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Abstract

In this review, we summarize findings supporting the existence of multiple behavioral strategies 

for controlling reward-related behavior, including a dichotomy between the goal-directed or 

model-based system and the habitual or model-free system in the domain of instrumental 

conditioning and a similar dichotomy in the realm of Pavlovian conditioning. We evaluate 

evidence from neuroscience supporting the existence of at least partly distinct neuronal substrates 

contributing to the key computations necessary for the function of these different control systems. 

We consider the nature of the interactions between these systems and show how these interactions 

can lead to either adaptive or maladaptive behavioral outcomes. We then review evidence that an 

additional system guides inference concerning the hidden states of other agents, such as their 

beliefs, preferences, and intentions, in a social context. We also describe emerging evidence for an 

arbitration mechanism between model-based and model-free reinforcement learning, placing such 

a mechanism within the broader context of the hierarchical control of behavior.
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INTRODUCTION

All organisms, including humans, face the fundamental challenge of the need to interact 

effectively with the environment in a manner that maximizes the prospects of obtaining the 

resources needed to survive and procreate while minimizing the prospect of encountering 

situations leading to harm. Organisms have evolved a variety of strategies to solve this 

problem. Accumulating evidence suggests that these distinct strategies coexist in the human 

brain. In this review, we outline evidence for the existence of these multiple systems of 

behavioral control and describe how they can be either interdependent or mutually 

interfering depending on the situation. We establish the role that predictions play in guiding 

these different behavioral systems and consider how these systems differ in the ways in 

which they develop their predictions. Finally, we evaluate the possibility that an additional 
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system, used for performing learning and inference in social contexts, is present in the 

human brain.

Multiple Strategies for Behavioral Control

Perhaps one of the most fruitful questions that may be answered by an understanding of the 

brain’s varied control strategies is whether behavior is motivated by the onset of a stimulus 

or is directed toward a goal outcome. Historically, habitual responses that are elicited by the 

perception of a stimulus regardless of the action’s consequences (Thorndike 1898) have 

been contrasted with goal-directed actions that are deliberatively dispatched to achieve a 

goal (Tolman 1948). Theory and evidence have resolved arguments as to whether human 

(and animal) behavior is ruled by one strategy or the other by suggesting that both types of 

behavioral control coexist. In the following sections, we outline some of the behavioral 

evidence in support of multiple strategies for behavioral control.

Stimulus-Driven Control

Stimulus-driven control refers to a class of behaviors that are expressed in response to the 

onset of an unanticipated external stimulus. Because these behaviors are instigated by a 

particular stimulus or class of stimuli, they are cognitively efficient, automatic, and rapidly 

deployed. However, because they are initiated without consideration of the organism’s goals 

or subsequent outcomes, stimulus-driven behaviors can suffer from being overly rigid, 

especially in a volatile environment.

Reflexes are perhaps the most primitive form of adaptive response to environmental 

challenges. Reflexes are stereotyped in that sensory stimuli have innate (unlearned) 

activating tendencies; thus, reflexes do not depend on synaptic plasticity and are often 

implemented at the level of the spinal cord and brainstem (Thibodeau & Patton 1992). 

Reflexes have a long evolutionary history because they are present in organisms from the 

simplest, such as bacteria, to the most complex, such as humans, and because analogous 

motor reflexes to the same stimulus are present across species. Examples of reflexes include 

the withdrawal reflex that comes from touching a hot surface, the startle response that is 

elicited in response to sudden stimuli, and the salivatory response to the presentation of 

food. Reflexes are considered advantageous. For example, the withdrawal reflex helps to 

avoid tissue damage, the startle response facilitates successful escape responses, and the 

salivary response aids in the consumption and digestion of food.

Reflexes are fundamentally reactive in that an unanticipated triggering stimulus elicits a 

preprogrammed response. However, being able to issue responses in a prospective manner, 

in anticipation of an event that requires a response, provides significant advantages. For 

example, digestion can be aided by producing saliva prior to the arrival of food, and personal 

harm may be avoided by steering clear of a hot surface without having to reflexively retreat 

from it. Pavlovian conditioning, also referred to as classical conditioning, is a means by 

which an organism can learn to make predictions about the subsequent onset of behaviorally 

significant events and leverage these predictions to initiate appropriate anticipatory 

behaviors (Pavlov 1927). As is the case for reflexes, Pavlovian learning is present in many 
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invertebrates, including insects such as Drosophila (Tully & Quinn 1985) and even sea slugs 

(Aplysia; Walters et al. 1981), but also in vertebrates, including humans (Davey 1992).

The type of behavior emitted in response to the stimulus depends on the form of outcome the 

stimulus is paired with (Jenkins & Moore 1973). For instance, a cue paired with the 

subsequent delivery of food will result in the acquisition of a salivary response, whereas a 

cue paired with aversive thermal heat will elicit avoidance behavior. Different classes of 

Pavlovian conditioned responses have been identified. Some are almost identical to the 

unconditioned responses elicited by the stimuli that trigger them, but other conditioned 

Pavlovian responses are more distinct. For example, in addition to salivating in response to a 

food predictive cue, animals also typically orient toward the site of anticipated food delivery 

(Konorski & Miller 1937).

Although the adaptive advantages of anticipatory behavior are clear, Pavlovian learning is 

limited to learning about events that occur independent of the organism’s behavior. In other 

words, Pavlovian learning may help an organism prepare for the arrival of food, but it won’t 

help that organism procure its next meal. To increase the possibility of being able to actively 

attain rewards, many organisms are also equipped with instrumental conditioning, a 

mechanism that allows them to learn to perform specific yet arbitrary behavioral responses 

(such as a lever press) in a specific context. In the simplest form of instrumental 

conditioning, specific stimulus–response patterns are acquired by virtue of the extent to 

which a particular response gives rise to positive (i.e., the receipt of a reward) or negative 

(i.e., avoidance of an aversive outcome) reinforcement. This strategy provides significant 

benefits in terms of cognitive efficiency, speed, and accuracy; however, these benefits come 

at a cost. Critically, the execution of this class of behavior does not involve an anticipation of 

a particular outcome (Thorndike 1898); thus, behavior can become habitual, making it 

difficult to flexibly adjust the behavior should outcome valuation suddenly change. Thus, to 

the organism’s potential detriment, habits may persist even if their outcomes are no longer 

beneficial. This persistence is suggested to give rise to various forms of addiction (Everitt & 

Robbins 2016).

Goal-Directed Control

Goal-directed control refers to a class of instrumental behaviors that appear to be motivated 

by and directed toward a specific outcome. Whereas stimulus-driven control can be thought 

of as retrospective in that it depends on integrating past experience, goal-directed control 

may be thought of as prospective in that it leverages a cognitive map of the decision problem 

to flexibly revalue states and actions (Tolman 1948). Leveraging this map in conjunction 

with the organism’s internal goals facilitates a highly flexible control system, allowing the 

organism to adapt to changes in the environment without having to resample environmental 

contingencies directly. However, the necessity of interrogating a cognitive map in order to 

generate a behavioral plan makes goal-directed control cognitively demanding and slow.

Goal-directed control has been experimentally distinguished from habitual behavior in a 

study involving training an animal to perform unique actions (e.g., pressing a lever or 

pulling a chain) in order to obtain unique food outcomes, then devaluing one of the 

outcomes by pairing it with illness (Balleine & Dickinson 1991). If the animal is behaving in 
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a goal-directed manner, it should be less likely to elicit the action that had been associated 

with the now-devalued outcome. Indeed, some animals (Dickinson 1985) and humans 

(Valentin et al. 2007) have been shown to exhibit goal-directed control.

Evidence for the Coexistence of Multiple Control Systems

Although Dickinson & Balleine (1994) demonstrated that rats are capable of performing in a 

goal-directed manner, Dickinson et al. (1995) also showed that those same animals may also 

exhibit habitual tendencies. For example, after animals were exposed to extensive training, 

they were found to persistently elicit responses associated with devalued outcomes 

(Dickinson et al. 1983). These findings led to the proposal that animals were no longer 

sensitive to the value of the outcome, but that their behavior was instead driven by the 

stimulus that had been paired with response. Thus, reward schedules and degree of 

experience guide, at least in part, the control strategy deployed by the animal. Dickinson et 

al. (1983) concluded that both habitual and goal-directed systems of control are present in 

rodents and that these two systems manifest themselves in behavior under different 

circumstances. Using a similar overtraining manipulation to that performed in rodents, 

Tricomi et al. (2009) showed that humans also exhibit reduced outcome sensitivity 

consistent with the behavioral expression of habit.

Even though the distinction between habitual and goal-directed control is often 

conceptualized and investigated within the context of instrumental behavior, there is 

tentative evidence that a similar distinction can be made for Pavlovian behavior. Critically, 

the core criterion to distinguish habitual from goal-directed behavior in the instrumental 

domain is also present for conditioned Pavlovian responses: Some Pavlovian responses are 

more sensitive (Dayan & Berridge 2014) than others to outcome value (Nasser et al. 2015). 

Nevertheless, Pavlovian conditioned responses are often considered to be habitual in a 

manner analogous to habits in the instrumental domain; this conception of Pavlovian 

responses gives rise to the prevalent assumption that incremental synaptic plasticity 

implements the acquisition of Pavlovian contingencies (Rescorla & Wagner 1972). However, 

this form of habitual Pavlovian conditioning cannot account for findings showing altered 

patterns in the conditioned response immediately after devaluation and prior to any 

resampling of the environment’s contingencies (Dayan & Berridge 2014). Despite the 

evidence for the existence of distinct habitual and goal-directed strategies within Pavlovian 

learning, the majority of the research on multiple control systems has been performed using 

instrumental conditioning; we also focus on instrumental conditioning in the remainder of 

this review, although we revisit the Pavlovian case in the section Model-Free and Model-

Based Pavlovian Learning.

Why Multiple Systems?

Given that all of the different strategies for controlling behavior that we have described, 

from reflexes to goal-directed behavior, seem to be present in humans, a natural question 

follows: Why have all of these systems continued to coexist simultaneously? In other words, 

why are humans still endowed with the capacity for less flexible Pavlovian reflexes when 

they have machinery enabling more flexible goal-directed actions instead? One explanation 

could be that these behavioral control systems coexist because evolutionary adaptation 
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occurred incrementally. The adaptations allowing goal-directed actions may simply have 

occurred through the addition of new brain circuitry without the refurbishment or 

repurposing of control systems already in place, similar to adding a modern extension to an 

older building. However, this seems unlikely given the inefficiencies (both biologically and 

functionally) associated with adopting a multicontroller strategy in the absence of some 

additional benefit.

A second, more compelling possible explanation for the coexistence of multiple behavioral 

control systems is that the brain’s control systems share mutually beneficial 

interdependencies. Evolutionarily recent regions may depend on the computations 

performed by more primal regions. Primal regions may also take advantage of the 

experience that comes with more complex control strategies, as well as more evolutionarily 

recently developed brain regions, which afford powerful domain-general computational 

functions to existing decision-making strategies. In other words, primal control systems 

could offer the scaffolding required for more advanced control systems, and the strategic 

guidance of advanced systems could help primal systems build adaptive associations more 

efficiently. Indeed, theoretical work (Sutton 1990) has demonstrated that stimulus-driven 

learning can be significantly improved when guided by a goal-directed system, and 

experimental work suggests that these interactions take place in the human brain (Doll et al. 

2011).

Yet another benefit of multiple behavioral control systems is rooted in the mutually 

exclusive challenges faced by most organisms. Each system offers a different solution for the 

trade-off between accuracy, speed, experience, and (computational) efficiency. Goal-directed 

control typically moves an organism toward goal satisfaction more reliably than other 

systems, but its flexibility is cognitively demanding and deployment is relatively slow. A 

goal-directed strategy could offer significant advantages to a predator stalking its prey but 

prove ruinous for the prey when a swift retreat is required. Conversely, although stimulus-

driven behaviors may not always meet an organism’s current needs, particularly in a volatile 

environment, they can be deployed quickly and require less computational resources because 

they rely on simple stimulus–response associations rather than a rich cognitive map.

The environment presents complex challenges to survival, the range of which demand 

mutually exclusive strategies to tackle them in an adaptive manner. Organisms stand to gain 

the best of all worlds by preserving and adaptively deploying multiple control strategies that 

meet these challenges. However, before we can begin to understand how the brain handles 

the coexistence of these different forms of behavior, we first need to consider computational 

theories of value-based decision making, learning, and action selection to fully grasp the 

nature of the computations implemented in partially separable networks of brain areas.

ALGORITHMS FOR LEARNING AND DECISION MAKING

A central notion in most (e.g., Balleine et al. 2009, Camerer et al. 2005, Glimcher et al. 

2013, Padoa-Schioppa & Assad 2006, Platt & Glimcher 1999, Rangel et al. 2008) but not all 

(see Gigerenzer & Gaissmaier 2011, Strait et al. 2014) theories of value-based decision 

making as applied to the brain is that, to establish which option to take, an agent must first 
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compute a representation of the expected value or utility that will follow from selecting a 

particular option. This computation facilitates a comparative process, allowing the agent to 

identify and pursue the option leading to the greatest expected value. The idea that agents 

can compare options based on expected value has motivated a search for neural 

representations of value predictions in the brain, an endeavor that has been enormously 

fruitful (for some caveats, see O’Doherty 2014). Value signals have been found in a range of 

brain regions, including the amygdala, orbitofrontal cortex (OFC), ventromedial prefrontal 

cortex (vmPFC), and ventral and dorsal striata, as well as in a number of other brain areas 

such as the parietal, premotor, and dorsal frontal areas.

Reinforcement Learning

Evidence for value signals in the brain raises the question of how such signals could be 

learned or acquired in the first place. The seminal work of Schultz and colleagues (1997) has 

provided insight into a potential mechanism for signal learning; they found that the phasic 

activity of dopamine neurons encodes a prediction error, which signals the difference 

between expected and actual rewards. Referred to as a reward prediction error (RPE), phasic 

dopamine activity has been shown to resemble, both in signature and function, a signal used 

by computational reinforcement learning (RL) algorithms to support learning (Montague et 

al. 1996, Sutton 1988). This type of learning signal allows an agent to improve its prediction 

of what to expect from the environment by continually adjusting those predictions toward 

what actually occurred. The fact that dopamine neurons send dense projections to the 

striatum and elsewhere has given rise to proposals that RPE signals carried by phasic 

dopamine facilitate neural plasticity associated with the acquisition of value predictions in 

these target areas.

Model-Free and Model-Based Reinforcement Learning

A flurry of interest followed the realization that abstract learning theories from computer 

science could be applied to better understand the brain at a computational level within a RL 

framework (Doya 1999). In particular, Daw and colleagues (2005) proposed that the 

distinction between habitual and goal-directed control could be accounted for in terms of 

two distinct types of RL mechanisms.

When learning is mediated via RPE signals, value is ascribed only by integrating across past 

reinforcement. Predictive value acquired via this mechanism does not include the agent’s 

motivation at the time of reinforcement, nor does it track the identity of the reinforcer itself. 

Thus, a controller that learns via RPE signals would be expected to behave in a manner that 

is insensitive to immediate changes in outcome values, similar to the devaluation 

insensitivity associated with habits. In essence, this model-free learning strategy (so called 

because it does not depend on a model of the environment) gives rise to value representation 

that resembles stimulus-based association.

To account for goal-directed control, Daw and colleagues (2005) proposed that the agent 

encodes an internal model of the decision problem consisting of the relevant states and 

actions and, critically, the transition structure among them. This map of the decision process 

supports flexible online value computation by considering the current expected value of 
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outcomes and integrating into these expected values the knowledge of how to procure them. 

Critically, value can be flexibly constructed at each decision point as part of an online 

planning procedure, making the agent immediately sensitive to changes in outcome values. 

This type of cognitive model–driven RL process is known, perhaps somewhat confusingly 

(because the terms were originally coined in the computer science literature), as model-

based RL (Kuvayev & Sutton 1996).

NEUROCOMPUTATIONAL SUBSTRATES

Formal RL algorithms depend on well-defined learning signals and representations. 

Therefore, by asking how these are implemented in the brain, we can move toward a better 

understanding of the brain’s computational composition. In the following sections, we 

outline some of the key representations and signals associated with various forms of RL and 

discuss their neural correlates. Figure 1 illustrates the main brain regions and functions 

discussed in these sections.

The Cognitive Model: Multiple Maps, Multiple Regions

A model-based agent depends on a cognitive map of the task space encoding the 

environment’s relevant features and the relationships among them (Tolman 1948). 

Electrophysiological recordings from place cells in the hippocampus have provided the most 

well-characterized evidence for the encoding of a cognitive map, especially in the spatial 

domain (e.g., O’Keefe & Dostrovsky 1971). Activity in these cells can represent the 

animal’s trajectory during a spatial decision-making task, consistent with the theory that 

place cell representations play a role in model-based planning (Pfeiffer & Foster 2013) and 

that place cells are recruited in correspondence with future spatial locations the animal is 

considering (Johnson & Redish 2007). Others have suggested that the hippocampus might 

play a more general role in encoding a cognitive map, possibly in the encoding of 

relationships between stimuli and outcomes, identity and category membership information 

about objects (Eichenbaum et al. 1999), or even maps of social hierarchy in humans (Tavares 

et al. 2015).

Although evidence suggests that the hippocampus encodes information relevant to a 

cognitive map, the hippocampus does not always seem to be necessary for goal-directed 

choices in simple action–outcome learning tasks (Corbit & Balleine 2000). Wilson et al. 

(2014) used computational modeling to account for various behavioral effects of 

orbitofrontal lesions in the extant literature and to suggest that the OFC is involved in 

signaling the current location of the animal in an abstract task space, especially when that 

state is not immediately observable (i.e., when task states must be inferred or maintained). 

Neuroimaging studies have revealed evidence that outcome identity is represented in the 

OFC in response to stimuli predictive of those outcomes (Howard et al. 2015). This 

representation may be a mechanism through which the expected value of a particular 

stimulus or state could be computed. Although this possibility is still a matter of debate, the 

bulk of the evidence suggests that the OFC seems to be less involved in encoding 

information about actions than it is in encoding information about stimuli and outcomes (for 

a review, see Rangel & Hare 2010). Ultimately, the OFC’s role in state encoding and in 
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outcome associations may ultimately service computations associated with the expected 

value based on stimulus–stimulus associations.

However, goal-directed action selection demands some form of action representation as well 

as a representation of the state transitions afforded by performing actions. Evidence has 

indicated that regions of the posterior parietal cortex, such as the lateral intraparietal sulcus, 

play an important role in perceptual decision making, a critical aspect of state identification 

(e.g., Shadlen & Newsome 2001). Notably, neurons in the posterior parietal cortex have been 

implicated in the encoding of information about stimulus category membership, which could 

be important for establishing current and future potential states (Freedman & Assad 2006). 

Indeed, work by Doll et al. (2015) has shown that the category of a prospective stimulus 

appears to engage these regions of the brain. Critically, neurons in the posterior parietal 

cortex are implicated in the encoding of associations between arbitrary stimuli; these 

associations indicate the implementation of specific actions (Dorris & Glimcher 2004). A 

region of the inferior parietal lobule has also been found to play an important role in the 

encoding of information pertinent to the distribution of outcomes associated with an action, 

as well as information about the relative probability of obtaining an outcome contingent on 

performing a particular action compared to not performing that action (Liljeholm et al. 2011, 

2013). Together, these findings suggest a role for the posterior parietal cortex in encoding a 

cognitive map or, more specifically, in encoding the transitions between states contingent on 

specific actions.

The presence of cognitive maps in the brain raises the question of how such maps are 

acquired in the first place. One possible mechanism is a state prediction error (SPE), which 

signals the discrepancy between an expected state transition and the transition that actually 

did occur. This SPE can then be used to adjust state transition expectations. In essence, SPEs 

are similar to RPEs but are used not to learn about reward expectation but to learn state 

expectations. Gläscher et al. (2010) used fMRI while participants learned a two-step Markov 

decision problem to find evidence for SPEs in the posterior parietal cortex and dorsolateral 

prefrontal cortex. These SPE signals were present in both a latent learning task phase, during 

which participants were guided through the task in the absence of reward, and an active 

phase, during which reward, and therefore RPEs, were also present. SPEs in the posterior 

parietal cortex and dorsolateral prefrontal cortex are therefore candidates for the signal 

underpinning learning of a cognitive model involving actions.

The presence of multiple candidate areas engaged in encoding some form of a cognitive map 

raises the question of which representations are necessary or sufficient for model-based 

learning and control. The nature of the cognitive map representation that is used may depend 

to a great extent on the type of decision problem. Perhaps, a task that has an ostensibly 

spatial component will necessarily recruit a spatial cognitive map in the hippocampus, 

whereas decision problems that involve selection among possible motor actions will depend 

to a greater extent on action codes in the posterior parietal cortex. However, precisely how 

these various maps might be leveraged by the brain in support of model-based learning and 

control remains to be determined.
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Outcome Valuation During Decision Making

To choose among actions in a model-based manner, an agent needs to determine the value of 

different available outcomes. Electrophysiological studies in both rodents and monkeys have 

revealed neuronal activity in the amygdala and OFC related to conditioned stimuli 

associated with appetitive unconditioned stimuli, such as a sweet taste or juice reward 

(Schoenbaum et al. 1998), and aversive unconditioned stimuli, such as an aversive flavor, air 

puff, or eyelid shock (Applegate et al. 1982, Pascoe & Kapp 1985, Paton et al. 2006, 

Salzman & Fusi 2010, Salzman et al. 2007, Schoenbaum et al. 1998). Furthermore, human 

imaging studies have revealed responses in the amygdala, ventral striatum, and OFC in 

response to conditioned stimuli that are predictive of the subsequent delivery of appetitive 

and aversive outcomes such as tastes and odors (Gottfried et al. 2002, 2003; O’Doherty et al. 

2002; Tobler et al. 2006).

During Pavlovian conditioning, many of these brain areas are involved in triggering 

Pavlovian conditioned responses. The central nucleus of the amygdala projects to lateral 

hypothalamic and brainstem nuclei involved in implementing conditioned autonomic 

reflexes (LeDoux et al. 1988). The ventral striatum sends projections via the globus pallidus 

to motor nuclei in the brainstem, such as the pedunculopontine nucleus (Groenewegen & 

Berendse 1994, Winn et al. 1997). This projection pattern is compatible with a possible role 

for the ventral striatum in triggering conditioned skeletomotor reflexes, such as approach 

and avoidance behavior, as well as consummatory responses. As we discuss in the section 

Action Valuation and Planning, the output of this network of brain areas is also taken into 

consideration by a separate network of brain areas when organisms have to choose among 

different actions in order to gain a desired outcome. First, we explore in greater detail the 

representations and signals carried by some of these areas.

Value signals have been found in both the OFC and the vmPFC. Electrophysiological 

recordings in area 13 of the central OFC of nonhuman primates revealed that neurons in this 

area encode the value of differing amounts of juice on offer (Padoa-Schioppa & Assad 

2006). The activity of some of these neurons correlated with the subjective value of each of 

the two outcomes on offer, whereas other neurons correlated with the subjective value of the 

outcome that was ultimately chosen. Rodent studies have found similar results, with value 

signals associated with expected delivery of an outcome being present in the rodent OFC 

(McDannald et al. 2011, Schoenbaum et al. 1998). Other neurophysiological studies of 

monkeys have reported neuronal responses correlating with the value of prospective 

outcomes throughout the OFC and in other brain regions, including the lateral prefrontal and 

anterior cingulate cortices (Lee et al. 2007, Seo et al. 2007, Smith et al. 2010, Wallis & 

Miller, 2003). Interestingly, neurons in the lateral prefrontal cortex have been found to 

respond in a manner consistent with the outcome value associated with novel stimuli whose 

value must be inferred from the outcome of the previous trial, suggesting that these value 

representations are sensitive to higher-order task structure (Pan et al. 2014). The vmPFC of 

humans seems to encode similar representations. Activity in the vmPFC was found to 

correlate with trial-by-trial variations in the amount participants were willing to pay (WTP) 

for offered goods (Plassmann et al. 2007). A follow-up experiment comparing value 

representations for foods, which participants would pay to obtain or avoid, revealed vmPFC 
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activity proportional to the value of goods with positive values and decreasing activity 

scaling with negative values (Plassmann et al. 2010).

Organisms are forced to choose not only among rewards of varying probability and 

magnitude but also among rewards that differ in type. Organisms may cope with this issue 

by representing and comparing outcome values in a common currency. Indeed, activity in 

overlapping regions of the vmPFC correlated with the subjective value of three distinct 

categories of goods in a WTP task: food items, nonfood consumer items, and money (Chib 

et al. 2009). Levy & Glimcher (2012) found evidence for a common currency in the vmPFC 

by giving participants explicit choices between different types of goods, specifically money 

versus food, and by demonstrating that activation levels scaled according to the common 

currency value for both types of good. Although these findings are consistent with the notion 

of a common currency, they could also be the result of averaging nonoverlapping value 

representations across individual subjects if there is sufficient spatial variance in these 

representations among individuals. Using a paradigm similar to that of Chib et al. (2009), 

McNamee et al. (2013) probed for distributed voxel patterns encoding outcome value and 

category by training multivariate pattern classifiers on each type of good. A circumscribed 

region of the vmPFC above the orbital surface was found to exhibit a general value code 

whereby a classifier trained on the value of one class of goods (e.g., foods) could 

successfully decode the value of goods from a different category (e.g., consumer goods). In 

addition to general value codes, value codes specific to particular categories of good were 

also found along the medial orbital surface, a finding that is consistent with the idea that 

these regions represent value in a preliminary category-specific form that is then converted 

into a common currency in more dorsal parts of the vmPFC. Interestingly, no region was 

found to uniquely encode the distributed value of monetary items, which were only found to 

be represented in the vmPFC, perhaps because money is a generalized reinforcer that can be 

exchanged for many different types of goods.

Taken together, these findings support the existence of a common currency in the vmPFC in 

which the value of various outcomes are proportionally scaled in accordance with subjective 

value irrespective of the category from which they are drawn. In the following section, we 

consider how other information relevant to model-based computations is encoded.

Outcome Valuation After a Decision Has Been Made

In addition to evaluating outcomes while forming a decision, an organism also has to 

evaluate an outcome once it has been received. Extensive evidence implicates the vmPFC 

and adjacent parts of the OFC in the response to experienced outcomes, including monetary 

rewards (Knutson et al. 2001, O’Doherty et al. 2001, Smith et al. 2010); taste, odor, and 

flavor (de Araujo et al. 2003a,b, Rolls et al. 2003); attractive faces (O’Doherty et al. 2003a); 

and the aesthetic value of abstract art (Kirk et al. 2009). These outcome representations are 

also strongly influenced by changes in underlying motivational states. The vmPFC and OFC 

show decreasing responses to food, odor, or even water outcomes as motivational states 

change from hungry or thirsty to satiated, paralleling changes in the subjective pleasantness 

of the stimulus (de Araujo et al. 2003a,b, O’Doherty et al. 2000, Rolls et al. 2003, Small et 

al. 2001). Not only are such representations modulated as a function of changes in internal 
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motivational state, but value-related activity in this region is also influenced by cognitive 

factors, such as the provision of price information or even the mere use of semantic labels 

(de Araujo et al. 2005, Plassmann et al. 2008). Thus, the online computation of outcome 

values in the vmPFC and OFC is highly flexible and influenced by a variety of internal and 

external factors.

Action Valuation and Planning

Once an organism has determined the value of different outcomes, it must often determine 

the value of available actions based on how likely they are to lead to a desired outcome. To 

calculate these so-called model-based action values, a decision-making agent must be armed 

with a cognitive map that will enable the retrieval of probability distributions over the future 

states or outcomes that can be attained. The model-free computation of action value, i.e., 

computation without any consideration of state transitions or of which outcome might be 

achieved, is discussed in the section Neurobiological Substrates of Model-Free Action 

Selection.

One strategy for calculating model-based action values involves iteration over states, actions, 

and state transitions. Given that model-based action values depend on arithmetic 

computations accounting for quantity and probability, brain systems traditionally associated 

with working memory, such as the lateral prefrontal cortex (Miller & Cohen 2001), as well 

as parts of the parietal cortex implicated in numerical cognition (Platt & Glimcher 1999), are 

likely to be involved. It therefore seems reasonable to hypothesize that regions of the frontal 

and parietal cortices play a fundamental role in the computation of model-based action 

values. In a result that is at least partly consistent with this possibility, Simon & Daw (2011) 

reported increasing activity in the dorsolateral prefrontal and anterior cingulate cortices as a 

function of the depth of model-based planning during a spatial navigation task. In addition, 

areas of the posterior parietal cortex are also important in action planning. Distinct neuronal 

populations seem to be specialized for planning particular actions (such as saccades versus 

reaching movements), and these neurons appear to be specifically involved in encoding 

action trajectories and representing the target state of the action trajectories in both monkeys 

(Andersen et al. 1997, Cohen & Andersen 2002, MacKay 1992) and humans (Desmurget et 

al. 1999).

In rodents, several studies have produced evidence for a distinct network of brain areas 

supporting goal-directed behavior. Evidence from these studies indicates that the prelimbic 

cortex, as well as the dorsomedial striatum in the basal ganglia, to which the prelimbic 

cortex projects, are involved in the acquisition of goal-directed responses. Studies in rodents 

show that lesions to these areas impair action–outcome learning, rendering the rodent’s 

behavior permanently stimulus-driven (Baker & Ragozzino 2014, Balleine & Dickinson 

1998, Ragozzino et al. 2002, Yin et al. 2005). Although the prelimbic cortex is involved in 

the initial acquisition of goal-directed learning, this region does not appear to be essential for 

the expression of goal-directed actions after acquisition (Ostlund & Balleine 2005). In 

contrast, the dorsomedial striatum appears to be necessary for both acquisition and 

expression of goal-directed behavior (Yin et al. 2005).
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Some researchers have argued that the rodent prelimbic cortex and dorsomedial striatum 

correspond to the primate vmPFC and caudate nucleus, respectively (Balleine & O’Doherty 

2009). Indeed, in addition to representing the value of the different outcomes on offer (as 

discussed in the previous section), activity in the vmPFC also tracks instrumental 

contingencies, i.e., the causal relationship between an action and an outcome, sensitivity to 

which has also been shown to be associated with goal-directed control in rodent studies 

(Liljeholm et al. 2011, Matsumoto et al. 2003). Contingency manipulations have also 

implicated the caudate nucleus in goal-directed behavior in nonhuman primates (Hikosaka et 

al. 1989) and humans (Liljeholm et al. 2011). Furthermore, activity in the vmPFC has been 

found to track the current incentive value of an instrumental action such that, following 

devaluation, activity decreases for an action associated with a devalued outcome relative to 

an action associated with a still-valued outcome (de Wit et al. 2009, Valentin et al. 2007). 

Interestingly, the strength of the connection between the vmPFC and dorsomedial striatum 

as measured with diffusion tensor imaging has been shown to correlate with the degree of 

goal-directed behavioral expression across individuals (de Wit et al. 2012).

Once action values have been computed, they can be compared at decision points. Although 

several studies have reported evidence for prechoice action values, few studies have 

determined whether or not such action-value representations are computed in a model-based 

or model-free manner. Studies in rodents and monkeys report action-value signals in the 

dorsal striatum, as well as in areas of the dorsal cortex, including the parietal and 

supplementary motor cortices (Kolb et al. 1994, Lau & Glimcher 2008, Platt & Glimcher 

1999, Samejima et al. 2005, Sohn & Lee 2007, Whitlock et al. 2012, Wilber et al. 2014). 

Human fMRI studies report evidence that putative action-value signals are present in areas 

of the dorsal cortex, including the supplementary motor, lateral parietal, and dorsolateral 

cortices (Hare et al. 2011, Morris et al. 2014, Wunderlich et al. 2009).

Little is known about how organisms integrate the range of variables that appear to influence 

action selection. One candidate region for the site of this integration is the dorsomedial 

prefrontal cortex. In monkeys, Hosokawa and colleagues (2013) found that some neurons in 

the anterior cingulate cortex are involved in encoding an integrated value signal that summed 

over expected costs and benefits for an action. Hunt et al. (2014) also implicated a region of 

the dorsomedial prefrontal cortex in encoding integrated action values. Together, these 

preliminary findings support the possibility that action valuation involves an interaction 

between multiple brain systems and that goal-value representations in the vmPFC are 

ultimately integrated with action information in dorsal cortical regions to compute an overall 

action value.

Neurobiological Substrates of Model-Free Action Selection

The canonical learning signal implicated in model-free value learning is the RPE, which is 

thought to be encoded by the phasic activity of midbrain dopamine neurons (Schultz et al. 

1997). Evidence indicates that reward-related prediction errors also play a role in learning in 

humans. Numerous fMRI studies have reported correlations between RPE signals from RL 

models and activity in the striatum and midbrain nuclei known to contain dopaminergic 

O’Doherty et al. Page 12

Annu Rev Psychol. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons during Pavlovian and instrumental learning paradigms (D’Ardenne et al. 2008, 

O’Doherty 2004, O’Doherty et al. 2003b,Pauli et al. 2015, Wittmann et al. 2005).

Other evidence suggests that the dorsal striatum is critical for learning the stimulus–response 

associations underlying habitual behavior. In rodents, lesions of the posterior dorsolateral 

striatum have been found to render behavior permanently goal-directed such that, after 

overtraining, these animals fail to express habits (Yin et al. 2004, 2006). Tricomi et al. 

(2009) demonstrated a link between increasing activity in the human posterior striatum as a 

function of training and the emergence of habitual control as assessed with a reinforcer 

devaluation test. Wunderlich et al. (2012) reported that activity in this area correlated with 

the value of overtrained actions (which might be expected to favor habitual control) 

compared to actions whose values had been acquired more recently. Others have reported 

putative model-free value signals in the posterior putamen (Horga et al. 2015).

The phasic activity of dopamine neurons is causally related to learning of instrumental 

actions via dopamine-modulated plasticity in target areas of these neurons, such as the 

dorsolateral striatum (Faure et al. 2005, Schoenbaum et al. 2013, Steinberg & Janak 2013). 

Human fMRI studies of motor sequence learning have reported an increase in activity in the 

posterior dorsolateral striatum as sequences become overlearned. For instance, participants 

who successfully learn to perform instrumental actions for reward show significantly 

stronger prediction error signals in the dorsal striatum than those who fail to learn 

instrumental actions (Schönberg et al. 2007), and the administration of drugs that modulate 

dopamine function, such as L-3,4-dihydroxyphenylalanine (L-DOPA) or dopaminergic 

antagonists, influences the strength of learning of instrumental associations accordingly 

(Frank et al. 2004). Other studies focusing on both model-based and model-free value 

signals have also found evidence for model-free signals in the posterior putamen (Doll et al. 

2015, Lee et al. 2014). However, model-free signals have also been reported across a number 

of cortical areas (Lee et al. 2014). Moreover, differences in the strength of the connectivity 

between the right posterolateral striatum and the premotor cortex across individuals is 

associated with differences in the degree to which individuals show evidence of habitual 

behavior in a task in which goal-directed and habitual responses are placed in conflict (de 

Wit et al. 2012).

Other Decision Variables: Effort and Uncertainty

One variable that is likely to play an important role during decision making is the amount of 

effort, whether cognitive or physical, involved in performing a particular action. Clearly, all 

else being equal, it is better to exert as little effort as possible, but occasions may arise in 

which effortful actions yield disproportionately greater rewards. Although effort studies are 

scarce, there is evidence that the effort associated with performing an action is represented in 

parts of the dorsomedial prefrontal cortex alongside other areas such as the insular cortex 

(Prévost et al. 2010). Additional studies in rodents suggest that the anterior cingulate cortex 

plays a critical role in effortful behavior (Hillman & Bilkey 2012, Walton et al. 2009).

Two forms of uncertainty, expected and estimation uncertainty, may also be relevant factors 

at the time of decision. The most pertinent form of expected uncertainty for decision making 

is risk, or the inherent stochasticity of the environment that remains even when the 
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contingencies are fully known. Expected uncertainty regarding different options is useful 

information to access at the point of decision making because risk preference might vary 

over time depending on motivational and other contextual factors. Studies have revealed 

activity correlating with expected uncertainty in a number of cortical and subcortical brain 

regions, including the insular cortex, inferior frontal gyrus, and dorsal striatum (Critchley et 

al. 2001, Huettel et al. 2006, Paulus et al. 2003, Yanike & Ferrera 2014).

In contrast to risk, estimation uncertainty corresponds to uncertainty in the estimate of the 

reward distribution associated with a particular action or state. For example, the first time an 

action is sampled in a particular context, estimation uncertainty is high; it will decrease as 

that action is repeated and the precision of the reward distribution’s estimate increases. 

Estimation uncertainty can also be leveraged to balance the trade-off between exploration 

and exploitation by allowing the agent to target actions that are relatively undersampled. 

Neural representations of estimation uncertainty have been reported in the anterior cingulate 

cortex (Payzan-LeNestour et al. 2013), and uncertainty signals (which may or may not 

correspond to estimation uncertainty) associated with exploration have also been reported in 

the frontopolar cortex (Badre et al. 2012, Daw et al. 2006, Yoshida & Ishii 2006).

Model-Free and Model-Based Pavlovian Learning

In this section, we turn our attention to the computations that underpin acquisition and 

expression of Pavlovian conditioned responses. As described in the section Neurobiological 

Substrates of Model-Free Action Selection, model-free RL has been proposed as a 

mechanism to underpin learning in at least appetitive Pavlovian conditioning. However, 

similar to the predictions in the instrumental domain, a model-free RL account of Pavlovian 

conditioning would be expected to produce conditioned responses that are devaluation 

insensitive. Nevertheless, many conditioned Pavlovian responses are strongly devaluation 

sensitive (Dayan & Berridge 2014). This discrepancy has led to suggestions that model-

based learning mechanisms might also apply in the case of Pavlovian conditioning (Dayan & 

Berridge 2014, Prévost et al. 2013).

We might expect such a system to depend on a cognitive model that maps the relationship 

between different stimuli, that is, a model that encodes stimulus–stimulus association 

likelihoods. One might expect the mechanism for model-based Pavlovian conditioning to be 

similar to that involved in model-based instrumental control, with the exception that there is 

no need for the model to represent action contingencies. Sensory preconditioning represents 

one piece of behavioral evidence in favor of the existence of a model-based Pavlovian 

learning mechanism that depends on the formation of stimulus–stimulus associations. In 

sensory preconditioning, two cues are repeatedly paired together in the absence of reward. 

Following this, one of the cues is paired with reward. Rescorla (1980) found that, under 

these conditions, the cue that had not been paired with reward also spontaneously elicited 

appetitive conditioned responses (Rescorla 1980).

This result raises the question of which brain areas are involved in encoding stimulus–

stimulus associations. The hippocampus and the OFC, which we have examined in the 

context of their role in encoding a cognitive map, are strong candidates. Representations in 

these two brain regions are perhaps not action dependent but do encode relationships 
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between stimuli, as would be needed by a model-based Pavlovian mechanism. Indeed, 

consistent with this proposal, both the hippocampus and OFC are implicated in sensory 

preconditioning (Jones et al. 2012, Holland & Bouton 1999, Wimmer & Shohamy 2012). 

Researchers have also found that the amygdala encodes information about context, stimulus 

identity, and reward expectation (Salzman & Fusi 2010). Moreover, Prévost et al. (2013) 

used a Pavlovian reversal learning paradigm to provide evidence for expected value signals 

in the human amygdala that were better captured by a model-based algorithm than by a 

number of model-free learning alternatives.

Two distinct forms of Pavlovian appetitive conditioning, sign tracking and goal tracking, can 

be distinguished in rodents (Boakes 1977, Hearst & Jenkins 1974, Jenkins & Moore 1973). 

Signtracking animals orient to the cue that predicts the subsequent reward, whereas goal-

tracking animals orient to the location where the outcome is delivered. A recent behavioral 

study has revealed a correlation between the extent to which animals manifest sign-tracking 

behavior and the extent to which these animals show evidence of devaluation insensitivity in 

their behavior, suggesting that sign tracking may be a model-free conditioned response 

(Nasser et al. 2015). Consistent with dopamine’s involvement in model-free Pavlovian 

conditioning, RPE signals in the nucleus accumbens core have been associated with sign 

tracking. Animals selectively bred to be predominantly sign trackers show phasic dopamine 

release in the nucleus accumbens, whereas animals bred to be predominantly goal trackers 

do not show clear phasic dopaminergic activity during learning (Flagel et al. 2007). 

Furthermore, a recent study has found evidence to suggest that phasic dopaminergic activity 

associated with a conditioned stimulus may in fact be devaluation insensitive, as would be 

predicted by a model-free algorithm. Specifically, rats were conditioned to associate a cue 

with an aversive salt outcome. Following induction of a salt appetite, dopamine neurons 

showed increased phasic activity following the receipt of the (now-valued) salt outcome, 

consistent with model-based control. However, consistent with a model-free RL mechanism, 

phasic responses to the cue predicting salt did not show any such increase until after the 

animal had a chance to be exposed to the outcome, suggesting that dopamine activity in 

response to the cue was not immediately updated to reflect the current value of the 

associated outcome (Cone et al. 2016). These findings suggest that in Pavlovian 

conditioning, dopaminergic prediction errors may be involved in model-free but not model-

based learning.

INTERACTION AMONG BEHAVIORAL CONTROL SYSTEMS

Having considered evidence regarding the existence of multiple control systems in the brain 

and reviewed ideas and emerging evidence about the possible neural computations 

underpinning each of these systems, we briefly consider in the following sections how these 

systems interact. There is evidence to suggest that stimulus-driven, goal-directed, and 

noninstrumental systems may sometimes interact in an adaptive manner whereby each 

system exerts complementary influences on behavior in a manner beneficial for the agent. 

Alternatively, in some instances these systems can interact in a maladaptive manner, leading 

to pernicious behavioral outcomes.
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Interactions Between Goals and Habits

Habitual and goal-directed control systems may interact to provide a strategy that is both 

flexible and cognitively efficient by supporting hierarchical decomposition of the task at 

hand. Building on theoretical work demonstrating the computational benefits of 

encapsulating behavioral invariance in the form of a selectable option (Sutton et al. 1999), 

studies have begun to probe whether the brain leverages its varied control systems to 

implement a similar hierarchical decomposition (Botvinick 2012, Botvinick et al. 2009). 

Evidence from human fMRI studies shows that higher levels of abstraction progressively 

engage more anterior regions of frontal cortex, suggesting a hierarchical organization of 

abstraction along a rostral–caudal axis (Badre & D’Esposito 2007, Donoso et al. 2014, 

Koechlin et al. 2003). Other studies have reported signals consistent with hierarchical event 

structuring (Schapiro et al. 2013) and prediction errors (Diuk et al. 2013, Ribas-Fernandes et 

al. 2011). Although the most common depiction of hierarchical control positions the 

stimulus-driven system as subservient to the goal-directed system (Dezfouli & Balleine 

2013), other work suggests that the goal-directed system can also be deployed in the service 

of a habitually selected goal (Cushman & Morris 2015).

The brain’s multiple control systems may also facilitate learning. Situations in which control 

is assigned to the goal-directed system in the early stages of behavioral acquisition may be 

examples of adaptive interactions between systems. Once the problem space has been 

sufficiently sampled, behavioral control transitions to the habitual system, thereby freeing up 

cognitive resources that would otherwise be allocated to the goal-directed system. The 

complementary nature of the interactions between these systems is such that, even though 

the goal-directed system is in the driving seat during early learning, the habitual system is 

given the opportunity to learn a model-free policy because it is exposed to the relevant 

stimulus associations.

However, there is a downside to this training interaction. Once behavior is under the control 

of the habitual system, it may guide the agent toward an unfavorable course of action under 

circumstances in which environmental contingencies have changed or the agent’s goals have 

changed. Alternatively, errors in goal-directed representations may inculcate inappropriate 

biases into the stimulus-driven system’s learned values (Doll et al. 2011). Numerous 

examples of maladaptive interactions exist in the realm of psychiatric disease. For instance, 

habits for abuse of a drug may persist even if the goal of the individual is to stop taking the 

drug (Everitt & Robbins 2016). Overeating or compulsive behaviors may also be examples 

of the habitual system exerting inappropriate and ultimately detrimental control over 

behavior (Voon et al. 2015). The capacity to effectively manage conflicting policy 

suggestions by the goal-directed and habitual systems likely varies across individuals and 

may even relate to underlying differences in the neural circuitry, perhaps indicative of 

differing levels of vulnerability to the emergence of compulsive behavior (de Wit et al. 

2012).

Interactions with Pavlovian Predictions

The Pavlovian system can also interact with systems involved in instrumental behavior, a 

class of interactions referred to as Pavlovian-to-instrumental transfer (PIT) (Lovibond 1983). 
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PIT effects are typically manifested as increased instrumental response vigor in the presence 

of a reward predicting a Pavlovian conditioned stimulus (Estes 1943). One can make a 

distinction between general and specific PIT. General PIT refers to circumstances in which a 

Pavlovian cue motivates increased instrumental responding irrespective of the outcome 

associated with the Pavlovian cue. Conversely, outcome-specific PIT effects modulate 

responding when both the Pavlovian cue and instrumental action are associated with the 

same outcome (Corbit & Balleine 2005, Holland & Gallagher 2003, Rescorla & Solomon 

1967).

In a normative relationship between incentives and instrumental response, the provision of 

higher incentives should result in increased effort and response accuracy, thereby enabling 

more effective action implementation. However, Pavlovian effects on instrumental 

responding can also promote maladaptive behavior in circumstances in which PIT effects 

continue to exert an energizing effect on instrumental actions associated with a devalued 

outcome (Holland 2004, Watson et al. 2014; although see Allman et al. 2010). This suggests 

that PIT effects selectively involve the habitual system. Thus, Pavlovian cues may intervene 

in the interplay between goals and habits by actively biasing behavioral control toward the 

habitual system.

Furthermore, under certain circumstances, increased incentives can paradoxically result in 

less-efficacious instrumental performance, an effect known as choking that has been linked 

to dopaminergic regions of the midbrain (Chib et al. 2014, Mobbs et al. 2009, Zedelius et al. 

2011). For example, Ariely et al. (2009) offered participants in rural India the prospect of 

winning large monetary amounts relative to their average monthly salaries. Compared to a 

group offered smaller incentive amounts, the performance of the high-incentive group was 

much impaired, suggesting the counterintuitive effect of reduced performance in a situation 

in which the motivation to succeed is high. Numerous theories have been proposed to 

account for choking effects, reflecting various possible forms of interactions between 

different control systems. One theory is that choking effects reflect a maladaptive return of 

behavioral control to the goal-directed system in the face of large potential incentives in a 

situation in which the habitual system is better placed to reliably execute a skilled behavior. 

Although some results support this hypothesis (Lee & Grafton 2015), others support an 

alternative account whereby Pavlovian effects elicited by cues could engage Pavlovian 

skeletomotor behaviors, such as appetitive approach or aversive withdrawal, that interfere 

with the performance of the habitual skilled motor behavior (Chib et al. 2012, 2014). More 

than one of these ideas could hold true, as behavioral choking effects may have multiple 

causes arising from maladaptive interactions between these systems.

Arbitration Between Behavioral Control Mechanisms

The presence of distinct control systems burdens the brain with the problem of how to 

apportion control among them. An influential hypothesis is that there exists an arbitrator that 

determines the influence each system has over behavior based on a number of criteria (Daw 

et al. 2005). One important factor in this hypothesis is the relative accuracy of the systems’ 

predictions concerning which action should be selected; all else being equal, behavior 

should be controlled by the system with the most accurate prediction (Daw et al. 2005). 
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Using the computational distinction between model-based and model-free RL, Lee et al. 

(2014) found evidence for the existence of an arbitration processes in the ventrolateral 

prefrontal cortex and frontopolar cortex that assigns behavioral control as a function of 

system reliability. Connectivity between the arbitration areas and the regions of the brain 

encoding habitual but not goal-directed action values was also found to be modulated as a 

function of the arbitration process. Consistent with a default model-free strategy, it is better 

to delegate control to the more-efficient stimulus-driven system; however, when the 

arbitration system detects that a goal-directed policy is warranted, then it may achieve this 

through active inhibition of the habitual system, leaving the model-based system free to 

control behavior. In addition to predictive accuracy, other relevant variables include the 

amount of cognitive effort required (FitzGerald et al. 2014) and the potential benefits that 

can be accrued by implementing a model-based strategy (Pezzulo et al. 2013, Shenhav et al. 

2013).

Much less is known about how arbitration occurs between Pavlovian and instrumental 

systems. Changes in cognitive strategies or appraisal implemented via the prefrontal cortex 

can influence the likelihood of both aversive and appetitive Pavlovian conditioned responses, 

perhaps via downregulation of the amygdala and ventral striatum (Delgado et al. 2008a,b; 

Staudinger et al. 2009). This type of top-down process could be viewed as a form of 

arbitration, in which Pavlovian control policies are downweighted in situations in which 

goal-directed control is deemed to be more beneficial. However, the nature of the 

computations mediating this putative arbitration process is not well understood. Clearly, 

given that Pavlovian behaviors are often advantageous in time-critical situations when the 

animal’s survival may be at stake, it would be reasonable for at least certain types of 

Pavlovian predictions to have immediate access to behavior without having to wait for the 

arbitration process to mediate. Therefore, it seems plausible to expect that, perhaps as with 

the habitual system, arbitration operates only to inhibit Pavlovian behavior when it is 

deemed to be inappropriate or irrelevant. One might also predict that any such arbitration 

process would happen at a relatively slower timescale relative to the more rapid response 

time available to the Pavlovian system. Therefore, traces of initial Pavlovian control might 

become manifest in behavior even in situations in which the arbitration system subsequently 

implements an inhibition of the Pavlovian system.

Neural Systems for Learning and Inference in a Social Context

Thus far, we have considered the involvement of multiple systems in controlling reward-

related behavior but have given scant attention to the type of behavioral context in which 

these systems are engaged. A particularly challenging problem faced by humans and many 

other animals is the need to learn from and ultimately behave adaptively to conspecifics. 

Succinctly put, the problem is working out how to conduct oneself in social situations. A full 

consideration of this issue is beyond the scope of this review. However, we can briefly 

consider the question of whether value-based action selection in social contexts depends on 

similar or distinct control systems and neural circuitry as those involved in value-based 

action selection in nonsocial contexts.

O’Doherty et al. Page 18

Annu Rev Psychol. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One of the simplest ways to extend the framework we have discussed to the social domain is 

to apply this framework to the mechanisms underlying observational learning, which allow 

an agent to learn about the value of stimuli or actions not through direct experience but 

instead through observing the behavior of another agent. Several studies have revealed the 

engagement of brain regions including the ventral and dorsal striata and the vmPFC in 

observational learning (Burke et al. 2010, Cooper et al. 2012). For example, Cooper et al. 

(2012) found evidence for prediction error signals in the striatum when participants were 

learning about the value of actions through observing another agent. These preliminary 

findings suggest that, at least for some forms of observational learning, the brain relies on 

similar neural mechanisms and circuitry for learning through observation as it does when 

learning through direct experience. There is also evidence to suggest that, during a number 

of social situations in which it is necessary to learn from the actions being taken by others, 

the brain may rely on similar circuitry and updating signals as those known to be involved in 

model-based RL (Abe & Lee 2011, Liljeholm et al. 2012, Seo et al. 2009).

However, in some social situations, the brain may engage additional circuitry that has been 

implicated in mentalizing or theory of mind (Frith & Frith 2003, 2006). For instance, 

Hampton et al. (2008) found that when participants engage in a competitive game against a 

dynamic opponent, activity in the posterior superior temporal sulcus and dorsomedial 

prefrontal cortex is related to the updating of a higher-order inference about the strategic 

intentions of that opponent. Relatedly, Behrens et al. (2008) examined a situation in which it 

was useful for participants to learn about the reliability of a confederate’s recommendations 

about what actions to take because the confederate’s interests sometimes lay in deceiving the 

subject. Neural activity corresponding to an update signal for such an estimate was found in 

the anterior medial prefrontal cortex, as well as in a region of the temporoparietal junction. 

Similarly, Boorman et al. (2013a,b) found evidence for updating signals related to learning 

about another individual’s expertise on a financial investment task in the temporoparietal 

junction and dorsomedial frontal cortex. Suzuki et al. (2015) found evidence for the 

representation of beliefs about the likely future actions of a group of individuals in the 

posterior superior temporal sulcus and, moreover, found that this activity was specifically 

engaged when performing in a social as compared to a nonsocial context.

Taken together, these findings suggest that, although learning and making decisions in a 

social context often depends on similar brain circuitry as that used when learning in 

nonsocial contexts, additional distinct circuitry is deployed to facilitate socially relevant 

tasks, such as inferring the internal mental states of others, when knowledge about relevant 

features of another agent is necessary.

CONCLUSIONS AND FUTURE DIRECTIONS

Although much remains to be explored, the past few decades have brought considerable 

advances in our understanding of the neural and computational mechanisms underlying 

learning, reward, and decision making. Merging formal work in computational intelligence 

and empirical research in cognitive neuroscience has allowed considerable headway not only 

in understanding the algorithms embodied by the brain but also in illuminating how the brain 

navigates the trade-offs between different strategies for controlling reward-related behavior. 

O’Doherty et al. Page 19

Annu Rev Psychol. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Long-standing theoretical arguments as to whether behavior is habitual or goal-directed have 

been assuaged by demonstrations that the brain has maintained multiple strategies for 

behavioral control, each offering advantages and disadvantages that may be leveraged across 

a range of potential circumstances.

As a result of these advances, new unresolved issues have emerged. In this article, we have 

reviewed evidence from both animal and human studies indicating that a goal-directed 

(model-based) system guides behavior in some circumstances but that other situations favor 

a habitual (model-free) strategy. Factors such as task familiarity, task complexity, and reward 

contingencies may influence the trade-off between these two systems; however, work 

remains to be done regarding other variables that might influence how various strategies are 

deployed. Factors such as incentives (the benefits of favoring one strategy over another), 

cognitive capacities (the brain’s awareness of its own limitations), and social context may 

play a role in system deployment. Whether Pavlovian drives factor into the arbitration 

scheme used to determine behavioral control also remains unknown.

Furthermore, we understand little regarding the mechanisms through which system 

arbitration is instantiated. We have presented evidence suggesting that the brain adopts a 

computationally efficient model-free strategy by default but that this can be interrupted by a 

more flexible goal-directed strategy if needed. However, this evidence raises the question of 

what the model-based system is doing when it is not favored for control: Is the model-based 

system passively working in the background, waiting to be called back into activity, or has it 

moved offline to conserve resources? If the latter, how is it brought back online in a sensible 

way? We must also ask what the model-free system is doing when the model-based system 

takes control. There is evidence to suggest that the model-based system can shape the 

model-free system’s value representations, but we know very little about this relationship. 

Does the model-free system passively learn about choices and experiences governed by the 

model-based system, or can the model-based system tutor the model-free system more 

directly and, if so, how might this be operationalized?

The bulk of our discussion has focused on behavioral control with respect to what can be 

labeled as exploitive action selection: identifying and moving toward the most rewarding 

options in the environment. However, this is only one half of what is commonly referred to 

as the explore/exploit trade-off. Almost nothing is known about the role played by the 

brain’s varied control systems with respect to exploration. Given the exploitive advantages 

that come with having multiple control strategies, some of which we have outlined in this 

review, at one’s disposal, are similar benefits offered to the domain of exploration? Does the 

brain take advantage of the computational efficiencies offered by the model-free system to 

direct exploration, or does the novelty and complexity inherent to exploration demand a 

model-based strategy? Perhaps multiple strategies are deployed in a collaborative fashion to 

tackle the many facets of exploration in an efficient way. Issues pertinent to the brain’s 

engagement with exploratory decision making are ripe for both theoretical and experimental 

research.

Finally, we briefly touched upon the role played by the brain’s control systems in a social 

context. However, the nature of these additional learning and inference signals and how they 
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interact with other control systems is not yet fully understood. Value signals in the vmPFC 

and anterior cingulate cortex do reflect knowledge of strategic information and the 

information needed to modify the value signals to reflect this knowledge appears to arrive 

via inputs from the mentalizing network (Hampton et al. 2008, Suzuki et al. 2015). Whether 

these mentalizing-related computations can be considered a fourth system for guiding 

behavior or, instead, a module that provides input into the model-based system is an open 

question. Moreover, how the brain decides when or whether the mentalizing system should 

be engaged in a particular situation is currently unknown, although it is tempting to 

speculate that an arbitration process may play a role.

This, of course, is only a small sample of many questions the field of decision neuroscience 

is poised to tackle. Although pursuit of these issues will deepen our basic understanding of 

the brain’s functional architecture, of equal importance will be our ability to apply these 

concepts toward our understanding of cognitive impairments and mental illness (Huys et al. 

2016, Maia & Frank 2011, Montague et al. 2012). Despite many advances and huge 

incentives, and perhaps in testament to the complexity of the problem, reliable and effective 

treatments are scarce. By building on a functional understanding of the brain’s learning and 

control strategies, their points of interaction, and the mechanisms by which they manifest, 

novel treatments (whether behavioral, chemical, or mechanistic) may be able to help 

millions of people lead more fulfilling lives.
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Figure 1. 
Schematic mapping specific neuroanatomical loci to the implementation of different 

functions underlying model-based and model-free control. Model-based control depends on 

a cognitive map of state space and integration of different aspects of a decision, such as 

effort and estimation uncertainty, as well as the value and the identity of goals or outcomes. 

Model-free control depends on learning about the value of responses in the current state, 

based on the history of past reinforcement. The inner circle identifies regions involved in 

model-based and model-free control, and the outer circle identifies specific subfunctions 

implemented by particular brain regions, based on the evidence to date as discussed in this 

review. The objective of this figure is to orient the reader to the location of the relevant brain 

regions rather than to provide a categorical description of the functions of each region or an 

exhaustive list of the brain regions involved in reward-related behavior. The neuronal 

substrates of prediction errors and the loci of arbitration mechanisms are omitted from this 

figure for simplicity. Y coordinates of coronal brain slices represent their distance from the 

commissures along the posterior (negative values) to anterior (positive values) axis.
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