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These days when I look at scientific research papers or
review manuscripts, there seems to be almost a competition
to have a smaller p value as a means to present more
significant findings. For example, a quick Internet search using
“p < 0.0000001” turned up many papers even reporting their p
values at this level. Can and should a smaller p value play such
a role? In my opinion, it cannot. The current statistical software
making possible p value-centered statistical reporting, I believe,
is leading scientific inquiry into a quagmire and dead end.

To fully understand why the p value-centered inquiry is the
wrong approach, let’s firstly understand what p value and
hypothesis testing (HT) are and examine how statistical hypoth-
esis testing (SHT) was run prior to the computer era. While
p value and HT are both now used under the umbrella of SHT,
they had different roots. The p value and its application in
scientific inquiry is credited to the English statistician Sir
Ronald Aylmer Fisher1 in 1925. In Fisher’s inquiry system, a
test statistic is converted to a probability, namely the p value,
using the probability distribution of the test statistic under the
null hypothesis and the p value was used solely as an aid, after
data collection, to assess if the observed statistic is a simply
random event or indeed belongs to a unique phenomenon fitting
the researchers’ scientific hypothesis.2 Furthermore, 0.05 or
0.01 are not the only p value cutoff scores for the decision.
Thus, Fisher’s p value inquiry system belongs to a posteriori
decision system, which also features, “flexibility, better suited
for ad-hoc research projects, sample-based inferential, no
power analysis and no alternative hypothesis” (p. 4).3

HT, on the other hand, was credited to the Polish mathemati-
cian Jerzy Neyman and American statistician Egon Pearson4 in
1933, who sought to improve Fisher’s method by proposing a
system to apply repetition of experiments. Neyman and Pearson
believed that a null hypothesis should not be considered unless
one possible alternative was conceivable. In contrast to Fisher’s
system, Type I error or the error the researchers want to

minimize, the corresponding critical region and value of a test
must be set up first in the Neyman–Pearson’s system, which,
therefore, belongs to a priori decision system. In addition, the
Neyman–Pearson’s system is “more powerful, better suited for
repeated sampling projects, deductive, less flexible than Fisher’s
system and defaults easily to the Fisher’s system” (p. 8).3

The current commonly used SHT is mainly derived from the
Neyman–Pearson’s system. With the p value conveniently pro-
vided by modern statistical software, researchers have started to
mix the two systems together and with the result that SHT has
started to become a means to foster pseudoscience.3

A quick review of the SHT practice prior to the computer era
may help better explain the above points. A typical SHT can be
considered as a decision system by including the following steps:

1. Determine the null hypothesis (H0) and alternative
hypothesis (H1):
H0 (The hypothesis is tentatively held to be true),
H1 (Often = research hypothesis);

2. Set Type I error (α or critical value), which represents the
error rate when an H0 was rejected when it is true (should
not be rejected); in practice, α is often replaced by a p
value, which forms a specific boundary between rejecting
or not rejecting the null hypothesis (note: in contrast to
Type I error, a Type II error means an H0 was not rejected
when it is false);

3. Select a statistical test and set the decision rule, which is
the statement that designates the statistical conditions
necessary for rejecting the null hypothesis, based on a
Type I error, one or two tailed tests and sample size;

4. Compute statistic using the selected test;
5. Make a decision based on the decision rule set in Step 3.

By going through these steps, you should be able to quickly
realize two things: first, SHT is similar to the US criminal court
trial system, in which “innocent until proven guilty” is the
guiding principle:

H0: The accused is innocent.
H1: The accused is guilty.
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If H0 is rejected when it is true (i.e., Type I error happened),
an innocent person may be convicted for a crime they did not
commit. Therefore, Type I error in practice is often strictly
controlled since the consequences of having a Type I error
could be much more serious than a Type II error (failed to
convict a criminal). Secondly, before the use of computer soft-
ware, Type I error or p value had to be determined prior to
computing statistics and there were usually only two choices,
p = 0.05, which is commonly used in kinesiology research, or
p = 0.01, which is commonly used in pharmaceutical research.
So, SHT belongs to a priori decision system, i.e., a probability-
based evaluation standard or the confidence has to be set up
before computing a statistic and making a decision.

An example may be helpful to illustrate the above steps.
Say a researcher observed a difference between males and
females in body composition and wants to test her research
hypothesis that females have a higher percentage of body fat. To
do so, she recruited 10 adults (5 females and 5 males) and
measured their fat percentage using the underwater weighing
method (Table 1).

Following the SHT steps, she tested her research hypothesis:

1. Determine H0 and H1:
H0: Female fat% population mean = Male fat% population

mean.
H1: Female fat% population mean ≠ Male fat% population

mean.
2. Set Type I error

α = 0.05.
3. Select a test and set the decision rule

Since there are two groups, she selected the independent
t test; given α = 0.05, two-tailed test, and df = 5 (n of
male group) + 5 (n of female group) − 2 = 8, the critical
value according to t value table is 2.306; such, the deci-
sion is set as below:
If −2.306 < t statistic observed < 2.306, do not reject H0;
If t statistic observed ≤ −2.306 or if t statistic observed
≥ 2.306, reject H0.

4. Compute t statistic
Female fat%: M = 23.958, SD = 8.330
Male fat%: M = 15.942, SD = 10.646

t M M s n s nfemale female male male= − √ +

= √

( ) ( )

. .

female male
2 2

8 02 36 55 ==1 33.

5. Make a decision
H0 was NOT rejected since the observed t statistic is
larger than −2.306 and smaller than 2.306.

With convenient and powerful statistical software now
available, an extra piece of information is generated when the
statistic is computed, i.e., the exact p value along with a spe-
cific statistic condition of the sample size and the direction of
the test. For the example, for the above research data, if we
run the t test using a statistical software, we also get a specific
p value corresponding to the t statistic of 1.33, which is
p = 0.221. Since it was larger than p = 0.05, one may normally
conclude that since H0 was not rejected, there is no significant
difference between males and females in fat percentage.
As a result of this additional information, you can see that
researchers start to report these specific p values in their
research reports and omit other related important information
(e.g., the statistics themselves, df, etc.), especially if they have
one less than 0.05 or 0.01, which has resulted in the “p value
competition”.

What is the issue with this approach if the p value itself
could reach a similar conclusion without other information
(e.g., the statistics themselves, df, etc.)? Unfortunately, there are
two problems related to this p value only practice. Firstly, it
changed the priori nature of the SHT decision deriving, i.e., a
Type I error should be selected before one can make a decision.
As mentioned above, only two p values, 0.05, which corre-
sponds to a 95% confidence for the decision made or 0.01,
which corresponds a 99% confidence, were used before the
advent of the computer software in setting a Type I error. Sec-
ondly, and a more serious problem, the p value could be
impacted by the sample size employed, making it an inconsis-
tent standard in decision-making.

Let’s go back to our example to illustrate why p value is not
a consistent standard. By looking at the fat percentage means of
males and females, you may quickly realize that the difference
between the two means is rather large. How was the p value
larger than 0.05 when there seems to be an obvious difference
between the two means? To get a less-than 0.05 p value or to
reject the null hypothesis is, in fact, not difficult as long as we
have a large enough statistical power, which is the probability of
rejecting the null hypothesis when it is false (i.e., detecting a
real difference). There are four factors that may impact the
statistical power: (a) α level, (b) one-tailed or two-tailed test,
(c) effect size (ES), and (d) sample size. Since the α level (0.05
or 0.01) or the direction of the test (we use a two-tailed test the
majority of the time) are often fixed, two things that can affect
the statistical power in practice are ES or sample size. For the
ES of our example, we computed Cohen’s d index:5

ES Cohen s d( )
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Table 1
An example of sex difference on percentage of body fat.

ID Sex Fat%

1 Female 17.55
2 Female 35.77
3 Female 29.55
4 Female 16.84
5 Female 20.08
6 Male 20.97
7 Male 25.59
8 Male 3.71
9 Male 5.17

10 Male 24.27
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According to the Cohen’s ES standard (≥0.8 = large; <0.8 to
> 0.2 = medium; ≤0.2 = small), ES of between male and female
mean difference in our example indeed belongs to “large”.
Thus, the reason the H0 was not rejected is likely due to the
small sample size (n = 5 for each group) employed. To verify
this finding, we compute the sample size needed to get enough
power by entering ES of 0.839, the desired statistical power of
0.8 and α level of 0.05 into an online sample size calculator for
t test (http://www.danielsoper.com/statcalc3/calc.aspx?id=47).
For a two-tailed hypothesis, the recommended sample size per
group is 24. For the purpose of illustration, rather than to collect
another 19 data points for each group, we simply copied and
pasted the existing data three times, which made the sample
size of each group 20 and recalculated means, SDs and t test.
Here are the results:

Female fat%: M = 23.958, SD = 7.644
Male fat%: M = 15.942, SD = 9.770

t M M s n s nfemale female male female= − √ +

= √
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. .
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2 2
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p value = 0.006.
As expected, the means remained the same, SDs became

slightly smaller, t statistic became larger, and the most important
change, of course, is that p value is now less than 0.05 so that the
earlier “no difference” conclusion suddenly changed to a “sig-
nificant” difference. It should be pointed out the p value problem
is not only in the situation where a true difference could not be
detected when a small sample was employed, but also a little,
meaningless difference or no/low correlation could become “sig-
nificant” when a large sample was employed.6 It is this inconsis-
tency that makes the p value useless in decision-making.

The above procedures also demonstrated that as long as
ES is determined, needed sample size to get a less than 0.05 p
value can be easily estimated. Since an absolute evaluation
system has been developed for ES (e.g., the small-medium-
large rating for Cohen’s d), there is no need to use an extra
inconsistent decision-making system. Criticism of the p value
and the SHT is not new; in fact, it has a rich history of more
than 80 years.6–9 The problem of the abuse of the p value, which
is often incorrectly used as a symbol of a significant finding, is
clearly getting worse due mainly to the exact p values provided
by modern statistical software. It is my strong opinion that
this reporting practice be stopped. In addition to using ES5 as an
alternative, other recommendations of alternative approaches
include exploratory data analysis,10 confidence interval,11

meta-analysis,12,13 and Bayesian applications,14 etc.
Considering p value is currently required by the most jour-

nals in the submission process and expected by peer-reviewers,
a more practical recommendation to report statistics and p value
is as follows:

1. In the method section, clearly state the α level (the a
priori criterion for the probability of falsely rejecting
your null hypothesis, which is typically 0.05 or 0.01) used
as a statistical significance criterion for your tests.
Example: “We used an α level of 0.05 for all statistical
tests”;

2. For correlations, use the absolute criterion:6

0–0.19: no correlation,
0.2–0.39: low correlation,
0.40–0.59: moderate correlation,
0.60–0.79: moderately high,
≥ 0.80: high correlation, or report the correlation deter-

minations, i.e., squared correlation coefficients;
3. For regression or similar statistics, report the proportion

of variance explained (e.g., R2);
4. For all other inferential statistics, report statistics them-

selves, corresponding df and ES;
5. There are two ways to report p values: (a) report p value

based on the α level determined, e.g., “p > 0.05 or
p < 0.05” or “p > 0.01 or p < 0.01” and (b) report the
exact p value (the posteriori probability reported by the
statistical software). If the exact p value is less than 0.001,
it is conventional to state merely p < 0.001;

6. Use “statistically significant or statistically not signifi-
cant”, rather than “significant or not significant” when
reporting a p value based finding.

In summary, due to the conveniently available exact p values
provided by modern statistical data analysis software, there is a
wave of p value abuse in scientific inquiry by considering a
p < 0.05 or 0.01 result as automatically being significant find-
ings and that a smaller p value represents a more significant
impact. After explaining the roots of the problem and why
p value should not be used in this way, some practical recom-
mendations on appropriately reporting statistical findings,
including p value, are provided.
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