exponential and logarithm. This in-

erpolates a smooth trajectory and preserved the rigid transforma-

ion. 

Finally, in step 4 the interpolated motion estimates are input

o a 4-D reconstruction of the full DWI data in the spherical har-

onics (SH) basis for every shell, that also accounts for neces-

ary gradient reorientation due to motion. This 4-D reconstruction

irectly extends the least-squares conjugate gradient method de-

cribed above to estimate, for each voxel, a vector of SH coeffi-

ients from the scattered slice data at given rigid motion parame-

ers ( Kuklisova-Murgasova et al., 2017 ). 
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Fig. 8. Results from the simulated breathing experiment are depicted. In (a), the obtained motion free volume is shown in sagittal, coronal and transverse plane. In (b), 

the simulated motion patterns for different repetition times (TR = 3sec first row and TR = 12sec second row) and different interleave patterns (L = 2 first column, L = 4 second 

column and L = 8 in the third column) are shown. All capture the time frame of two subsequent volumes, the red dots illustrate the temporal acquisition order of the low-b 

data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Experiments 

Experiments to explore and validate the proposed methods

ere conducted on a 3T Philips Achieva scanner running release

.2.2 software and a 1.5T Philips Ingenia scanner running re-

ease 5.17 software. Software modifications were implemented to

chieve the required enhancements to standard acquisition capa-

ilities on both systems. All subjects gave written informed con-

ent according to local ethics committee approved protocols. 

.1. Equivalence experiment 

All experiments described below were performed on the clinical

chieva scanner. 

To validate the sequence and test whether moving from a con-

entional diffusion encoding by complete volume to slice-wise

iffusion encoding causes performance issues, both phantom and

dult experiments have been performed: A sphere phantom was

himmed using image based shimming and scanned in the 32-

hannel adult head coil both using the conventional volume and

he superblock acquisition. Next, a healthy compliant adult was

canned with the 32-channel adult head coil. Volume shim as well

s fat saturation was applied. 

Further fixed imaging parameters for both included resolu-

ion 2.2 mm isotropic, TR = 5500 ms, TE = 80 ms, SENSE = 2, partial
ourier = 0.8, FOV = 200 × 200 mm (220 × 200 for the adult exper-

ment). 

The presented superblock & interleaved scheme was employed

n both phantom and adult. The diffusion encoding scheme was

hereby matched to the scheme which was sampled for later foetal

sage: 50 directions on 3 shells ( b = 0 , b = 400 and b = 10 0 0 s 
mm 

2 ).

he acquisition time was TA = 4:40 min. 

In scan 1, the conventional scan was performed sampling the

ncodings per volume: b = 0, b = 40 0, b = 10 0 0, b = 10 0 0, b = 10 0 0, in

can 2 the proposed superblock scheme with L = 5 was used. Scan

 was sorted to conventional volumes only, without any motion

orrection performed and then apparent diffusion coefficient (ADC)

nd fractional anisotropy maps were calculated using the diffu-

ion MRI processing package MRtrix3 [Website www.mrtrix.org ,

ournier et al. (2012) ] for both conventional and superblock scan.

he obtained quantities were compared on a voxel-by-voxel basis. 

Finally, to illustrate the flexibility of the proposed method, 2 ad-

itional scans were performed on the adult. First, a b -value sweep

as performed to illustrate the flexible slice level allocation of b -

alues. Therefore b -values between 0 and 20 0 0, sampled in steps

f 100 were acquired within the same volume, in addition one

olume with b = 0 and one volume with b = 20 0 0 was acquired

ithin the same scan. Additional parameters included N s = 40 and

cquisition time 21 s. Next, a multiband accelerated scan (multi-

and factor 2) was performed with the above presented superblock

http://www.mrtrix.org
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Fig. 9. Results are presented from the phantom experiment. Thereby (a) illustrates 

the acquired data in coronal plane for the superblock scheme. (b) shows the data 

after sorting to conventional volumes in coronal view. In (c) the conventional data 

is displayed equally in coronal view. Sorted superblock and acquired conventional 

data at a mid-stack location in the axial plane is given in (e) and (f). Finally in (d 

and g) he difference between conventional and superblock is shown (scale 5% of 

the original data) in coronal (d) and axial (g) view. 

Table 1 

Symbols and abbreviations. 

t = 1 . . . N t Slice index (within the entire acquisition) 

d = 1 . . . N d Diffusion encoding index 

v = 1 . . . N v Volume index 

s = 1 . . . N s Slice index (within one volume) 

l = 1 . . . N l Superblock index 

e = 1 . . . N e Echo index 

L Super block length 
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1 www.developinghumanconnectome.com 
& interleaving acquisition. The TR was kept constant for illustration

purposed resulting in the same acquisition time TE = 4:40 min. 

3.2. Simulations 

Tests to explore motion correction by interpolation of transfor-

mations from low-b slices regularly spaced in time were performed

by simulating a motion affected dataset as follows: A motion-free

b = 0 volume was obtained as a result from slice-to volume recon-

struction using foetal data acquired as described below. This vol-

ume was replicated N d = 50 times (step 1, Fig. 8 ) to make an image

time series. Breathing motion with a breathing cycle length of 5sec

was simulated as a sine-wave with a 5sec period and amplitude

4mm. To illustrate the effect of the number of slices and coverage,

two versions, one with N s = 30 —containing only the foetal brain

and one with N s = 40 —containing several slices above and beyond

the brain were simulated with varying TR = 3,6,12 and 15 s (step 2,

Fig. 8 ). The resulting curve was sampled at �t = T R/N s sec. In step

3, the simulated breathing curves were applied as y -translation fol-

lowing the given temporal order. Finally, all possible superblock

lengths L = [2 , 3 , 5 , 6] for N s = 30 and L = [2 , 4 , 5 , 8] for N s = 40

were applied in step 4. This results in 32 different simulations. 

The resulting motion-corrupted data is processed with the

pipeline as specified in Fig. 6 a and the mean deviation between

input and output translation parameters over the entire N d = 50

volumes is assessed. 

3.3. Foetal diffusion data 

8 pregnant volunteers (gestational age 26–34 weeks) were stud-

ied as part of the developing Human Connectome Project (dHCP 1 )

after informed consent was obtained (LO/1047). All women were

imaged in a supine position ( Hughes et al., 2016 ) using a 32-

channel cardiac coil. The proposed double spin-echo Superblock

& Interleaving diffusion sequence was used to acquire 3-shell

HARDI data with a total of 49 directions (11 b = 0 , 8 b = 400 , 30

b = 10 0 0 s 
mm 

2 ), isotropic resolution 2.2 mm 

3 , 35–44 slices/volume,

N i = 4–6, TR = 110 0 0–150 0 0s, TE = 107 ms for the first echo and

208 ms for the second echo, SENSE 2.0, using image-based shim-

ming and SPIR fat suppression. The acquisition time varied slightly

with varying slice number and TR between TA = 9:09 min and

TE = 12:30 min. 

4. Results 

4.1. Equivalence experiment 

The results from the phantom experiment for both scan 1 and

2 are given in Fig. 9 . This includes for superblock data both the ac-

quired in coronal (a) plane and sorted data in coronal (b) and ax-

ial plane (e). For conventional data the respective orientations are

given in (c) and (f). Finally, the difference, displayed at 5% of the

original signal intensity is given in (d) and (g). No systematic dif-

ferences are observable between the two acquisitions. The results

from the described adult experiments are given in Fig. 10 . In (a)

superblock acquired, (b) sorted and in (c) the conventional acqui-

sition. Resulting ADC (d) and FA (e) maps are given for both acqui-

sitions together with Bland-Altmann plots (f-i) of all the voxels in

the brain mask. Thereby, the results from the interleaved vs. con-

ventional test are given in (f) and (g), the results for conventional

vs. conventional repeat in (h) and (i), both results in r 2 = 0 . 90 for

ADC and r 2 = 0 . 78 for FA. The Bland-Altman plots confirm that

there is no bias between the two methods ( Table 1 ). 
Additional performed experiment results are given in Fig. 11 .

hereby, in (a–c) reformatted coronal and sagittal planes from a

-value sweep experiment show the successful acquisition of 20 b-

alues between b = 0 and b = 20 0 0 within the same volume in 20 s.

s the number of slices was N s = 40 , every b-value was acquired

wice - resulting in the two sweeps visible in the reformatted

agittal and coronal plane (a–b). The 20 separate b-values are vi-

ualized in spatially proximal slices in (c). Finally, Fig. 11 d–e show

esults from the multiband experiment, illustrating the successful

ombination of the proposed sequence changes with multiband ac-

eleration. Here, N s /L = 2 and the multiband factor was chosen as

, therefore, the dataset is visually split in 4 blocks. 

.2. Simulations 

The results for the simulations are given in Fig. 12 and Table 2 .

hereby, the accuracy, given as the distance between sampled and

btained y-displacement was analysed. 

For the shown case of a TR of 12sec and L = 2 , the input y -

isplacement (blue in Fig. 12 ) is well recovered by the obtained

ow- b parameters (red points), subsequent interpolation led to the

-displacement parameters (black points and line). This setting in-

ludes 6 points per respiratory cycle (see Table 2 ). 

http://www.developinghumanconnectome.com
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Fig. 10. Results are presented from the healthy adult experiment. Thereby (a) illustrates the data in reformatted coronal plane for the interleaved acquisition. (b) shows the 

data after sorting to conventional volumes in coronal view. In (c) the conventional data is displayed equally in coronal view. Obtained ADC (d) and FA (e) maps are given for 

both acquisition types. Bland-Altmann plots for another subject are given in (f)–(i): Thereby the results from the conventional vs. interleaved experiments are given for ADC 

and FA in (f) and (g), Bland-Altman plots for the conventional vs. repeat conventional in (h) and (i) using all voxels within the brain mask. 

Fig. 11. Results from the (a–c) b-value sweep experiment and the multiband ac- 

quisition (d–f) are shown on an adult brain. The sweep results are displayed refor- 

matted in (a) sagittal and (b) coronal plane. (c) visualizes axial slices ranging from 

b = 0 (left) to b = 20 0 0 (right). The reconstructed multiband data in coronal (d) and 

mid-stack axial orientation (e) is given. 

Table 2 

Simulation parameters and results. The number of b = 0 samples per respiratory 

cycle - resulting from the sampling frequency assuming a cycle length of 5s - (pc), 

are given for N s = 30 slices for the L = 2 case for repetition times T R = 3 , 6 , 9 , 12 . 

For all of the studied options, the mean error between simulated and obtained dis- 

placements are given in mm (shaded in grey). 

TR TR = 3s TR = 6s TR = 9s TR = 12s 

slice time 100 ms 200 ms 300 ms 400 ms 

30 slices 

25pc 13pc 8pc 6pc 

Mean error [mm] 0.24 0.34 0.61 1.22 
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The point within the green cycle was classified as an outlier

ccording to the process described in the methods: The slice at

his temporal location was at the edge of the volume (identified

y < 1% of voxels within the brain mask). Consequently, this pa-

ameter was excluded by the automatic weighting. 

Quantitative results for all simulation settings are given in

able 2 , illustrating that the method performs well for reasonable

ampling density ( ≥ 5 low- b points per respiratory cycle). 

The given mean values were obtained from both low-b and

igh-b values, but excluding the points corresponding to z -

ocations with < 1% of the voxels within the brain mask. 

.3. Dynamic field mapping 

The dynamic calculation of a field map based on sparse but fre-

uently acquired b = 0 slices provides significant improvement in
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Fig. 12. Resulting y-displacement curves overlaid over the sampled respiratory displacement curve are given exemplary for an acquisition with L = 4 . Thereby, the input 

displacement (ground truth) is given in blue, the transformation parameters obtained after registration of the low- b slices in red, and the interpolated transformation 

parameters for all slices in black. The green circle focuses on an outlier in the estimated transformations. It corresponds to a b = 0 slice, located at the border of the spatial 

volume. The employed weighting strategy did not include these transformations in the interpolation routine. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Motion parameters for the foetal diffusion data. 

ID GA N s Motion 

1 27 + 0 35 3.622 

2 24 + 6 35 3.875 

3 34 + 1 44 5.022 

4 29 + 1 36 5.830 

5 27 + 2 36 6.370 

6 27 + 3 35 7.354 

7 26 + 1 44 7.396 

8 25 + 6 35 7.422 
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the presence of motion or varying B0-fields (e.g. as a result of in-

testinal gas bubbles). To assess the goodness of the distortion cor-

rection based on these maps, the data from both echoes was dis-

tortion corrected twice: (i) with the obtained dynamic field map

using the described acquisition and processing steps, and (ii) us-

ing a static field map obtained from a conventional acquired dou-

ble spin-echo pair at the end of the acquisition. The data from

both phase encoding directions was then vectorized and their

correlation coefficient per diffusion direction calculated. The time

series of mean correlations for the low- b volumes is shown in

Fig. 13 a. The correlation per volume for static (red) and dynamic

(green) distortion correction in (b) show that dynamic field map-

ping achieves consistently high correlations. The short term oscil-

lations reflect intrinsic variation in correlation caused by the differ-

ent SNR of low and higher b -value data. Static distortion correction

improves towards the end of the series, which is when the static

field map was acquired. 

The upper panel in Fig. 13 b illustrates a case with extensive

foetal motion, illustrating improved correction for all volumes in

the proposed approach. The lower panel in Fig. 13 b illustrates a

case where foetal motion is limited but the field map changes over

time due to maternal bowel gas movement, as shown in Fig. 13 c at

the start and end of the sequence. Here, the proposed method sig-

nificantly improved the consistency of the low- b volumes. Finally,

the data from both echoes is shown before and after correction

in (d), indicating high degree of geometrical consistency that is

achieved between the echoes (a sign of precise distortion correc-

tion). The proposed correction framework was successful in all the

subjects studied. 

4.4. Derived quantitative dMRI information 

The final dynamic distortion and motion corrected data is suit-

able for advanced dMRI analysis, including tractography and mi-

crostructural modelling. Here, we assess the overall quality of the

data using conventional diffusion tensor imaging (DTI) and using

a multi-shell spherical factorization ( Christiaens et al., 2016 ) with

two tissue components for brain tissue (SH order 4) and free water

(isotropic). The overview of the motion parameters for all consid-

ered eight foetal datasets is given in Table 3 . These were calculated

as the root mean square of the forward difference of the motion

parameters. 
Fig. 14 shows tissue orientation distribution functions (ODFs) of

ubjects 1 and 5. These results show high anisotropy in the cortex

nd maturing white matter structures such as the splenium, as ex-

ected in early brain development. The ODFs are well aligned with

eveloping white matter structures and with cell development per-

endicular to the cortical surface. These results illustrate the prac-

ical applicability of our method in clinical assessment. 

. Discussion and conclusion 

A novel flexible ssEPI diffusion sequence was presented, adopt-

ng a true slice view by allowing a fully independent choice of

iffusion encoding per slice. Therefore, the one volume – one en-

oding paradigm was abandoned. One possibility to exploit this

ew flexibility was presented: the superblock & interleave ap-

roach. This approach optimizes the temporal sampling of low- b

lices while ensuring that volumes are completed in case of early

can interruptions. Possible parameters within this approach were

ntroduced and presented. 

This acquisition was combined with a phase-encoding reversed

econd echo to allow dynamic motion correction. Finally, these

ovel acquisition elements were combined with a proposed slice-

ased processing pipeline. The approach allows dynamic distortion

orrection with a data derived field map generated every N i TRs,

hich for the examples shown means the closest distortion es-

imate is only 2TR, or 22–30 sec, distant. Motion correction esti-

ates interpolate between low- b slices that are ( N i / N s ) · TR apart,

hich for the examples shown is around 1.6 s. 

The results from the phantom and adult experiments show no

igns of introduced artefacts or inconsistencies. The high correla-

ion for the derived diffusion quantities ( r 2 = 0 . 95 for ADC and
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Fig. 13. Results from distortion correction using the dynamic maps. (a) Mean over the correlations between AP/PA images for all low- b volumes are shown for the dynamic 

field map (green) vs. the static fieldmap acquired at the acquisition end (red). (b) The correlation for every diffusion weighting is shown for both corrections for subject 3 

and 8. (c) Fieldmaps from the acquisition start and end and (d) correction results are shown for subject 8. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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2 = 0 . 86 for FA) shows close agreement between the novel slice-

ndependent acquired data and conventional volume data. 

In the foetal datasets studied so far the approach proved robust

nd effective, with clear evidence of both distortion and motion

orrection found in each subject. Simulations including a variety of

arameter ranges illustrate the performance and the limits of the

roposed method. 

.1. Extension in applications and parameter choices 

The proposed changes to the sequence are independent of fur-

her sequence choices. They combine naturally with any choice

f both diffusion encoding and read-out. This specifically in-

ludes any novel diffusion encoding such as b -tensor encoding

 Szczepankiewicz et al., 2015 ), oscillating gradients or double re-

ocused diffusion weighting as well as acceleration strategies such

s parallel imaging ( Griswold et al., 2002 ), multiband imaging
 Setsompop et al., 2012 ) or multiplex imaging ( Feinberg et al.,

010 ). 

Furthermore, the proposed methods were demonstrated on

oetal imaging but are by no means restricted to this application.

ny diffusion MRI study suffering from motion artifacts and/or

ime varying susceptibility can benefit. 

.2. Extension towards more flexibility 

The implemented sequence allows complete flexibility regard-

ng diffusion encoding and geometric location on a slice-level. In

he presented study, however, only the superblock & interleave

cheme was presented. Further schemes varying the diffusion en-

oding not in an interleaved but more random or pseudo-random

ay can be thought of. Furthermore, variation in the slice location

 in combination with a global inversion pulse at the beginning

f each volume - generating in effect varying TR per slice can be
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Fig. 14. Orientation distribution functions (ODFs) overaid onto the estimated free water fraction in subjects 1 and 5. (A-C) Axial, coronal, and sagittal slices through the 

brain, rendered off-axis w.r.t. the acquisition. (D) Magnified ODFs from the yellow frame. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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employed in future studies to facilitate joint diffusion-relaxometry

experiments. 

5.3. Eddy currents 

The strong, rapidly switching diffusion encoding gradients can

give rise to additional off-resonance effects. The rapidly changing

magnetic field induces eddy currents within conductors, induc-

ing an additional magnetic field. The proposed flexible encoding

changes the temporal order of the employed diffusion gradients,

which could potentially complicate the expected eddy current be-

haviour. Our acquisitions have not shown any effect of increased

eddy current artifacts, which builds confidence that the advantages

shown for independent slice sensitisation are not associated with

introduction of increased artefacts. Problems on different scanners

are unlikely but can not be ruled out. 

5.4. Additional constraints 

Inclusion of sufficient low- b slices poses an additional con-

straint to the optimal sampling scheme. However, while the pre-

sented material only treated b = 0 as low- b for simplification, this

can be extended to higher-b values dispersed across lower shell(s)

and thus add to the analysis. The choice of the threshold be-

tween low b -value (used for active distortion and motion correc-

tion) and high- b value (which are to be corrected) depends largely

on the obtained SNR and the choice of registration and interpo-

lation approaches employed. It may well be that optimal process-

ing is achieved by using all data with appropriate weighting rather

than the simplified approach of dividing into low and high b sam-

ples. This remains to be further explored. 
Another constraint imposed by the superblock & interleave ap-

roach is a set relation between the number of slices N s and the

hosen superblock length L , as L needs to be a proper divisor of N s .

his condition is, however, easily achievable in most applications. 

.5. Scan time penalty 

Specifically for the proposed combination with phase-encoding

eversed second echo, an additional time penalty per slice of

100 ms is added. The real prolongation of scan time due to this

epends, however, on the specific properties of the studied tissues.

or the presented example, foetal imaging, the repetition time is

argely set by the T1 of the foetal brain and resulting longer TR

o achieve sufficient SNR. Therefore, the proposed acquisition com-

ines synergistically with multiband acceleration (MB), since the

heoretical TR reduction may not be achievable in foetal scanning

ue to decreased signal. 

.6. Future post processing advances 

The presented paradigm-change from volume to slice-view pro-

ides more eloquent data. The proposed post-processing consti-

utes merely a first step to exploit these novel properties. A num-

er of the proposed post-processing based algorithms as cited in

he introduction might benefit from the additional information

ontained within the data. Further improvements, for example re-

arding outlier treatment or inclusion of higher shells in the mo-

ion parameter estimation would further increase the benefits of

he proposed acquisition scheme. 

To facilitate this, all tools for the described post-processing

teps in Fig. 7 will be made available, either in the supplementary
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aterial (script 0,1,2) or within MRtrix3 together with exemplary

ata sets. 

.7. Thermal benefits 

The proposed method allows to accelerate the acquisition time

ue to decreased gradient heating. However, for the data presented

n this paper, we fixed the acquisition time of the proposed inter-

eaved acquisition to the time of the conventional scan. The time

equired to acquire all slices for one volume (repetition time, TR)

riginates both from the time for playing the imaging gradient and

he add-on time required for gradient heating. This add-on time is

efined based on the worst thermal situation, calculated by assess-

ng the thermal load over the entire sequence including all diffu-

ion encodings. The highest load is typically achieved by repeating

he most demanding diffusion gradients as required by the highest

 -value. 

The proposed adopted slice view also helps to mitigate this

roblem: The interleaving of high and low b -value slices limits se-

uential gradient demand and thus heating. Therefore, the required

dd-on time for gradient cooling is reduced. It hence allows more

fficient scanning. 

. Conclusion and future work 

The proposed free choice of diffusion encoding per slice rather

hen per volume breaks with the conventional one-volume-one-

ncoding approach and thus increases the flexibility of single-shot

iffusion weighted EPI. Both simulations and experimental data ac-

uisition were performed and combined with a matched data pro-

essing pipeline to demonstrate and test the proposed approach.

he results presented illustrate the ability of this sequence to ob-

ain matching quantitative MRI values to an equivalent conven-

ional sequence. The increased flexibility to control the spatial and

emporal distribution of low and high b slices offers advantages

or motion and distortion correction, and this was illustrated using

oetal diffusion data. 

Further possibilities of the sequence were demonstrated with

he acquisition of a single volume with 20 b-values and the suc-

essful combination with Multiband acceleration as illustrated in

ig. 11 a–c (20 b-values) and Fig. 11 d–e (multiband). The presented

ultiband data illustrates the compatibility, however a more sys-

ematic exploration of multiband acquisition with the proposed

ontributions is beyond the scope of this manuscript. 

The benefits from the main contributions to the dMRI acquisi-

ion - interleaving of low-b slices and the second phase-reversed

cho - have been illustrated and a first pipeline which can ex-

loit the specific properties of such acquired data has been demon-

trated on the post-processing side. However, this initial pipeline is

 first attempt, significant improvements can be achieved by novel

ost-processing developments bespoke to the presented novel ac-

uisition. 

Future work will also include applications to other motion-

hallenging applications of diffusion MRI. Furthermore, additional

enefits due to the reduction of thermal stress on the gradient

ystem afforded by constantly changing the gradient demand from

lice to slice will be exploited. 
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ppendix 

A geometrical optimal sampling will in the following be charac-

erized by an equal geometrical distance between all acquired slices

ith the same encoding d per volume v . Respectively, a temporal op-

imal sampling is characterized respectively by equal temporal dis-

ance between slices acquired with the same encoding d per vol-

me. This is enforced by the algorithmic choice of how the inter-

eave pattern is calculated. Please note, that the slice numbering

tarts with ”0” in the following to keep in line with the acquisition

onvention. 

Given the even-odd slice ordering (0 − 2 − 4 − 6 − 8 · · · − 1 −
 − 5 − 7 − 9 . . . ) , the geometrical distance between two subse-

uent acquired slices within the even slices equals 2 N i for an in-

erleave length of N i . (e.g. N i = 4 , N s = 16 - > acquired slices are 0

nd 8.) To allow equidistant spacing, the subsequent acquired slice

hould be 2 N i / 2 = N i . To allow this to be odd (as the second half

f slices are all the odd slices), N i needs to be an odd number. 

All acquired slices with one interleave (here the first for

implification without loss of generality) can be obtained by

2 Ni · k ) mod ( Ns half ) for k = 0 , ., (N s /N i ) − 1 , where Ns half gives the

ndex of the last slice acquired in first half (even slices). It equals

s hal f = (N s − 1) for even N s and Ns hal f = N s for odd N s . 

Example N s = 16 and N i = 4 

Ns hal f = 15 

2 N i · k = 0 , 8 , 16 , 24 

(2 N i · k ) mod (Ns hal f ) = 0 , 8 , 1 , 9 

This corresponds thus to a geometrically non optimal sampling

esulting in distances of 1 and 7 time steps between considered

lices. 

Example N s = 15 and N i = 3 

Ns hal f = 15 

2 N i · k = 0 , 6 , 12 , 18 , 24 

(2 N i · k ) mod (Ns hal f ) = 0 , 6 , 12 , 3 , 9 

This corresponds thus to a geometrical optimal sampling result-

ng in a distance of 3 time steps between all slices. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.media.2018.06.008 . 
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