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Summary

Background: In November 2014, a cluster of HIV infections was detected among people who 

inject drugs in Scott County, Indiana, with a total of 215 HIV infections eventually attributed to 

the outbreak. This study examines whether earlier implementation of a public health response 

would have diminished the scale of the outbreak.

Methods: We derived weekly case data from the outbreak and on the uptake of HIV testing, 

treatment and prevention services from publicly available reports on the outbreak from CDC and 

researchers in Indiana. We computed upper and lower bounds for cumulative HIV incidence by 

digitally extracting data from published images from a CDC study using a Bio-Rad avidity 

incidence testing to estimate the recency of each transmission event. Using this publicly available 

information, we constructed a generalization of the susceptible-infectious-removed model to 

capture the transmission dynamics of the HIV outbreak. We computed nonparametric interval 

estimates of the number of undiagnosed HIV infections, the case-finding rate per undiagnosed 

HIV infection, and model-based bounds for the HIV transmission rate throughout the epidemic. 

This allowed us to assess the potential impact of earlier implementation of a response to the 

outbreak.

Findings: The upper bound for undiagnosed HIV infections in Scott County peaked around 

January 10, 2015 at 126 undiagnosed cases, over two months before Governor Pence declared a 

public health emergency on March 26, 2015. Applying the observed case-finding rate scale-up to 

earlier intervention times suggests that an earlier public health response could have substantially 

reduced the total number of HIV infections. Initiation of a response in January 2013 would have 
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suppressed the total number of infections to fewer than 56, representing at least 127 infections 

averted, while an intervention in April 2011 could have reduced the number of infections to fewer 

than ten, representing at least 173 infections averted.

Interpretation: Early and robust surveillance efforts and case finding alone could blunt nascent 

epidemics. Ensuring access to HIV services and harm reduction interventions could further reduce 

the likelihood of outbreaks, and more substantially mitigate their severity and scope.

Funding: This study was funded by the National Institutes of Mental Health, the National 

Institute on Drug Abuse, the National Institutes of Health Big Data to Knowledge (BD2K) and the 

NIH Director’s New Innovator Award programs.

Research in Context

Evidence before this study

Peters et al provided the initial report of the Indiana HIV Outbreak Investigation Team, 

outlining the outbreak and investigation, providing the time series of HIV diagnoses in Scott 

County, IN during 2014–2015, along with a contact tracing network and a reconstruction of 

the phylogenetic tree of sampled HIV gene sequences. In a subsequent study, Campbell et al 

analyzed recency assay results to infer dates of individual infection, and thereby bounds on 

cumulative HIV incidence during the outbreak. We searched the English language scientific 

literature using Google Scholar and the general literature using Lexis-Nexis from December 

2014 through July 2018 to identify claims about the response to the outbreak using the 

following search terms alone and in combination: “Scott County”; HIV; outbreak; 

prevention; timing. Commentaries, newspaper articles, and editorial contributions have 

suggested that the outbreak could have been avoided with earlier introduction of harm 

reduction and HIV services (Strathdee and Beyrer; Rich and Adashi), while some public 

health officials (Adams) expressed skepticism. Claims about what would have happened in 

Scott County under different intervention circumstances have not previously been evaluated 

using the available incidence and diagnosis data.

Added value of this study

By analyzing publicly available epidemiological data collected during the outbreak response 

by CDC investigators, this study provides the first quantitative evidence that the number of 

undiagnosed HIV infections had already fallen substantially by the time a public health 

emergency was declared and SEP implemented. Using a generalization of a canonical 

mathematical model of infectious disease transmission, we show that HIV incidence over the 

course of the actual outbreak could have been dramatically reduced by earlier scale-up of 

case-finding.

Implications of all the available evidence

The CDC has declared 220 counties across the United States at risk for outbreaks of HIV 

and HCV associated with injecting drug use (Van Handel et al). The public policy response 

to the outbreak in Scott County IN from 2014–2015 offers a case study in management of an 

emerging epidemic. The deployment of HIV and harm reduction services in counties and 
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other locales at risk for new outbreaks could avoid their emergence altogether or lessen their 

epidemiological impact.

Introduction

Scott County, Indiana was the site of an explosive outbreak of HIV infection in 2014–2015 

among people who inject drugs (PWID).1 On November 18, 2014, the first HIV case in 

Scott County attributed to this outbreak was diagnosed. An investigation by Indiana State 

Deparment of Health (ISDH) began on January 23, 2015, by which time 17 new HIV cases 

had been recorded.1 Two months later, on March 23, 2015 a team of CDC investigators 

arrived in Scott County. On March 26, 2015, Indiana declared a public health emergency, 

allowing a temporary SEP to be established in the county. An HIV testing clinic opened on 

March 31, 2015.1 SEP is known to reduce HIV transmission among PWID, and does not 

encourage drug use.2 After consultations with ISDH, CDC and local law enforcement, 

Indiana Governor Mike Pence announced Executive Order (EO) 15–05 on April 4, 2015 

declaring a public health emergency, authorizing Scott County to set up a temporary SEP for 

30 days.3 Implementation of SEP in Scott County may have been further delayed by 

conflicts with police officers who initially confiscated syringes.4 On May 5, 2015, Governor 

Pence signed a bill allowing Indiana counties to apply to establish SEP if they could 

establish that a public health emergency existed.5 These exchanges were to be temporary 

and did not receive state support.3 The same day, Governor Pence signed a bill that upgraded 

possession of a syringe (with intent to commit a controlled substance offense) from a 

misdemeanor to felony charge, subject to imprisonment of up to two and a half years, to go 

into effect July 1, 2015.6 By March 2017, a total of 215 HIV cases had been attributed to the 

outbreak.7

Although Governor Pence eventually authorized state officials to establish programs to 

prevent new HIV infections and treat those with the disease, questions about the timing and 

scale of the response remain.3,8,9 Researchers have suggested that the public health response 

to the Scott County outbreak was not implemented in time to avert a severe epidemic, and 

that the majority of infections occurred prior to the declaration of a public health emergency 

and establishment of the response to control the outbreak in late March 2015.10,11 Criticism 

of the official response, and policy prescriptions for future outbreaks, are predicated on 

counterfactual claims about what would have happened in Scott County, had public health 

intervention campaign been implemented earlier.8,9 Campbell et al suggest that “Had an SSP 

[syringe service program] been in place prior to recognition of the outbreak, the explosive 

phase of the outbreak may have been blunted”10; Rich et al make the stronger assertion that 

“what happened in Indiana was predictable and avoidable”.9 In a recent article, researchers 

from ISDH, Indiana University, the Scott County Health Department and CDC suggest that 

“proactive establishment of SSPs in nonurban communities with PWID might help to 

prevent future outbreaks of HIV”.12 In response to claims that the outbreak would have been 

prevented had a SEP been implemented earlier, Jerome Adams, Indiana State Health 

Commissioner at the time, pointed to evidence that many cities with active SEP also have 

high HIV prevalence: “My colleagues and I will never know — though HIV infection 

remains rampant in many urban areas that have needle-exchange programs”.13
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Would an earlier public health response, implemented before November 2014, have reduced 

the size of the outbreak in Scott County? Answering this question requires insight into the 

outbreak dynamics that would have occurred if—contrary to fact—a public health response 

had been implemented earlier. In this paper, we use two types of data—published time series 

of HIV diagnoses in Scott County and associated estimated HIV infection dates based on 

recency assay results—to reconstruct the dynamics of the Scott County HIV outbreak and 

the public health response, from 2011 to 2015. We seek to determine whether earlier 

implementation of a public health response like that actually enacted would have diminished 

the scale of the outbreak. We focus this analysis on earlier implementation of HIV case-

finding; there are no publicly available data on the effects of other interventions deployed 

during the outbreak. Because SEP and other harm reduction interventions are known to 

reduce HIV transmission, our results may be interpreted as providing a lower bound on the 

impact of a hypothetical earlier comprehensive response to the outbreak.2 Though our 

analysis is focused on the Scott County outbreak, understanding the dynamics of the 

outbreak and response in Indiana may permit policymakers to mitigate future outbreaks 

among PWID in other locations. The CDC has declared 220 counties across the United 

States at risk for outbreaks of HIV and HCV associated with injecting drug use.14 

Furthermore, recent outbreaks of HIV among PWID have been documented in Romania, 

Hungary, Greece, Israel, Ireland and Scotland.15

Methods

Data Sources

We obtained weekly case data from the 2014–2015 outbreak from a report by the Indiana 

HIV Outbreak Team.1 We derived data on the uptake of HIV testing, treatment and 

prevention services from the Indiana Outbreak Team and a subsequent review of the 

outbreak.1,16 Cases related to the outbreak were laboratory-confirmed infections diagnosed 

after October 1, 2014 in residents of Scott County, Indiana or their syringe-sharing or sexual 

partners, through November 1, 2015. In separate work, CDC investigators subjected serum 

and plasma samples from the individuals infected in the outbreak to Bio-Rad avidity 

incidence (BRAI) testing to estimate the recency of each transmission event.10 The BRAI 

test is an enzyme-linked immunosorbent assay modified to permit measurement of antibody 

avidity.17 Researchers used historical data on the relationship between avidity result post-

diagnosis and dates of confirmed negative HIV test results to develop estimated dates of 

infection for the individuals in the outbreak.10 We estimated upper and lower bounds for 

cumulative HIV incidence by digitally extracting data from published images.10,18

Mathematical Model

We constructed a generalization of the classical susceptible-infectious-removed (SIR) model 

to capture the transmission dynamics of the HIV outbreak in the community of PWID in 

southeastern Indiana.19 Consider a PWID population of size N in which each individual can 

be classified into one of four categories. At time t, let S t  be the number of susceptible 

(HIV-negative) PWID, Iudx t  the number of HIV+ but undiagnosed individuals, Idx t  the 

number of HIV+ diagnosed individuals, and R t  the number of removed individuals who are 
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HIV+ diagnosed and virally suppressed or no longer engaging in epidemiologic contact 

sufficient to transmit HIV infection. The population is closed so that 

S t +   Iudx t +   Idx t   +   R t   =   N for every t. Susceptible individuals become 

infected with a rate equal to product of the transmission rate β and the number of infectious 

individuals in the population, β Iudx t + Idx t . Infectious individuals are diagnosed with 

rate γ t , and HIV+ diagnosed individuals are “removed” with rate ρ from the pool of 

infectious individuals. In this context, removal may indicate viral suppression following 

initiation of anti-retroviral therapy (ART), or cessation of epidemiologic contact (e.g. 

sharing needles, unsafe sex) sufficient to transmit HIV infection. Provision of clean injection 

equipment by SEP to HIV+ individuals is one mechanism by which a transition from Idx to 

R may occur.12 The dynamic model is described by the system of ordinary differential 

equations

dS
dt = − βS t Iudx t + Idx t

dIudx
dt = βS t Iudx t + Idx t − γ t Iudx t

dIdx
dt = γ t Iudx t −   ρIdx t

dR
dt = ρIdx t

for β > 0, ρ > 0, and a possibly time-varying non-negative function γ t .

Reconstructing outbreak dynamics

We computed nonparametric interval estimates of the number of undiagnosed HIV 

infections, the case-finding rate per undiagnosed HIV infection, and model-based bounds for 

the HIV transmission rate throughout the epidemic. Using the time series of cumulative HIV 

diagnoses, we reconstructed the cumulative diagnoses curve D t . From the inferred infection 

dates based on recency assay results we obtained lower and upper bounds C t  and C t  for 

the cumulative HIV incidence C t .10 Recency assays are still in the developmental phase. 

While their use in calculating incidence estimates has been refined, questions still remain 

about their accuracy.17 In the Appendix (pages 8–9), we analyze the sensitivity of results to 

increasing uncertainty in infection times by scaling the incidence bounds.

Limited information is available on the number of individuals N (i.e. population of PWID 

and their sexual partners) during the outbreak. However, the CDC investigation reported a 

network of N = 536 individuals infected or at risk during the outbreak.1 In the following 
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analysis, we assume N = 536 is fixed, and analyze the sensitivity of results to different values 

of N in the Appendix (pages 5–6). Likewise, the rate of removal or viral suppression is not 

known with certainty; we set ρ = 0·024 removals per diagnosed individual per day for the 

analyses presented below. In the Appendix (pages 5–7), we explain this choice of ρ and 

analyze the sensitivity of results to different choices of ρ.

The number of undiagnosed HIV infections at time t is the cumulative number of infections 

by time t minus the number of diagnosed infections, Iudx t = C t − D t , and the number of 

susceptible individuals at time t is S t = N − C t . We obtain lower and upper bounds for 

Iudx t  and S t  from the equivalences

Iudx t = C t − D t

Iudx t = C t − D t

S t = N − C t

S t = N − C t

We reconstructed the time-varying case-finding rate γ t  by considering the rate of diagnoses 

as a function of the number of undiagnosed infections,γ t dt = dD t /Iudx t . We calculated 

lower and upper bounds for γ t  as γ t dt = dD t /Iudx t  and γ t dt =   dD t / Iudx t . Lower 

and upper bounds for the overall transmission rate β were computed by dividing the number 

of infections by the cumulative transmission risk, 

β = C t − C 0 /∫0

t
S u Iudx u + Idx u du. We constructed a continuous interpolation of 

these data on a daily timescale by fitting a cubic smoothing spline. This allowed us to 

compute bounds for cumulative HIV incidence, cumulative diagnoses curve, and bounds for 

the number of HIV+ undiagnosed individuals (Figure 1). Additional model details are 

provided in the Appendix (pages 1–3).

Evaluation of counterfactual intervention scenarios

Let ts denote the date of the first HIV diagnosis in Scott County, November 8, 2014, and let 

te be a later date at which a target case-finding scale-up rate was achieved. For a hypothetical 

earlier date ts* < ts, define the counterfactual case-finding rate γ* t  as
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γ* t =

γ t i f   t < ts*

γ ts − ts* + t i f   ts* ≤ t < ts* −

γ te i f   ts* − ts + te ≤ t

ts + te

Define γ* t  and γ* t  by substituting γ t  and γ t  respectively for γ t  above. The resulting 

case-finding rate is equal to the true case-finding rate during the actual outbreak response, 

shifted to the earlier starting date ts*, and set equal to a desired target case-finding rate 

thereafter. Under the mathematical model specification, the model output with γ* t  or γ* t

in place of γ t  or γ t  respectively delivers the dynamics that would have occurred if, 

contrary to fact, the public health response had been implemented at the earlier date ts*, 

including the reconstructed bounds for the case-finding rate in the actual response, and a 

counterfactual case-finding rate under intervention on January 1, 2013 (Figure 2).

Because changes in the transmission or removal rates cannot be estimated directly from 

publicly available data, we conceptualize the public health response as an intervention on 

γ t  alone, and not on the HIV transmission rate β, or removal/suppression rate ρ. This 

approach gives conservative projections of HIV incidence under counterfactual intervention 

scenarios because it does not make assumptions about possible reduction in transmission or 

increases in the rate of viral suppression. However, because an intervention on the HIV 

transmission rate β, such as SEP, is of particular interest, we analyze the sensitivity of results 

to reduction of β in the Appendix (pages 8–9).

We selected two counterfactual values of ts* for the beginning of diagnostic scale-up to 

explore in this study, which reflect two potential opportunities that could have been available 

for intervening to prevent an HIV outbreak in Indiana: 1) April 3, 2011, just after an HCV 

outbreak in several counties in the state in 2010–2011,20,21 and around the estimated time of 

the first HIV infection; and 2) January 1, 2013, around the time of the closure of the sole 

local HIV testing facility in Scott County.3,8 We examine the total number of HIV infections 

that might have occurred if an earlier case-finding response had been implemented with the 

same scope and scale as the actual disease control effort initiated in 2015.

Data Sharing

We developed a web-based application for interactive evaluation of counterfactual response 

scenarios for the Scott County outbreak, using the R statistical language (R 3.4.4) and the 

“shiny” web development framework (Shiny 1.1.0).22,23 The application was used to 

calculate the outbreak dynamics described below and permits choice of hypothetical earlier 

dates for scale-up of case-finding. The application is available at https://

forrestcrawford.shinyapps.io/indiana-hiv. The source code is freely available for download 

and modification under the MIT license at https://github.com/fcrawford/indiana-hiv.
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Role of the funding source

The funders had no role in study design; in the collection, analysis, and interpretation of 

data; in the writing of the report; and in the decision to submit the paper for publication.

Results

The upper bound for undiagnosed HIV infections in Scott County peaked around January 

10, 2015, with between 77 and 126 undiagnosed cases, and subsequently decreased rapidly; 

there were between 27 and 74 undiagnosed cases on March 26, 2015, when Governor Pence 

declared a public health emergency (Figure 1). These dynamics indicate that, as Campbell et 

al assert, the outbreak had substantially declined by the time public health response 

measures were implemented.12 These bounds are nonparametric and can be computed 

directly from available data; validity of the bounds does not depend on model assumptions, 

nor does it require knowledge of the size N of the PWID risk population. The case-finding 

rate per undiagnosed HIV infection γ t  varied dramatically over the course of the outbreak, 

with the peak case-finding rate occurring midway through the outbreak, and declining 

rapidly in the Spring and Summer of 2015 (Figure 2).

We reconstructed upper and lower bounds for the transmission rate β as a function of the 

product of the number of susceptible HIV- and undiagnosed HIV+ individuals, for fixed 

population size N. We likewise computed bounds for the number of susceptible HIV- 

individuals, the number of undiagnosed HIV+ individuals, and the number of diagnosed 

HIV+ individuals. Beginning on the date of the first HIV diagnosis, we used the model to 

estimate upper and lower bounds for the number of susceptible HIV-negative, undiagnosed 

HIV+, and diagnosed HIV+ individuals up to August 2015. The model projections starting 

on November 18, 2014 for the N = 536 PWID and their partners identified in a contact-

tracing investigation during the outbreak closely match the actual epidemiological dynamics 

for the outbreak (Figure 3).1 The transmission rate for the assumed population size of 

N = 536 varies from 4 × 10−6 to 3 × 10−5 infections per susceptible-infectious pair per day. 

The Appendix (pages 4–5) shows that these bounds are similar to estimates computed using 

published data from the Scott County outbreak and other studies of HIV risk for injection 

drug users. The reconstructed case-finding rate ranged between zero and 0·035 diagnosed 

cases per undiagnosed HIV infection per day during the response.

In a counterfactual scenario of intervention on January 1, 2013, cumulative HIV incidence 

by August 2015 is projected to be between 0 and 56 people, compared to an estimated 183–

184 infections, representing at least 127 infections averted (Figure 4). When the scale-up of 

case-finding starts at the beginning of April 2011 (not shown), cumulative HIV incidence in 

August 2015 is projected to be between 0 and ten people, representing at least 173 infections 

averted.

We examined projected bounds for cumulative HIV cases (by August 2015), as a function of 

the date of case-finding scale-up. Earlier intervention times produce lower projected 

cumulative HIV incidence (Figure 5). In the Appendix (page 5–9) we present a sensitivity 

analysis to assess the dependence of model-based results to the total HIV risk population 
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size N, uncertainty in cumulative incidence bounds, removal rate, and a possible effect of 

intervention on β.

Discussion

The analyses presented in this paper—applying the observed case-finding patterns during 

the actual response to hypothetical earlier intervention times under simple epidemic model

—lend support to claims that the HIV epidemic in Scott County might have been prevented 

or mitigated with an earlier response. The infection recency data from the CDC show that 

the initial infections that gave rise to the Scott County outbreak were not detected for several 

years. Even after these first infections spread into an epidemic in 2014, it took months for an 

outbreak to be recognized, and a year for a response to be initiated in earnest.1,12 Our 

analyses show that the SEP initiative started after the peak in undiagnosed HIV infections.
1,12

Warning signs that an HIV outbreak could occur in the region were well-known at the time. 

Rising rates of prescription drug abuse and overdoses in Indiana have been documented 

since 2004 though the establishment of new opioid agonist therapy programs were forbidden 

under a state ban.24,25 Local experts recommended as early as 2008 that SEP programs be 

established to prevent infectious disease outbreaks associated with injection drug use.26–28 

Even after an outbreak of HCV occurred among PWID in Indiana in 2010–2011, these 

recommendations remained unheeded.20,21 In addition, the sole HIV testing provider in 

southeastern Indiana closed in 2013 due to state funding cuts, which may have delayed the 

diagnosis of the initial case of HIV infection in Scott County.3,8

There are several potential limitations to our analyses. First, the epidemic model with time-

varying removal rate may not capture the complex dynamics of a real-life HIV outbreak 

among PWID. Simple models, however, can often capture the essential epidemiological 

features of an outbreak and additional complexity requires information about the parameters 

of an outbreak that may not be available in the early stages of an epidemic.29 In addition, 

complex models may be mathematically intractable, difficult to validate, or challenging to 

understand.30 The mathematical model used to compute counterfactual outbreak trajectories 

uses a combination of available data and variable parameters informed by prior studies. The 

framework employed here is designed to rely on credible assumptions and to be robust to 

imperfect knowledge of HIV incidence over the course of the outbreak.

Second, the model-based evaluations of earlier intervention dates require that the total size 

of the PWID population N is known. In reality, the true risk population in Scott County may 

have consisted of PWID only, PWID and their injecting and sexual partners, or a broader 

group of people. Because the incidence rate β is estimated conditional on N, and model 

dynamics depend on N and β, projections under counterfactual intervention scenarios are 

relatively insensitive to the choice of N. A sensitivity analysis, presented in the Appendix 

(pages 5–9), shows these results.

Third, our construction of the Scott County outbreak dynamics assumes that some HIV+ 

diagnosed individuals could have contributed to transmission of infection to HIV- 

Gonsalves and Crawford Page 9

Lancet HIV. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individuals, but diagnosed individuals were “removed” from the pool of infectious people 

with rate ρ. Empirical research supports this assumption: HIV diagnosis can reduce 

transmission risk behaviors, including needle sharing and unprotected sex.31 Furthermore, 

antiretroviral therapy (ART) following HIV diagnosis reduces viral load and can thereby 

diminish the risk of transmission to susceptible needle-sharing or sexual partners.32,33 If 

PWID in Scott County did not change their behavior following HIV diagnosis, or if ART 

initiation/adherence did not occur rapidly, projections could underestimate HIV incidence 

under counterfactual earlier intervention scenarios.

Fourth, we have not modeled the effect of interventions such as education or SEP on the 

transmission rate β. We have evaluated the impact of reductions in β in a sensitivity analysis 

presented in the Appendix (pages 4–5). Unlike the case-finding rate γ t , we cannot attribute 

changes in the reconstructed transmission rate during the outbreak response to any particular 

feature of the response (e.g. SEP) with certainty. We have also not modeled intervention-

related changes in the effects of SEP on the removal rate ρ for HIV+ diagnosed individuals. 

Although SEP and other harm reduction interventions can contribute to the cessation of 

infectious contact, thus increasing ρ (and γ , no data on behavior change from the Scott 

County outbreak were publicly available. For this reason, projected HIV incidence in these 

scenarios may be conservative: since SEP can reduce HIV transmission among PWID and 

does not encourage drug use, implementation of SEP alongside case-finding (i.e. reducing β, 

increasing ρ) would likely reduce projected cumulative HIV incidence to levels even lower 

than we have suggested.2

Finally, reconstruction of epidemic dynamics using a deterministic mathematical model 

requires smoothing of the observed trajectories of infections and diagnoses. While the 

smoothed projections adhere closely to observed trajectories under the actual intervention, 

this smoothing operation may obscure salient dynamics at finer timescales.

Despite these caveats, the conservative nature of our approach—using actual data on 

diagnoses, nonparametric bounds for cumulative incidence, and not assuming an effect of 

SEP on the transmission rate—suggests that had the interventions deployed in Scott County 

in 2014–2015 been available earlier, the outbreak might have been substantially blunted. 

While the model presented here is specific to the events in Scott County, our findings may 

have broader implications. Recent HIV outbreaks among PWID in Europe, and the ongoing 

risk of similar outbreaks in the US, highlight the public health implications of this 

examination.14,15 Future HIV outbreaks could be minimized if HIV testing and treatment are 

available in places vulnerable to the transmission of blood borne infections among PWID.14 

SEP and use of opioid agonist therapy are critical HIV prevention tools that could offer the 

chance to prevent new outbreaks among PWID in the first place.8

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Raw and reconstructed data from the HIV outbreak in Scott County, Indiana from 
April 2011 to October 2015.
(A) Bounds for cumulative HIV incidence (grey) and cumulative diagnoses (blue).1,19 (B) 

Reconstructed undiagnosed HIV infections (red) with important events from the public 

health response indicated.
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Figure 2: Illustration of actual and counterfactual case-finding rates.
(A) Bounds for the case-finding rate (orange) in the actual outbreak and the midpoint of 

these bounds, with the date of the first HIV diagnosis and target case-finding rate indicated. 

(B) Counterfactual case-finding rate (orange line) replicates the observed case-finding 

pattern up to the target rate, translated back in time to January 2013.
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Figure 3: Comparison of raw data and outbreak model projections for the HIV outbreak in Scott 
County, Indiana, 2011–2015.
(A) Cumulative HIV incidence. (B) Cumulative HIV diagnoses. (C) Undiagnosed HIV 

infections.
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Figure 4. Evaluation of projected outbreak dynamics under a counterfactual intervention date of 
January 1, 2013.
(A) Counterfactual case-finding rate. (B) Cumulative HIV incidence (gray) and undiagnosed 

HIV infections (red) in the actual outbreak and under earlier intervention. In this scenario, 

cumulative HIV incidence by August 2015 is projected to be at most 56 people, compared to 

the actual number 183–184.
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Figure 5. Projected bounds for cumulative HIV cases by August 2015, as a function of earlier 
counterfactual intervention dates.
Earlier intervention reduces cumuative HIV incidence.
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