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Abstract

Model uncertainty estimation and risk assessment is essential to environmental management and 

informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic 

methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood 

estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical 

solution of the differential equation governing lake-averaged oxygen dynamics as a function of 

time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty 

are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed 

and oxygen concentration data obtained from an earlier study during two recovery periods on a 

eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for 

one year and statistical inferences were validated using recovery data for another year. Compared 

with essentially two-step, regression and optimization approach, the BMCML results are more 

comprehensive and performed relatively better in predicting the observed temporal dissolved 

oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation 

results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is 

computationally simpler and easier to implement than the MCMC. Next, using the calibrated 

model, we derive an optimal relationship between liquid film-transfer coefficient for oxygen and 

wind speed and associated 95% confidence band, which are shown to be consistent with reported 

measured values at five different lakes. Finally, we illustrate the robustness of the BMCML to 

solve risk-based water quality management problems, showing that neglecting cross-correlations 

between parameters could lead to improper required BOD load reduction to achieve the 

compliance criteria of 5 mg/L.
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1. Introduction

The use of hydrologic and water quality models are indispensable to water resource planning 

and environmental management. In Europe, the EC-Water Framework Directive (WFD) is 

the most important driving force to improve water quality (Hering et al., 2010). In the 

United States, Total Maximum Daily Load (TMDL) is the most important watershed based 

regulatory program (US EPA, 2011). In both of these programs, models have played and will 

continue to play a key role in their implementation and success. However, the simulations 

from these models are subject to significant uncertainty.

Quantifying uncertainty associated with water quality model predictions is imperative for 

risk-based environmental decision making and when significant public resources are at stake 

(Borsuk et al., 2002; Liu et al., 2008; Shen and Zhao, 2010; Patil and Deng, 2011). Errors in 

the input data, observations, parameters, and model structure are inevitable and bound to 

contribute to model uncertainty. An ideal methodology therefore should account for all 

sources of modeling errors and firmly integrate model uncertainty with risk-based 

management solutions for water quality problems (Wellen et al., 2015).

Previous efforts linking model calibration and uncertainty estimation to water quality risk 

assessment have used first-order variance analysis (FOVA) by focusing exclusively on 

parametric uncertainty and often requiring numerical approximation of first-order and 

second-order derivatives (e.g., Melching and Bauwen,s 2001; Zhang and Yu, 2004). While 

computationally frugal, FOVA methods limit uncertainty quantification to the first-two 

moments and are constrained by the requirement of relatively small coefficient of 

determination of the parameters.

Bayesian frameworks have been increasingly used to link model calibration and uncertainty 

estimation to water quality risk assessment. While Bayesian methods produce more 

comprehensive statistical inferences and have fewer restrictive assumptions, they are often 

computationally demanding (Lu et al., 2014). Bayesian Monte Carlo (BMC) (Camacho et 

al., 2015; Qian et al., 2003), Markov chain Monte Carlo (MCMC, Zheng and Han, 2015; 

Wellen et al., 2014; Lu et al., 2014; Cheng et al., 2014; Liu et al., 2008), and the Generalized 

Likelihood Uncertainty Estimation method (GLUE, Beven, 2006; Zheng and Keller, 2007; 

Vrugt et al., 2009) are most common approaches employed to compute the distribution of 

the model predictions and obtain uncertainty estimates such as the 95% confidence bounds.

An historical roadblock in the application of Bayesian approaches was that, for many model 

forms, using the posterior parameter distribution required solving highly complex 

analytically intractable integrals. To overcome this, the MCMC algorithms create a random 

walk, or a Markov process, that has the posterior probability mass of parameter set, as its 

stationary distribution (Gelman, 2004). The procedure is adaptive, so that starting from an 

initial point, it runs the process long enough so that the resulting sample closely 

approximates a sample from posterior probability mass of parameter set (Congdon, 2006). 

However being an iterative scheme, MCMC implementation remains challenging, with 

factors such as selection of sampler, burn-in period, the proposal distributions and their scale 
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factors – all of which greatly affect the convergence and the efficiency of sampling from the 

target distribution (Camacho et al., 2015; Samanta et al., 2007).

The BMC on the other hand is essentially non-iterative and much simpler to implement but 

can be inefficient because the region of the posterior distribution may never be sampled 

(Qian et al., 2003). This view point is partly attributed to lack of a proper strategy for 

estimating the variance of residual error in the likelihood function and overlooks the fact that 

probabilities are calculated in terms of the basis of parameter sets and corresponding 

likelihoods (Hantush and Chaudhary, 2014).

Within BMC or MCMC, the likelihood function quantifying the probability that the 

observed values of a modeled variable correspond to a particular parameter set is constructed 

using ‘formal’ statistical models based on the temporal structure of the residuals between the 

model predictions and observations. Here the functional form of the likelihood function can 

be generalized to depend on the level of bias, heteroscedasticity and correlation of the 

residuals (Camacho et al., 2015). The main point of criticism in BMC and MCMC are the 

assumptions regarding the structure of the residual errors that may not be accurate in real 

modeling applications (although the modeler can evaluate the validity of their assumptions a 
posteriori).

On the other hand, GLUE generates ‘informal’ likelihood measures using common goodness 

of fit measures such as Nash-Sutcliffe coefficient (Beven, 2006) and often relies on 

subjectively selected threshold values for the likelihoods to separate Behavioral from non-

Behavioral parameter sets. In a sense, it lacks rigorous statistical assumptions and 

uncertainty therefore is no longer expressed in terms of probabilities. While the informal 

likelihood measures in GLUE eliminate the need for assumptions on residual error models 

through a pragmatic approach, they neither ensure the convergence to the posterior 

probability distribution which is a fundamental property of the Bayesian approach (Vrugt et 

al., 2009) nor produce reliable estimates of prediction probabilities (Camacho et al., 2015).

Recently, Hantush and Chaudhary (2014) presented a novel approach (BMCML) that 

combines Bayesian Monte Carlo (BMC) simulation with maximum likelihood estimation 

(MLE). BMCML also borrows from the GLUE methodology the concept of “equifinality”, 

i.e. the emphasis is placed on the generated parameter sets (i.e., covariation among the 

parameters) and corresponding likelihoods as opposed to the posterior parameter distribution 

as the case in MCMC. This is also different from casual ensemble forecast approaches 

where after model calibration uncertain parameters are arbitrarily perturbed to generate the 

ensemble forecast. As with the GLUE, covariation among parameters in any Monte Carlo 

simulation are implicitly reflected by the likelihood weight associated with each randomly 

drawn parameter set. Within BMCML, the variance ,   bias and lag-one autocorrelation 

coefficient of model residual errors are determined for each randomly drawn parameter set 

by maximizing the joint likelihood function.

Hantush and Chaudhary (2014) showed through several example applications that neglecting 

covariation among model parameters can have significant effect on computed risk-based 

management actions. Given a suite of above Bayesian methods, it is imperative to investigate 
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the effectiveness and efficiency of these methods to guide strategies for uncertainty analyses 

in future water quality modeling and risk assessments.

The main objective of this paper is to characterize the uncertainty of a lake oxygen recovery 

model (Gelda et al., 1996) using the BMCML (Hantush and Chaudhary, 2014) and MCMC 

methods and demonstrated robustness of BMCML to risk management. The manuscript is 

organized as follows. First, we derive a new analytical solution for lake-reaeration dynamics 

by solving the differential equation that governs the mass balance of oxygen in the lake. 

Second, results derived are compared using the BMCML with the results obtained by Gelda 

et al. (1996) deterministically and the Markov Chain Monte Carlo (MCMC) method. Third, 

we construct a relationship between reaeration coefficient and wind speed along with 95% 

confidence band and evaluate its performance by comparison with observed data from five 

other lakes and similar relationships reported in the literature. Finally, we describe how 

BMCML can be used to estimate risk of violating lake water quality standard as a function 

of pollutant loading.

2. Methods

2.1. Lake Reaeration Process

The dissolved oxygen (DO) concentration is a critical factor for aquatic biodiversity and in 

regulating various biogeochemical processes. Depletion of DO in lakes is a common 

phenomenon that occurs in some lakes every year due to accumulation and oxidation of 

chemically reduced substances in lake’s hypolimnion over the summer. Maximum depletion 

occurs at turnover. This period is followed by a recovery period during the autumn whereby 

oxygen levels bounce back due to diffusive transfer of oxygen across the lake surface (i.e., 

reaeration) exceeding the rate of oxygen removal by plant uptake and oxidation processes. A 

return to near-saturated conditions takes 3–4 weeks (Gelda et al., 1996).

The atmospheric inputs of oxygen into the lakes depend on the reaeration coefficient which 

is a function of wind speed (surface turbulence). The recovery period thus offer a rare 

opportunity to identify the factors mediating the reaeration process and to evaluate the 

predictive expressions of reaeration coefficient based on wind speed.

Using the field monitored data on mean daily wind speed and dissolved oxygen in the 

hypereutrophic Onondaga Lake in Syracuse, New York over two post turnover recovery 

periods, Gelda et al. (1996) calibrated a typical lake oxygen recovery model and estimated 

the reaeration coefficient through essentially a mixed graphical and optimization approach. 

The lake is oriented along a NNW-SSE axis, and is 7.2 km long, 1.6 km wide (i.e. surface 

area =11.7 km2), with mean and maximum depths of 12 m and 20.5 m respectively. Gelda et 

al. (1996) collected a time series of DO measurements at 1-m intervals at two stations in the 

north and south basins of Onondaga Lake in late summer and fall of 1989 and 1990. 

However because their approach is deterministic, it neither lends itself to uncertainty 

estimation nor suited for probabilistic risk assessment.
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The mass balance of lake-wide oxygen during the post turnover recovery period, assuming 

the gains of oxygen through tributary inflow and losses to lake outflow are negligible, is 

given by following differential equation (see Gelda et al. 1996 for details):

V dC
dt = V . Ka Cs −   C +   V . S (1)

where Ka is the reaeration coefficient (d−1); CS = saturation concentration of dissolved 

oxygen (g/m3); and C = lake-averaged oxygen concentration in the water (g/m3) at time t 
and V = lake volume (m3). S is the net sum of all oxygen sources and sinks in the lake in g.m
−3d−1 (i.e. photosynthesis minus algal respiration and biochemical, sediment oxygen 

demand). In the short-term, over the recovery period, the reaeration coefficient displays 

significant temporal variations as a function of wind speed (surface turbulence) typically 

represented by:

Ka = αUβ/H (2)

where α and β are empirical constants; and U = wind speed (m/s) at a standard height above 

the water (=10 m) and H is the average depth of the lake.

Gelda et al. (1996) implemented a two-step procedure, whereby S and period-averaged Ka

were first obtained using the oxygen recovery data and solution of Eq. 1 based on constant 

Ka. They then solved the differential equation (Eq. 1) numerically, by seeking a value for α 

that minimizes the root mean square error (RMSE) between model-predicted DO and field 

observed DO. The value of β was fixed to be equal to 1.0 for U ≤ 3.5 m/s and 2.0 for U > 3.5 

m/s. The observed values for Cs were 11.67 and 11.27 g/m3 for the year 1989 and 1990, 

respectively. The net source term S was −0.289 and −0.151 g.m−3/d for the two years (from 

Gelda et al. 1996). Negative S implies net sink and that oxygen removal by algal respiration, 

BOD and SOD exceeded oxygen sources like photosynthesis and reaeration, averaged over 

the recovery periods. Once α was determined by optimization, Gelda et al. (1996) 

constructed a predictive relationship between liquid film-transfer coefficient for oxygen 

(KL =  Ka ∙ H) and wind speed (U).

2.2. Analytical Solution

We obtain the solution of the differential equation (Eq. 1) using the integration factor:

C t1 = C t0 e
−∫t0

t1
Ka τ dτ

+   ∫
t0

t1
Ka φ Cs + S e

−∫
φ

t1
Ka τ dτ

dφ (3)
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where C t1 ,  C t0  are the concentration of dissolved oxygen (DO) in the lake at time t1 and 

t0 respectively (g/m3). We refer to Eq. (3) as the exact analytical solution. If the time interval 

t1 − t0 is sufficiently small such that variation of the reaeration coefficient is negligible, the 

integral appearing in the exponential term in the integrand can be approximated in terms of 

the average value of Ka, Ka, over the time interval [t0, t1], by virtue of the Mean Value 

Theorem for integrals, ∫
φ

t

Ka τ dτ ≈   Ka t − φ . Substituting this and carrying on the 

integration, the following expression is obtained (referred to approximate analytical 
solution):

C t1 =   C t0 ⋅ e
−Ka t1 − t0 +   Cs + S/Ka ⋅ 1 − e

−Ka t1 − t0 (4)

where Ka
− ≈ αU−β/H and U− is the average wind speed for the time interval [t0, t1]. In terms of 

U−, Eq. (4) can be rewritten as:

C t1 =   C t0 ⋅ e
− αUβ

H t1 − t0 +   Cs + S ⋅ H / αUβ ⋅ 1 − e
− αUβ

H t1 − t0 (5)

2.3. BMCML methodology for model calibration and uncertainty estimation

In the model described in Eq. (5) above, we considered the parameters α,  β, S and CS to be 

unknown but random variables and generated 100,000 Monte Carlo samples from the 

following prior, uniform distributions: S ~ U (−3, 1), CS ~ U (8, 15), α ~ U (0.01, 2) and β ~ 

U (0.1, 4). Unlike the deterministic modeling approach taken by Gelda et al. (1996), we 

consider α, β, S and CS to be uncertain parameters in the model to demonstrate that the 

analysis can be applied to oxygen lake recovery modeling for a region where the measured 

values of S and CS are not available.

The daily average (i.e. t1 − t0 = 1 in Eq. 5 above) wind speed U− and dissolved oxygen (O) 

observations in Onondaga Lake were obtained from Gelda et al. (1996). For year 1990, 36 

wind speed measurements were available along with 13 measurements of dissolved oxygen 

(DO). For 1989 wind speed was monitored for 20 days following the turnover event and DO 

levels monitored on 7 of those 20 days. The mean lake depth (H) was equal to 12 m (Gelda 

et al., 1996).
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The relationship between DO observations (O) and the corresponding model simulated 

output (C θ ) can be expressed as: O = C θ + ε, where ε = ε1, ε2, …, εm ,εi N 0, σε
2  is zero-

mean, independent and normally-distributed residual error; m is number of observations; and 

θ = α,  β,  CS,  S T is vector of model parameters. The error ε accounts for all sources of 

modeling errors (observational, structural, inputs and loadings).

In the context of the BMCML and according to Bayes theorem (see also Hantush and 

Chaudhary 2014):

P θi|O = k   l θi P θi (6)

where P θi|O  is the posterior probability mass of parameter set θi = αi,   βi, CS
i, Si T

; i = 1,2,

…,n, where n is number of randomly sampled parameter sets (n = 100,000); l θi = P O|θi  is 

the likelihood of observations given θi;  P θi  is the prior probability mass of parameter set θi; 

k is a normalizing factor such that ∑i = 1
n P θi|O = 1; that is,k = ∑i = 1

n l θi P θi
−1

. We 

also assume equally likely parameter sets prior to the introduction of measurements, i.e., 

P θi = 1/n.

Assuming independent, zero-mean and normally distributed model residual errors, the log-

likelihood function given a set of m independent DO observations o1,o2,…,om and a 

parameter set θi is (Qian et al. 2003; Gelman et al. 2004):

lnl θi = − m
2 ln 2π − mlnσε − 1

2   ∑k = 1
m Ok − Ck θi

σε

2
(7)

Next, for each BMCML sampling step i, the value of σε
2 corresponding to parameter set θi is 

the maximum likelihood estimate. In other words, for each θi, there corresponds a maximum 

likelihood estimator σε i
2  which maximizes the log-likelihood function (see also Stedinger et 

al. 2008). By setting ∂ln   l θi / ∂σεi
2 = 0 one obtains:

σε i
2 = 1

m∑
k = 1

m

Ok − Ck θi
2 (8)

where subscript i denotes the dependence of the maximum likelihood estimators on the 

parameter set θi. In this framework,σε
2 is described by a probability distribution: 

P σε i
2 |O = l θi . The maximum likelihood estimate σε i

2  is expected to be close to the actual 

Chaudhary and Hantush Page 7

Water Res. Author manuscript; available in PMC 2018 October 17.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



value of σε
2, which is jointly distributed with θ in a full Bayesian analysis (Stedinger et al., 

2008).

Substituting σε i
2  into Eq. (7) and adjusting the terms, gives the maximum likelihood value 

l θi  :

l θi = 2π   e   σεi
2 − m

2 (9)

Eq. (9) and the probability distribution of σε
2 hence form the basis of BMCML methodology 

and sets it apart from BMC. The posterior probability mass of parameter set P θi|O  is then 

computed by simply substituting l θi  for l θi  in Eq. (6) and noting that 

k = ∑i = 1
n l θi P θi

−1
 and P(θi)   = 1/n :

P θi|O =
l θi  

∑
i = 1

n

l θi

(10)

Using P θi O  values, likelihood-weighted (Bayesian estimate) and 95% confidence interval 

for each of the four model parameters can be computed.

The Bayesian estimate of the variance of residual errors can be calculated as (Hantush and 

Chaudhary, 2014):

σε
2 = ∑i = 1

n σεi
2 P θi|O (11)

The Bayesian estimate of lake-averaged dissolved oxygen concentration Y at any point in 

time is the conditional mean of Y given the observation O,  E Y O , which in the discrete 

form can be approximated (assuming uniformly sampled parameter space) as (Hantush and 

Chaudhary, 2014):

E Y |O ≈ ∑i = 1
n E Y |θi   P θi|o =   ∑i = 1

n E C θi   P θi|o (12)

The explicit expression for the posterior CDF of the model parameters and the expressions 

used to construct predictions (i.e., median, confidence limits) for future observed values of Y 
given the observed record, O, is (Hantush and Chaudhary 2014):
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F y|O ≈ 1
2 + 1

2   ∑i = 1
n er f

y − C θi ]
2   σε

  P θi|O (13)

2.4. The case of biased and auto correlated residual errors

Apart from the above case assuming independent, zero-mean and normally distributed 

model residual errors, we also considered the more general case of biased and auto 

correlated residual errors (first-order Markov process): εk − μ = ρ εk − 1 − μ + ωk,

ωk N 0, σω
2 , in which μ is bias of the overall error; ρ is lag-one autocorrelation of the overall 

error; ωk is zero-mean, independent and normally-distributed residual error; and σω
2  is 

variance of residual errors (Hantush and Chaudhary, 2014) This residual error equation can 

be rewritten as:

εk = ρεk − 1 + μ 1 − ρ + ωk =   Ok − Ck θi (14)

The log-likelihood function is

lnl θi = − m
2 ln 2π − mlnσω − 1

2   ∑k = 1
m εk − ρεk − 1 − 1 − ρ μ

σω

2
(15)

Minimizing ln l with respect to σω
2    yields

σω
2 = 1

m ∑k = 1
m εk − μ − ρ εk − 1 − μ 2 (16)

Note that minimizing ln l is identical to minimizing the sum of squares of residual errors of 

yt = axt + b + ωt, where yt = εt,  xt = εt − 1,  a = ρ, and b = 1 − ρ μ and therefore the least-

square estimates are (see Ang and Tang, 2007):

1 − ρ μ = 1
m ∑k = 1

m εk − ρ
m ∑k = 1

m εk − 1 = εk − ρ   εk − 1 (17)

ρ =
∑

k = 1

m

εk − 1 − εk − 1 εk − εk

∑
k = 1

m

εk − 1 − εk − 1
2

(18)
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in which εk = 1
m ∑k = 1

m εk, and εk − 1 = 1
m ∑k = 1

m εk − 1

Evaluating (18) for ρ, then μ from (17) and finally (16) for σω
2  gives the residual error 

estimates. Substituting ρ,μ and σω
2  into Eq,(15) provides the maximum likelihood value l θi

  for each parameter set that can be used to calculate the posterior probability mass of 

parameter set (through Eq. 10) as well as the Bayesian estimate of lake-averaged dissolved 

oxygen concentration (through Eq. 12).

2.5. Model performance evaluation

To evaluate the model performance, we calculate coefficient of determination (R2) and the 

Nash Sutcliff efficiency (ENS; Nash and Sutcliff, 1970). With both metrics, higher values 

indicate better fit and 1.0 indicates perfect fit. An ENS value of 0 indicates that the model 

predicts as well as the average of the observations, while negative ENS value indicate a 

model that predicts more poorly than the average of the observations. The ENS penalizes for 

linear bias, whereas the R2 metric does not (Krause et al., 2005). R2 describes the proportion 

of the variance in the observed data that can be explained by the model. Another 

performance metric is the root mean square error,RMSE = (m − p)−1∑t = 1
m (Lt − Ot)

2), where 

m is the number of DO measurements (and m = 7 for 1989 and m = 13 for 1990); p = 4, is 

the number of model parameters; Ot is observed concentration of DO on any day t and Lt is 

Bayesian estimate of measurement on day t. All the programming and statistical analysis 

were performed in MATLAB software (Mathworks, 2011).

2.6. Model Validation - Split Data Set Approach

In order to further explore the robustness of BMCML methodology, we used split dataset 

approach with the first time series of dissolved oxygen (DO) recovery observation from the 

year 1989 for model calibration and likelihood estimation while the second from the year 

1990 is retained for methodology validation and uncertainty estimation (Oberkampf and 

Trucano, 2008). During the model validation part, the prior vectors of all 4 parameters along 

with their corresponding likelihoods (Eq. 10) are fed back into lake oxygen recovery model, 

with the mean daily wind speed observations from the year 1990. The objective is to check if 

the calibrated model is capable of predicting the lake oxygen recovery for future years. This 

is different from the approach by Gelda et al. (1996) where the model was calibrated for 

both years but never validated.

2.7. Comparison with regression and MCMC approaches

We compare the BMCML calibration results with those obtained by Gelda et al. (1996) and 

with those using Markov Chain Monte Carlo (MCMC). We performed MCMC sampling on 

the lake recovery model using the publicly available program WinBUGS, (Bayesian 

inference Using Gibbs Sampling; Lunn et al., 2009), to obtain inferences for all four model 

parameters α, β, Cs, S and the model error variance σε
2. A typical WinBUGS session starts 

with the user specifying the model to run in the form of the likelihood function and prior 
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distributions for all parameters to be estimated (Spiegelhalter et al., 2003). Observations and 

initial values must also be specified.

We used the same prior distributions for all four model parameters as in BMCML above, 

while for model error variance σε
2, we defined a uniformly distributed prior, σε~U (0.01, 1). 

We performed 50000 iterations on three separate chains with 1000 burn-in period and 

selecting every 5th value. Through WinBUGS, we then generated MCMC simulations using 

Gibbs sampling algorithm such that the stationary distribution of the Markov chain is the 

posterior distribution of interest, with the process eventually providing posterior samples of 

size 10,000 for each of the five unknown variables from which summary statistics such as 

mean or 95% confidence intervals can be calculated.

For model validation, these posterior vectors were fed into the aeration model of Eq. 5 along 

with the mean daily wind speed observations from the year 1990 to obtain the MCMC 

estimate and 95% confidence intervals of lake oxygen levels.

2.8. Risk Assessment

In order to demonstrate the application of BMCML technique to water quality management, 

we use the calibrated model above to examine the general hypoxic state of the lake under 

study. The objective is to know on any day following the recovery, what is the maximum 

allowable BOD loading (CBOD and NBOD portion of S term in Eq. 5) in the lake such that 

the DO levels do not drop below the ambient water quality criterion (Y*) of 5 mg/L (with 

90% confidence). We used the following expression from Hantush and Chaudhary (2014) to 

compute the risk of violating Y* at a particular loading S:

Risk = P[Y < Y* O] ≈ 1
2 + 1

2 ∑i = 1
n er f

Y* − C(θi)]
2σε

P(θi/O) (19)

where erf is error function. Starting with the Bayesian estimate of the net source term (S), 

we first compute the risk of violating Y* at a current loading levels and then successively 

reduce the magnitude of S and calculated the risk according to Eq. (14) to obtain a 

functional relationship between S and risk. We refer to the above evaluation of risk as the 

formal approach since it follows from the firm application of laws of probability (total 

probability and Bayes theorems).

We also carried out the risk management analysis using the more commonly used informal 
approach, whereby parameter values are sampled independently from their posterior 

marginal distributions and then used to compute probability of violation. This approach does 

not consider potential parameter interactions as reflected by the corresponding likelihood 

function estimates. To compute the risk of violating Y* using informal approach, we 

computed the fraction of times the following inequality holds,[P[C(θ′i) + εi < Y*], where 

εi N 0, σε
2  is sampled independently. Here θ′i is a particular parameter set drawn from 

posterior marginal probability distributions of model parameters θ without due consideration 
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of corresponding likelihoods. This is to distinguish θ′i from parameter set θi that is sampled 

from prior parameter distributions and has corresponding likelihood l θi . The latter contains 

potentially correlated parameter values.

3. Results and Discussion

3.1. Model Calibration and validation using BMCML

Fig. 1(a) shows the BMCML estimates and observed dissolved oxygen concentration values 

in lake Onondaga, New York for the recovery period of 1989. It can be seen that DO levels 

increased from 3.5 g/m3 on day 0 to 9.9 g/m3 over a period of 20 days. The estimated DO 

values fit very well to the observed trend in the increase of DO levels in the lake.

RMSE was found to be 0.21 g/m3, while the Nash-Sutcliff efficiency coefficient (ENS) and 

coefficient of determination (R2) of the Bayesian estimates were both equal to 0.98. 

BMCML estimate of model error variance σε
2 is 0.22 (g2/m6). The observed values fell 

within the computed 95% confidence limits.

Fig. 1(b) shows the resulting fit between predicted and observed dissolved oxygen (DO) 

levels for the validation period 1990. We found RMSE to be 1.15 g/m3, whereas the ENS and 

R2 are 0.95 and 0.97 respectively. As shown in the Fig. 1(b), the variability and magnitude 

of the observed DO values are adequately reflected by the BMCML estimate. Moreover, the 

observed DO time series is contained by the estimated 95% confidence band, thus validating 

the model.

Table 1 shows the Bayesian estimates and 95% confidence intervals of all four model 

parameters (α, β, Cs, S) obtained using the BMCML and MCMC with the lake recovery 

analytical model of Eq. 5 and the 1989 daily average wind speed data.

Table 2 lists a matrix of likelihood-weighted cross-correlations between the 4 model 

parameters (α, β, S, Cs) corresponding to likelihood values greater than 10−4. Highest 

correlation exists between α and β, followed by β and Cs. Parameters S and Cs and are also 

moderately correlated.

Dotty plots of paired parameter values with likelihoods greater than 10−4 are depicted in Fig. 

2.

Interestingly, a discernable exponential relationship can be observed between α and β, 

which signifies a functional relationship between the two parameters. The similar plots for 

other parameter combinations are more scattered, thus, revealing weaker functional 

associations.

In order to test the sensitivity of the results to the assumption that reaeration coefficient is 

constant over daily time period, we also applied BMCML methodology to the exact 

analytical solution (Eq. 3) in order to compare the results with approximate analytical 

solution of Eq. 5. The daily observed values of U− were linearly interpolated to obtain hourly 

data. The results compare well with those obtained using Eq. 5, indicating that daily time 
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resolution is sufficient to model short term lake dynamics for the current lake in question 

along with the added benefit of being computationally faster. The ENS and R2 of the 

Bayesian estimates both were close to 0.95 for both years and RMSE was equal to 0.38 

g/m3.

It’s worth emphasizing that the length of the averaging period used for lake recovery model 

input is consistent with the response time of the system. For example, some simulation 

studies in the past have found that winds must persist over a period of >2 hours to stimulate 

any response in lake DO concentration. Thus wind speed data reported at intervals of less 

than 2 hours are of a finer scale than is necessary for these calculations. On the other 

extreme, the averaging period should not be so long as to obscure the impact of short-term 

high-wind events on reaeration phenomena. Our results agree with Gelda et al. (1996), who 

also found that the daily averaging period utilized in the Onondaga Lake analysis is 

consistent with the time scale of interest for the recovery of the lake’s oxygen resources.

In an additional run, we also applied the BMCML method assuming biased and auto-

correlated residual errors (Eqs. 14–18, section 2.4). We found that in this case both the bias 

and lag-one autocorrelation coefficient for model residual errors came out negligibly small. 

The normality assumption for residual errors was also confirmed by Kolmogorov-Smirnov 

test for normal distribution (at α = 5% significance level).

3.2. Comparison with regression and MCMC approaches

The model fit obtained using BMCML is much improved compared with those obtained by 

regression technique of Gelda et al. (1996). For the calibration year 1989, the RMSE value is 

lower using BMCML (0.21 g/m3), compared to 0.77 g/m3 obtained by Gelda et al. (1996). 

The S values computed by Gelda et al. (1996), −0.289 g.m−3d−1 for 1989 and −0.151 g.m−3d
−1 for 1990 are well within the 95% confidence interval generated by BMCML (Table 1). 

Period-averaged Cs values used by these authors - 11.67 and 11.27gm−3 for 1989 and 1990, 

respectively, are also within the 95% confidence limits obtained by the BMCML method 

(Table 1). Similarly, the 95% confidence limits for β encompasses the two values of 1 and 2 

m/s for U below and above threshold value of 3.5 m/s proposed by Gelda et al. (1996). The 

corresponding optimized values obtained by the same authors for α below and above the 

threshold velocity, 0.2 and 0.057, respectively, are within the BMCML 95% confidence 

limits (Table 1). The BMCML estimates for β and α were 1.9 and 0.1, respectively.

The predicted DO results obtained using MCMC were more or less similar to those obtained 

by BMCML. Fig. 3(a) presents the model calibration results obtained using MCMC. For the 

1989 DO data, the ENS and R2 of the MCMC estimates were 0.98 and 0.93 respectively as 

compared to 0.98 for BMCML estimates. MCMC estimate of model error variance σε
2 was 

0.24 g2/m6 compared to 0.22 for the BMCML, while the RMSE was 1.16 g/m3 for the 

calibration year 1989 which are higher than BMCML and Gelda et. al. (1996) estimates.

For the validation year 1990, MCMC estimates along with 95% confidence intervals are 

shown in Fig. 3(b). The ENS and R2 of the MCMC estimates were both 0.98 compared to 

0.95 and 0.97 for the BMCML, while the RMSE between observed DO concentrations and 

MCMC predicted concentrations was 0.41 g/m3 compared to 1.15 g/m3 for the BMCML and 
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0.68 g/m3 reported by Gelda et al. (1996). The MCMC marginally outperformed the 

BMCML for the validation period.

Table 1 shows that BMCML and MCMC yielded comparable estimates of the parameters as 

depicted in the last column (Bayesian Estimate) except for S, −0.3 g.m−3d−1 by the former 

and −0.08 g.m−3d−1 by the latter. The value computed by the BMCML was almost similar to 

the rounded value of −0.3 g.m−3d−1obtained by Gelda et al. (1996). The MCMC value of S 
was much smaller in absolute value.

Fig. 4 shows the posterior probability distribution of all four model parameters generated 

using MCMC and the comparison with BMCML. Consistent with what was reported by 

Qian et al. (2003), the marginal posterior parameter distributions appear irregular and the 

corresponding 95% confidence limits were different between the two methods (Table 1). 

However, statistical inferences in the BMCML method are based on the parameter sets and 

corresponding likelihoods as opposed to sampling parameter values from their posterior 

marginal distributions (recall, the significant correlation and functional association between 

α and β).

We found that the computational cost of BMCML was comparable to that by the MCMC. 

Just like other Monte Carlo based methods, the BMCML is inherently computationally 

intensive especially in highly parameterized distributed hydrologic models where large 

number of model simulations are required to obtain relatively accurate probabilistic 

inferences. However, in such cases, this problem might be alleviated by limiting the analysis 

to most sensitive model parameters and implementing the Latin-Hypercube sampling 

approach.

3.3 Liquid film-transfer coefficient vs. wind speed relationship

The paired α and β values and corresponding likelihoods allow the construction of the CDF 

for the liquid film-transfer coefficient (KL) as a function of wind speed (U). For each U, 

statistical inferences including percentiles of KL can be obtained. Fig. 5 shows the predicted 

liquid film-transfer coefficient (KL = αUβ) values at different wind speed (U) levels: 

KL U = ∑i = 1
n αiU

βi ⋅ P θi|O . It can be seen that observed values for all five lakes mostly 

fall within 95% confidence interval generated by us. The predicted (Likelihood-weighted) 

expression slightly underestimates the expression proposed by Gelda et al. (1996) and 

slightly underestimates/overestimates that by Wanninkhof et al. (1991) for wind speed less/

greater than about 6.5 m/s. Note that uncertainty of KL increases with wind speed as 

reflected by the increasingly thicker 95% confidence band. This is consistent with the 

observed data for the five lakes as scatter of the data appears to magnify with wind speed 

and can be attributed to the mathematic form (modeling error) and uncertainty in the 

observational data used. Overall, the BMCML estimates and uncertainty band were able to 

capture the KL-wind speed and interpret the variability in the observed data. The Bayesian 

estimates of the KL-wind speed were comparable to the models proposed by Gelda et al. 

(1996) and Wanninkhof et al. (1991).
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3.4 Risk Assessment

Fig. 6 shows the functional relationship between the net oxygen source S and risk of 

violating water quality criteria derived using the formal approach (Eq. 14). As S decreases, 

the risk of violating the WQ standard (5 mg/L) increases. S is positive when oxygen sources, 

such as aeration and photosynthesis exceed the sinks (BOD, SOD, and algal respiration) in 

the lake. As an example, for day 3, we obtained risk = P Y < 5 O  = 0.97. It implies that at 

the current mean S = −0.3 g.m−3/d in the lake, the probability of violation of WQ criteria of 

5 mg/L is 0.97 and thus it can be inferred that the current state of lake is hypoxic. It can be 

seen from the figure that a mean S of 0.58 g.m−3/d (bottom arrow) will reduce the risk of 

violation to 0.1 (solid line). In this example, we required P[Y< 5] > 0.1 (akin to 10th 

percentile approach by the U.S. EPA for meeting water quality standards).

The risk of violation calculated using informal approach is 0.68 which is significantly less 

than that calculated using the formal approach (0.97), but still implies prevalence of hypoxic 

conditions in the lake at current loading levels. Here again after successively reducing S and 

computing corresponding risk, we obtained the functional relationship shown in Fig. 6 

(dashed line). It can be inferred from the figure that S = 0.81 g.m−3/d (upper arrow) would 

be required in order to ensure with 90% confidence that the lake is compliant with ambient 

water quality criteria for dissolved oxygen. This value is about 40% higher than that 

obtained by the formal approach, and requires more stringent control of BOD loading to the 

lake.

The information contained in Fig. 6 can be utilized for decision making in water quality 

management efforts such as TMDL analysis where hitherto an arbitrary margin of safety 

(MOS) is proposed either implicitly by means of conservative assumptions (e.g. by 

assuming conservative WQ standard) or explicitly by assigning a fraction of the computed 

load reduction as a protective cushion so that uncertainty in the analysis is accounted for. 

BMCML methodology as described in Sect. 2.6 furnishes an alternative but more objective 

probabilistic approach that can be used to compute the required load reduction and 

corresponding MOS as a function of risk (Hantush and Chaudhary, 2014).

Finally, we could only plot the risk of violating water quality criteria as a function of ‘net’ 

oxygen loading other than by aeration (S). This is because data on magnitude of individual 

sources and sinks that make up S was not available from Gelda et al. (1996). Ideally a 

functional relationship between risk and external BOD loading to the lake will be more 

useful from management point of view as the external loading can then be controlled 

through human intervention and actions. Therefore, for a more realistic application of water 

quality modeling for practical management purposes or regulatory programs such as TMDL, 

future studies should explore applying BMCML methodology to models depicting causal 

relationship between contaminant load and the water quality of the lake such as expanded 

Streeter-Phelps model including a sink of DO such as BOD, SOD or a more advanced model 

to include the impacts of Nitrification on DO.

The difference in the functional relationship obtained between net oxygen loading S and risk 

from formal and informal approaches shows the impact of potential parameters interactions 

on risk management. Both can lead to different management solutions of the water quality 
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problem. In this example, it is shown that overlooking cross-correlations among parameters 

by sampling values from their posterior marginal distributions could lead to costlier 

management measures for relatively small risk values. From Fig. 6, one can see that for risk 

values greater than 0.45, greater BOD loading would be tolerated when parameter 

interactions are neglected (informal approach). For risk values less than 0.45 the opposite is 

true, and less BOD loading is tolerated by the informal approach, which entails costlier 

control measures to be implemented in the watershed leading to the lake. These findings are 

consistent with the results obtained by Hantush and Chaudhary (2014) for a BOD TMDL 

case-study in the state of Kansas.

4. Conclusions

We presented a probabilistic framework for integrated model calibration and risk-based 

water quality management, which relies on Bayesian Monte Carlo method and Maximum 

Likelihood estimation (BMCML). The probabilistic framework was demonstrated through a 

lake oxygen recovery example presented and modeled by previous investigators for 

eutrophic lake in upper state New York. The impact of observational, input, and model 

structure errors on uncertainty quantification, parameter identification and risk-based water 

quality management was systematically investigated. Major conclusions include the 

following.

• The BMCML performed well in drawing statistical inferences for lake recovery 

model parameters. The computational time of BMCML was comparable to that 

of MCMC with marginal differences in the results between the two methods.

• By comparing formal and informal approaches, we showed that neglecting 

covariation among parameters, which is reflected by significant cross-

correlations computed from corresponding likelihoods, could lead to the over or 

under estimation of compliance load reductions and, consequently, costly/risky 

management decisions. Results thus emphasize the importance of parameter sets 

as opposed to simply sampling of parameter values from posterior marginal 

PDFs.

• No significant difference was found in the performance of the lake oxygen 

recovery model utilizing hourly wind speed data (exact solution, Eq. 4) and the 

one using daily average wind speed data (approximate solution, Eq. 5). This 

underscores the fact that, if properly calibrated, relatively simpler models could 

be as effective in interpreting observable data as more complex and 

computationally exhaustive models.

• A CDF for the liquid film-transfer coefficient is obtained as a function of wind 

speed. The predicted relationship between liquid film-transfer coefficient for 

oxygen and wind speed and the computed 95% confidence band were successful 

in interpreting observed values at five different lakes (Fig. 5), implying that such 

generic function may be used in lake oxygen modeling efforts where whole-lake 

measurements cannot be made.
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Fig. 1. 
a) BMCML predicted and observed dissolved oxygen concentrations and 95% confidence 

limits following the 1989 turnover event at Lake Onondaga., b). Model validation showing 

the BMCML predicted and observed dissolved oxygen concentration and 95% confidence 

limits for the year 1990. Observed mean daily wind speed is also shown for both years as 

dotted line.
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Fig. 2. 
Dotty plots of paired parameter values with likelihood values greater than 10−4.
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Fig. 3. 
a). MCMC predicted and observed dissolved oxygen concentrations and 95% confidence 

limits following the 1989 turnover event at Lake Onondaga, b). Model validation showing 

the MCMC predicted and observed dissolved oxygen concentration and 95% confidence 

limits for the year 1990. Observed mean daily wind speed is also shown for both years as 

dotted line.
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Fig. 4. 
Posterior probability distribution functions (PDFs) of lake oxygen recovery model 

parameters obtained using BMCML and MCMC for the year 1989.
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Fig. 5. 
Performance of KL-Wind speed expression developed in this study in predicting measured 

values for five lakes and comparison with expressions proposed by Gelda et al. (1996) and 

Wanninkhof et al. (1991).
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Fig. 6. 
Allowable net oxygen loading (S) in the lake as a function of risk calculated using BMCML 

with both formal and informal approaches. Arrows indicate the allowable loading that 

ensures that dissolved oxygen water quality standard of 5 mg/L is met within the lake with 

90% confidence.
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Table 1.

Estimated parameter values and confidence intervals for lake aeration model (Eq. 5) using 1989 oxygen 

recovery data and comparison with Gelda et al. (1996) estimates.

Parameter Method 2.5 percentile Median 97.5 percentile Bayesian estimate Gelda et al.

α BMCML 0.023 0.029 0.67 0.10 0.057 – 2

MCMC 0.014 0.084 0.29 0.10

β BMCML 0.44 2.29 2.50 1.90 1 – 2

MCMC 0.26 1.28 2.35 1.30

S BMCML −0.80 −0.25 −0.065 −0.30 −0.289

MCMC −0.39 −0.075 0.201 −0.08

CS BMCML 10.22 12.20 14.86 12.94 11.67

MCMC 7.79 12.87 14.91 12.54
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Table 2.

Likelihood-weighted cross correlation coefficients between model parameters values using 1989 data.

Parameters α β S Cs

α 1 −0.85 −0.037 0.24

β −0.85 1 −0.05 −0.50

S (g.m−3d−1) −0.037 −0.05 1 −0.37

Cs (g/m3) 0.24 −0.50 −0.37 1
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