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Abstract

Motivation: Fluorescence localization microscopy is extensively used to study the details of spatial

architecture of subcellular compartments. This modality relies on determination of spatial positions

of fluorophores, labeling an extended biological structure, with precision exceeding the diffraction

limit. Several established models describe influence of pixel size, signal-to-noise ratio and optical res-

olution on the localization precision. The labeling density has been also recognized as important fac-

tor affecting reconstruction fidelity of the imaged biological structure. However, quantitative data on

combined influence of sampling and localization errors on the fidelity of reconstruction are scarce. It

should be noted that processing localization microscopy data is similar to reconstruction of a contin-

uous (extended) non-periodic signal from a non-uniform, noisy point samples. In two dimensions

the problem may be formulated within the framework of matrix completion. However, no systematic

approach has been adopted in microscopy, where images are typically rendered by representing

localized molecules with Gaussian distributions (widths determined by localization precision).

Results: We analyze the process of two-dimensional reconstruction of extended biological struc-

tures as a function of the density of registered emitters, localization precision and the area occu-

pied by the rendered localized molecule. We quantify overall reconstruction fidelity with different

established image similarity measures. Furthermore, we analyze the recovered similarity measure

in the frequency space for different reconstruction protocols. We compare the cut-off frequency to

the limiting sampling frequency, as determined by labeling density.

Availability and implementation: The source code used in the simulations along with test images

is available at https://github.com/blazi13/qbioimages.

Contact: bruszczy@nencki.gov.pl or t.bernas@nencki.gov.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Fluorescence optical microscopy is extensively used to gain insight into

spatial distribution and behavior of biomolecules in cellular context.

Information about the components of cell architecture, influenced by

processes occurring at the spatial scale of few nanometers, is limited by

diffraction of light. A typical diameter of diffraction image of a point

source in focus of a high NA (�1:4) microscope objective corresponds

to 200nm or more (depending on a wavelength). On the other hand,

the position of such a point source can be localized with precision

exceeding the diffraction limit (Henriques and Mhlanga, 2009;

Henriques et al., 2011; Yildiz et al., 2003). This mode of detection is

employed by super-resolution microscopy based single-molecule local-

ization, developed independently by several groups and named STORM

(Rust et al., 2006), PALM (Betzig et al., 2006) and FPALM (Hess et al.,

2006). The basic principle is to use photoswitchable fluorescent probes,

activate and image simultaneously only a small, optically resolvable

fraction of fluorophores. With repetitive imaging cycles, the positions

of all fluorophores in the sample are determined, allowing for
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reconstruction of a super-resolution image. Numerous photoactivatable

fluorescent proteins and organic fluorophores have been created in the

past few years to address this need (Fernández-Suárez and Ting, 2008;

Folling et al., 2007; Lukyanov et al., 2005). Moreover, the possibility

of optical switching of numerous traditional fluorescent labels,

already established in biological microscopy, has been demonstrated

(Heilemann et al., 2009; van de Linde et al., 2009). One should note

that a STORM/PALM system is essentially similar in configuration to a

wide-field fluorescence microscope (Cebecauer et al., 2012; Henriques

et al., 2011). Therefore, its inherently high light throughput (due to sim-

plicity of a design) may be combined with efficient array detectors

(EMCCD or sCMOS). Owing to these advantages, localization preci-

sion of 20 nm may be obtained in biological imaging (Bates et al., 2007;

Dempsey et al., 2011). Several established models describe influence of

pixel size, signal-to-noise ratio and optical resolution on the precision

available in a given experimental system (Ober et al. 2004; Ram et al.,

2006; Thompson et al., 2002). The labeling density has been also recog-

nized as an important factor affecting reconstruction fidelity of imaged

biological structures (Huang et al., 2009; Sinko et al., 2014; van de

Linde et al., 2011). Likewise, image quality measures, based on FRC

(Fourier Ring Correlation), have been developed specifically for local-

ization microscopy (Banterle et al., 2013; Nieuwenhuizen et al., 2013).

Nonetheless, quantitative results on this subject are scarce. It should

be noted that processing STORM/PALM microscopy data is similar

reconstruction of a continuous (extended) non-periodic signal from a

non-uniform noisy point samples (Kazakov, 2006; Strohmer and

Tanner, 2006). Typically, such tasks are realized with numeric optimi-

zation, as few analytical solutions exist (Kazakov, 2006). In two dimen-

sions, the problem may be formulated within framework of matrix

completion (Candes and Plan, 2010; Candes and Tao, 2010). However,

no systematic approach has been adopted in microscopy, where images

are usually rendered by representing localized molecules with Gaussian

distributions (widths determined by localization precision).

Here, we analyze the process of two-dimensional reconstruction

of extended biological structures as a function of the density of regis-

tered emitters, localization precision (which is affected by signal-to-

noise ratio) and the area occupied by the rendered localized mole-

cule. In order to assess the reconstruction fidelity, we take electron

microscopy images as the ground truth. The image defines the local

emitter (labeling) density and serves as the reference for reconstruc-

tion simulations. We quantify overall reconstruction fidelity with

different established image similarity measures. Furthermore, we

analyze the recovered spatial frequency spectrum (we study similar-

ity norm in the frequency space) for different reconstruction arrange-

ments. A similar approach was presented in other studies

(Nieuwenhuizen et al., 2013) where a frequency measure (FRC) was

used to determine a resolution of a single image (dividing a set of

single-emitter localization into two statistically independent subsets

and removing spurious correlations resulting from repeated activation

of the same emitters). Conversely, in our approach we use an equiva-

lent measure in the frequency space to compare the quality of recon-

structed image with the ground truth (reference), which corresponds

to continuous emitter density. With this setup, we express an image

quality IQ (by calculating scalar similarity measures, or a frequency

space similarity measure) as a function of both average emitters den-

sity Navg, localization accuracy j and rendered area size d, i.e.

IQ ¼ IQ Navg;j; d
� �

The localization accuracy is in turn a function of other parameters such

as total photon number nphoton, camera noise q, observation wave-

length k, type of reconstruction algorithm kalg; the image quality IQ

depends on these parameters implicitly via j ¼ j nphoton; q;k; kalg

� �
.

This relation has been extensively studied by others (see Ober et al.,

2004; Ram et al., 2006; Thompson et al., 2002). Hence, we present the

results as a function of localization accuracy j, rather as a function of

underlying parameters in order to reduce the dimension of parameter

space, simplifying interpretation of results.

2 Background

2.1 Quantitative measures of image similarity
Since our main objective is to analyze the fidelity of the image recon-

struction, we first need to define the quantitative measures which

will be used to compare the reconstructed image with the reference

image. These measures should: (i) be independent on average image

intensities (as there is no natural overall image scale for the recon-

structed image) and (ii) have simple interpretation and construction.

Several image similarity (quality) measures have been proposed in

area of microscopy (Di Gesù and Starovoitov, 1999; Goshtasby,

2012; Khazenie et al., 1992; Mitchell, 2010; Sage et al., 2015; Sinha

and Russell, 2011; Thung and Raveendran, 2010; Wang and Bovik,

2006). However, not all are adequate for our purposes. These

include SSIM (compares average image intensities), PNSR (sensitive

to image maximum and overall reconstruction intensity), measures

based on Mutual Information (require grayscale continuous model,

for images with sparse reconstruction we have only grayscale

bands), ranking measures (problematic in the presence of ties, pro-

duced by small size of emitter sets). Therefore, for our analysis we

use the following measures:

A. Pearson Correlation Coefficient.

The most common measure of images similarity (in case when

there is no coordinate transformation, such as a shift, rotation, scal-

ing or distortion) between two images, is the Pearson correlation

coefficient defined as:

Qpearson ¼
P

x;yððI0ðx; yÞ � �I0ÞðIrecðx; yÞ � �IrecÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;yððI0ðx; yÞ � �I0Þ2

P
x;yðIrecðx; yÞ � �I recÞ2

q ; (1)

where I0 x; yð Þ and Irec x; yð Þ denote pixel intensity of the reference

image and the reconstructed image, respectively. �I0; �I rec denote the

average pixel intensities for both images.

B. Agreement Between Binarized Images.

Quite often, the observed images are binarized (thresholded) in

order to extract and to measure the structure of interest. We study

such cases, comparing the overlap between the binarized reference

and reconstructed images, denoted as Ibin
0 and Ibin

rec respectively. We

determine the threshold by Otsu method (Otsu, 1979). The agree-

ment between binarized images is defined as:

Qbinarized ¼ 1�
P

x;y jIbin
0 x; yð Þ � Ibin

rec x; yð ÞjP
x;y Ibin

0 x; yð Þ
: (2)

C. Normalized Square L2 Norm. This measure is defined as:

QL2
¼
X
x;y

I0 x; yð Þ � �I0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y I0 x; yð Þ � �I0

� �2
q � Irecðx; yÞ � �IrecffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y ðIrecðx; yÞ � �IrecÞ2
q

0
B@

1
CA

2

:

(3)
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It is insensitive to image contrast and emphasizes larger intensity

differences between the analyzed images (Goshtasby, 2012).

For the perfect agreement of the images the value of this norm is

zero.

D. Similarity Measure in Frequency Space.

So far, we discussed only the scalar measures, that do not pro-

vide information about reconstruction quality at different spatial

scales. Therefore, we introduce a function Qfreq fð Þ that takes value 1

if at a given frequency there is a perfect agreement between the

images, and 0 if at a given frequency the images are uncorrelated.

We construct such a function in the following way: Let us denote by
^̂
I0 and

^̂
Irec the Fourier transforms of the reference and the recon-

structed image, respectively. We decompose both these quantities

into the pure phase and the amplitude factors, i.e.

^̂
I0 ðfx; fyÞ ¼ eig0ðfx ;fyÞA0ðfx; fyÞ; (4)

^̂
Irec fx; fy

� �
¼ eigrec fx ;fyð ÞArec fx; fy

� �
; (5)

where A0 fx; fy

� �
;Arec fx; fy

� �
2 R. We define

Qfreq fð Þ ¼
X

fx; fy

f 2 < f 2
x þ f 2

y � f þ df

� �2

g0 fx; fy

� �
g�rec fx; fy

� �
; (6)

i.e. we average the phase agreement within the ring �f ; f þ df �.
Here, df defines us the resolution of the Qfreq fð Þ function (in

practice, it is determined by the number of finite sampling k of

the f domain, as df ¼ fmax=k). Figure 1 shows an example of the

constructed measure, which is mathematically similar to FRC. The

test image was modified to distort the high frequency content by

blurring and adding the noise. The phase agreement map (panel d)

shows the term in the sum in (8), panel c shows the constructed

measure.

2.2 Simulations
The goal of the simulations is to obtain the reconstructed STORM

image, with the assumed emitters density q x; yð Þ, normalized to the

interval 0; 1½ �. The procedure is performed as follows: We define

Nmax, the maximal number of available emitters. We randomly pick

the emitter coordinates x, y and a random number p from the inter-

val [0, 1]. When p � q x; yð Þ, we append the emitter with the coordi-

nates xþ dx; yþ dy to the list, where dx and dy are drawn from the

Gaussian distribution with 0 mean and dj deviation. The latter

parameter represents accuracy in determining the emitter coordi-

nates, which is affected by the optical resolution, pixel size and the

photon noise. We repeat the procedure until we reach the desired

number of emitters Nmax. Subsequently, we start reconstruction of

the image, recording the intermediate frames. In each step we select

randomly Nf emitters from the emitter list, and depending on the

selected configuration we add a d�d square, or the Gaussian distri-

bution with deviation of d at the positions of each selected emitter.

These emitters are subsequently removed from the list. The proce-

dure is continued until we use all available emitters. For each inter-

mediate frame we calculate and record the values of

Qpearson;Qbinarized;QL2
and Qfreq fð Þ quantities.

2.3 Distribution of local sampling densities

and limiting precision
We estimate local density of spatial sampling (a limiting factor in

the reconstruction) by quantifying spacing between nearest localized

emitters. This topic has been already extensively studied in the con-

text of localization microscopy (see Baddeley et al., 2010; Deschout

et al., 2014; Dylan et al., 2013; Levet et al., 2015). The images,

reconstructed with the Nf emitters, are rendered with maximum

accuracy (using a single pixel for each emitter). The area corre-

sponding to an emitter is calculated using Voronoi tesselation, as

described in Jones et al. (2005). The sampling interval is then set as

the radius (dr) of the equivalent area circle. The limiting precision

(dl) is calculated as:

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

r þ d2
g

q
: (7)

The corresponding limiting frequency was dl=2.

2.4 Sample preparation and imaging
Slices of rat dentate gyrus brain region were fixed in 3% glutaralde-

hyde and dehydrated as described in Rouquette et al. (2009). DNA

was labeled by a pre-embedding method based on the NAMA-Ur

procedure (Testillano et al., 1991). Slices of rat hippocampal CA1

brain region were fixed in 2% formaldehyde and 2.5% glutaralde-

hyde as described in Wilke et al. (2013). The fixed materials were

labeled with osmium tetroxide, uranyl acetate and lead aspartate

using the procedure described before (Walton, 1979). The brain

tissue was imaged using a SEM microscope (Sigma VP, Zeiss),

equipped with an automated and a BSD detector (3View, Gattan

Inc.). The images were registered at 5–6 kEV and 15 000� magnifi-

cation in the low vacuum mode (2–5 Pa) and with 16 bit precision.

The frame size was 2048 � 2048 pixels (6.4 nm pixel size) and the

section thickness 50 nm.

3 Results and discussion

In order to assess the quality of the image reconstruction, we per-

formed simulations for different values of emitter density, emitter

localization accuracy, size of rendered area of a single emitter, type

Fig. 1. Similarity measure in frequency space. (a) Test image; (b) Test image

after Gaussian blur with added noise; (c) Similarity measure Qfreqðf Þ in fre-

quency space (shaded green area, left scale), frequency spectrum (red line,

right scale). (d) Phase agreement map between the two images,

g0ðfx ; fy Þg�recðfx ; fy Þ
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of rendered area (square or Gaussian), for two different reference

images (NT—neuronal tissue and CN—cellular nuclei, see Fig. 2).

For each of the simulation setting we calculated the values of the

parameters (2), (3), (5) and (8) for the entire images (see Fig. 2),

however hereafter we show only the reconstruction of the regions of

interest (ROIs) to emphasis the image details. From now on, all the

presented figures refer to Image NT (neuronal tissue). The numerical

results and the reconstructed ROI for Image CN (cellular nucleus)

are provided in the Supplementary Material.

In the first place, we analyze the reconstruction quality as a func-

tion of an area assigned to the single localized emitter. As each local-

ization corresponds to local density of molecules, to simplify the

analysis, we associate the localization with a finite and bound area

of standardized shape. Therefore, we render the molecules position

with an area of square pixels. Later, we compare to obtained results

with a rendering with Gaussian functions (see Supplementary

Material). Figure 3 shows the correlation coefficient as the function

of emitters density in range 291� 291 000 per lm2 (which corre-

sponds to 50 � 103 � 50 � 106 per image), for different values of d,

the size of side of the squares used to render the emitters (d) in the

reconstructed image. We observe immediately that the best render-

ing (measured by the value of the correlation coefficient) for the

small number of emitters is achieved by using the largest squares,

i.e. d ¼ 211.2 nm. As we increase the numbers of emitters, the plot-

ted functions cross each other. When we surpass the emitters density

�1150 per lm2 the highest correlation coefficient is achieved for the

squares with d ¼ 108.8 nm, and so on. Even for the extremely large

number of emitters (50� 106) per image, the rendering with the

smallest squares d ¼ 6.4 nm yields the value of the correlation coeffi-

cient substantially smaller, than the rendering with the optimal

square, here d ¼ 32 nm. On the other hand we observe, that for the

functions with the large squares (d ¼ 211.2 nm and d ¼ 108.8 nm)

and after collecting a certain number of emitters no further increase

of correlation coefficient is obtained. Thus, increase of the number

of emitters does not improve fidelity of reconstruction of the imaged

biological structure. The lowest value of the correlation coefficient,

for the entire analyzed interval, is obtained for the smallest size of

emitter rendered area (d ¼ 6.4 nm). However this value continues to

increase at the end of the interval. This means that we there are still

small-scale details of the image, which could be potentially recov-

ered, if we have recorded an infinite number of emitters. The scale

of recovered details will be estimated, once we analyze the phase

agreement in the frequency space. Figure 4 shows the correlation

coefficient as a function of d for different number of emitters.

Fig. 2. Reference electron-microscopy images used in simulations: (a) cellular nucleus; (b) neuronal tissue; (c) and (d) magnification of regions of interest in pseu-

docolor scale (entire images were used in simulations); scale bars 600 nm
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We observe that each of these functions (except two functions repre-

senting a small number of emitters) has a local maximum in the ana-

lyzed interval. The position of such a maximum determines an

optimal value of d used to render the emitters in the reconstructed

image. Figure 5 shows the reconstruction of the ROI for different

values of d and emitter density. We observe directly, that we need to

choose a different optimal value of d for different number of col-

lected emitters.

Subsequently, we analyze, whether for a specific theoretical

resolution, we are able to reconstruct the corresponding fine scale

image details. From Figure 4 we notice, that for the emitters density

�10 � 103lm�2 the optimal value of the correlation coefficient is

achieved, once we render the molecule position with an area of a

square with side 57–108 nm. This value is �10� larger than the

average sampling density (see Fig. 6) and �2� larger than the value

Fig. 3. Correlation coefficient as a function of rendered area size (side of

square rendering) for different emitters density, Image II (neuronal tissue),

emitter localization accuracy 25 nm

Fig. 4. Correlation coefficient as a function of emitters density for different

rendered area size (side of square rendering), (image of neuronal tissue),

emitter localization accuracy 25 nm

Fig. 5. Reconstruction of the ROI for different rendering square size and emitter density (image of neuronal tissue), emitter localization accuracy 25 nm
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obtained from the resolution test (see Supplementary Figs S9 and

S10). Therefore, we conclude, that even with the very optimistic

assumption (emitters density �10 � 103lm�2), our sampling density

is still not sufficient to reconstruct the desired fine scale details.

These observations are compatible with results reported by other

groups (Nieuwenhuizen et al., 2013), where resolution was limited

by imaging density. This also means, that we are unable to extract

the details at the Nyquist frequency, as shown by Figure 7, i.e. the

phase agreement function in the frequency space (see Fig. 7). We

notice immediately that there in no difference between the phase

agreement function for d ¼ 6:4 nm and d ¼ 57:6 nm (and the inter-

mediate values, not show). This is the consequence of the fact, that

by increasing d we do not increase the information content in the

image. What we do is the increment of spatial rendering of the

sparsely probed large scale structures, which are better represented

in the spatial rendering, therefore improving the possibility of quan-

titative measurements and visual interpretation of the image.

Increasing the value of d to 108:8 nm we notice the deterioration of

the phase agreement function, once we collected a certain number of

emitters. This is the consequence of the fact, that we already started

to reconstruct the fine-scale details smaller than the size of the emit-

ter rendering area. This phenomenon is more prominent with

d ¼ 211:2 nm when we started to introduce the aliasing artifacts,

seen as a bands in the phase agreement function. Moreover, we

observe that even in the most optimistic case we failed to reconstruct

most of the fine-scale details.

Fig. 6. Distribution of (emitter) sampling density. Histograms of the radii of the

mean area (dr) are represented with mean (green diamonds), medians (red

lines), 25/75th percentiles (blue boxes) and 5/95th percentiles (black whiskers)

(Color version of this figure is available at Bioinformatics online.)

Fig. 7. Similarity measure in frequency space, (image of neuronal tissue), emitter localization accuracy 25 nm. The spectrum of similarity measure is shown as a

function of emitters density, for different rendered area size (side of square rendering). Only the lowest 1/3 of the function with the sampling resulting from the

reference image resolution has been displayed

Fig. 8. Correlation coefficient as a function of emitters density for different

emitter localization accuracy (square rendering) (image of neuronal tissue)
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Next, we analyze an influence of accuracy of emitter localization

(j) on the quality of the rendered image. This accuracy is affected by

the signal to noise ratio and pixel size. Figure 8 shows quantitatively

to which extent the lack of fidelity of the reconstructed image is a

result of the poor sampling or an inaccuracy in determining the posi-

tion of emitters. The blue curve (j ¼ 6:4 nm, i.e. the localization

accuracy is equal to the resolution of the reference image) represents

the limiting case, when the lack of fidelity of the resulting image is

exclusively a consequence of a sampling process. With a poorer

emitter localization accuracy we need clearly a larger number of

emitters, to achieve the same quality of rendered image, note the

logarithmic x� scale. Figure 9 shows the phase agreement functions

for different localization accuracy. Even in the limiting case,

j ¼ 6:4 nm, and with the maximal density of emitters used in the

simulations, we still failed to reconstruct most of the fine-scale

details of the reference image. Note that we displayed only the low-

est 1/3 of the function has been displayed (1/3 of the maximal fre-

quency resulting from the reference image resolution). One might

note that, with the same emitter densities, differences in reconstruc-

tion fidelity of the two kinds of biological structures (CN and NT)

were observable. The image comprised few dense structures (regions

of concentrated chromatin), which occupied small fraction of total

image area while the major fraction corresponded to sparse labeling.

Structures in the NT images (lipid membranes) were repetitive and

distributed more uniformly. Therefore, more uniform sampling in

the latter case produced better recovery of high spatial frequencies.

Finally, we compare different types of area rendering (a square

with side d versus Gaussian with 2 � r ¼ d). We did not observe

substantial differences in the values of quantitative parameters (see

Supplementary Fig. S10).

4 Conclusions

In the presented article we quantified the fidelity of the reconstruc-

tion process with a STORM/PALM technique.

The numerical results show that, for the complex biological

structures, the major limitation on image reconstruction fidelity is

labeling density, rather than the localization precision. In other

words, an amount of recovered information is a function of the sam-

pling density in the first place, and a function of the localization

precision, in the second place. Even for the unrealistically high sam-

pling density, we still operate in the ‘labeling limited’ regime

(Nieuwenhuizen et al., 2013). Therefore even under the most favor-

able conditions, we were still unable to reconstruct accurately the

observed biological objects, because our sampling was too sparse.

These observations suggest that (i) we can improve an image quality

by collecting more emitters, even with lower precision than the pre-

cision corresponding to the desired image resolution. We also find

(ii), that since we are more restricted by sampling, than by precision,

it pays off to reconstruct an image with a lower precision (larger ren-

dered area) than the localization precision (see Fig. 4). The conse-

quences (i) and (ii) mostly result from the fact, that sampling density

is a local parameter affected by the architecture of the labeled bio-

logical structure. Thus, an ‘a priori model’ of the investigated struc-

ture (e.g. a synapse) may help to isolate the relevant features from

the image and obtain corresponding biological information on the

structure (e.g. on the receptor density).

Further, we notice, that the maximal spatial frequency is

restricted by a minimal, rather than average sampling. In practical

situation, we need to collect substantially larger number of emitters,

than a number estimated from the resolution test assuming uniform

emitters distribution. Finally, we observe that agreement between

the images in the frequency space is independent of the rendered

area size (until we reach aliasing, which occurs when the rendered

area size becomes comparable with reconstruction resolution, at this

stage we start to loose image details).
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