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Abstract

In the digital age of cardiovascular medicine, the rate of biomedical discovery can be greatly 

accelerated by the guidance and resources required to unearth potential collections of knowledge. 

A unified computational platform leverages metadata to not only provide direction but also 

empower researchers to mine a wealth of biomedical information and forge novel mechanistic 

insights. This review takes the opportunity to present an overview of the cloud-based 

computational environment, including the functional roles of metadata, the architecture schema of 

indexing and search, and the practical scenarios of machine learning-supported molecular 

signature extraction. By introducing several established resources and state-of-the-art workflows, 

we share with our readers a broadly-defined informatics framework to phenotype cardiovascular 

health and disease.
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Introduction

For an explorer on the high seas, discovery would not be remotely possible without a 

guiding compass and the resources required to unearth potential collections of wealth and 

knowledge. The hunt for biomedical data treasure troves is already well underway; many 

investigators have pioneered this exploratory adventure, and many more are already in 

pursuit of hidden hoards of knowledge. Defining an efficient, informatics-based path toward 

discovery is contingent upon providing aid and guidance to investigators sailing the sea of 

biomedical datasets, enabling them to succeed. Metadata transforms the landscape from a 

vast formidable ocean into more navigable waters. Indexing and search tools give data 

consumers multidimensional coordinates to access the resources they seek. Once 

investigators better understand their course and are equipped with the proper tools, they will 

be able to adequately extract information buried within the big data. In the digital age of 

cardiovascular medicine, a unified computational platform leverages metadata to not only 

provide direction but also empower data consumers to mine a wealth of biomedical 

information and unveil gems of knowledge.

Unwilling to be constrained to the land and sea, modern scientists have opted to embark on a 

new frontier by launching their efforts into cloud computing, which has been envisioned as 

the next generation paradigm in biomedical informatics. As an internet-based computing 

solution, cloud computing provides shared resources on demand for data storage, 

processing, and dissemination that is reliable, cost effective, and customizable to suit 

individual user’s needs. These services provide users with a simple way to access databases, 

servers, storage, and a wide spectrum of software and applications through a web interface 

accessible from anywhere in the world. The maintenance of the hardware and infrastructure 

is managed by the cloud platform providers (e.g., Amazon Web Services, AWS1), giving 

users rapid access to flexible and low-cost computing resources. A user is able to instantly 

provision the type and size of the computing resources required, scaling up or down as 

desired, and is only responsible for the actual resource costs incurred. These features make 

cloud computing platforms a superior alternative to the previously dominant approach of 

maintaining a local high-performance computing infrastructure. This review takes the 

opportunity to present an overview of the cloud-based computational environment, including 

the functional roles of metadata, data indexing and search tools, and the entire platform in 

supporting computational efforts such as molecular phenotyping of cardiovascular disease. 

A conceptual overview of this framework is detailed in Figure 1.

Section I Metadata

In 2016, a consortium of researchers, publishers, and research funders published the FAIR 

guiding principles to make data Findable, Accessible, Interoperable, and Re-usable2. The 

FAIR principles are about making data FAIR, but a key to achieving this is the metadata. 
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Webster’s concisely defines metadata as “data that provides information about other data”3. 

Metadata serves as vital points of reference, adding a longitudinal and latitudinal 

perspective, laying out critical components to map and guide biomedical explorers with 

meaningful coordinates for features of interest in their daily dealing of data.

A classic example of metadata is bibliographic data. The large register card-based catalogues 

maintained by libraries in the 1970s illustrate the distinction between data and metadata at 

the physical level. The catalogues provided the metadata (author, title, keywords, etc.) as a 

searchable index, with each card pointing through a systematic identifier (e.g., “Journal 

Article”) to the data (e.g., the actual journal article) physically located in another part of the 

library. Significant resources went into the setup and maintenance of these catalogues; the 

quality of their indexing system, the frequency of updates, and their comprehensiveness 

were factors that could cost or save students and faculty many hours of work.

These roots are still clearly visible in current everyday research tools like PubMed. PubMed 

is a metadata catalogue; at the core, each record holds bibliographic information very similar 

to that typewritten on the library register cards of old. The data, the actual journal articles, 

are located elsewhere, such as at the sites of dozens of large publishers, or in PubMed 

Central. Of course, the identifiers pointing to the data today have to be unique not only in the 

context of the local library but also globally on the internet, creating the need for Globally 

Unique Identifiers (GUIDs), a system first utilized by Microsoft in 1999, and currently 

provided by systems like DOI.org4, 5or identifiers.org6.

As an example, in the PubMed rendering of the publication “Percent emphysema, airflow 

obstruction, and impaired left ventricular filling” by Barr et al.7, the journal, publication 

date, pages, DOI, title, author list, and affiliations are all classical metadata attributes. 

Medical Subject Headings8, 9 (MeSH terms, see below) and the links to the full text are 

more recent additions to the list of typically captured metadata. The abstract is, on the one 

hand, metadata describing the main publication and, on the other hand, a substantial part of 

the publication itself, and thus illustrates the difficulties of clearly distinguishing between 

data and metadata. Previously, a card index could only be built and maintained for one or 

very few metadata attributes, usually author surname and perhaps keywords. Modern 

approaches have blurred the distinction between data and metadata and now allow us to 

create searchable indices over many attributes, even large chunks of text like abstracts and 

full text.

However, different metadata attributes need to be treated differently, as at the most basic 

level a keyword search is different from a numeric range like publication year. This can 

require a metadata schema, which is a logical outline of the metadata attributes and their 

relationships and is achieved by defining rules such as syntax and requirements for each 

individual attribute. For large systems like PubMed, which receives metadata from many 

different publishers, it is essential to clearly define which metadata attributes are required 

and in which precise form. For PubMed, this definition is applied through the Journal Article 

Tags Suite (JATS)10, first created in 2003 and iteratively improved ever since. In the past 

year, the Data Tag Suite (DATS)11 has been developed as a similar system to JATS to 

support the DataMed data discovery index. While both of these domain-specific metadata 
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definition systems provide a rich, detailed description of metadata attributes in their 

domains, schema.org12, founded by Google, Microsoft, Yahoo, and Yandex, aims to develop 

an internet-wide metadata definition across many domains. Schema.org markup is embedded 

directly in HTML pages to support major search engines and to automatically generate short 

page “abstracts” to be displayed in “boxes” on search result pages. While already widely 

used on commercial sites, schema.org adoption is still low in the biomedical sciences, but it 

is expected to rapidly increase due to initiatives like bioschemas.org13 that develop specific 

extensions for the life sciences.

Computational power can easily handle some previously difficult problems, like whether to 

index John le Carré under ‘l’ or ‘c’, but fundamental challenges still remain. The diversity of 

our language allows us to use the keywords “adverse effect” or “side effect” almost 

synonymously, but for a search algorithm, they look quite different without further effort. 

The differences are exacerbated in large indices that include a broad range of data sources. 

Different journals, book editors, publishers, all have different ways of expressing similar 

meaning. This is why metadata harmonization is an essential activity that can be decisive for 

the utility of any metadata resource. As an example, the National Library of Medicine has 

used MeSH terms since 19548, 9 as a reference system for indexing articles for PubMed. In 

MeSH, more than 22,000 terms are arranged in a hierarchical controlled vocabulary, which 

provides reference terms to reduce the ambiguity of synonyms. Perhaps even more 

importantly, the hierarchical structure of MeSH and many other controlled vocabularies (or 

ontologies) makes searches aware of general-specific relationships between terms. Through 

the use of MeSH, PubMed can, for example, match a manuscript annotated with “Ectopia 

Cordis” when searching for “Cardiovascular Abnormalities”.

Zhou et al. recently analyzed the available PubMed metadata in the particularly challenging 

domain of clinical case reports14. By their nature, case reports describe unique, very rare, or 

novel patient phenotypes and treatment strategies; therefore the discovery of multiple, 

independently published case reports can be critical for the advancement of patient care in 

the domain. In a test sample of 700 reports, the study demonstrated an average improvement 

of 45% metadata coverage over current annotation in PubMed through careful manual 

annotation, but it also clearly acknowledges that this level of manual annotation is not 

feasible for the vast number of clinical case studies in PubMed and that advanced text 

mining methods will be required to improve metadata annotation in this and related 

document types.

In a different but similarly structured domain, the new AzTec catalogue of software tools 

and resources in the biomedical domain15, 16 uses the “Bioinformatics operations, data 

types, formats, identifiers and topics” (EDAM) ontology17 to specify the input and output 

formats for software tools. In addition to specifying for a human reader if a tool under 

consideration may be suitable for her/his needs, such well-structured metadata annotation 

may even support automated reasoning and the suggestions for complex data processing 

pipelines, chaining software tools to achieve desired workflows.

In supporting the FAIR principles, it is essential that the metadata is represented and 

harmonized using reference systems, which themselves are supporting the FAIR principles. 
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While MeSH terms are free to use by all interested parties, some ontologies, such as the 

widely used SNOMED CT clinical healthcare terminology, require a license for use18.

To support efficient search engines, metadata from many different resources is often 

centrally aggregated while the actual data is widely distributed, as shown in our PubMed 

example. However, the separation of metadata and data supports another series of use cases, 

namely the distinction between Findable and Accessible. While most publishers have an 

interest in making their publications findable through open provision of metadata to public 

indices like PubMed, many publications are only accessible through license/subscription 

arrangements. In biomedical science, the open metadata/restricted data model is widely 

implemented to control access to studies involving human subjects. dbGaP19 and the 

European Genome-phenome Archive (EGA)20 are both providing open metadata catalogues 

of their studies to maximize their impact and reuse, but actual data access is only granted 

after validation of the scientific use case. This is an example of the critical importance of 

rich and precise metadata; based on the metadata, a researcher has to decide whether the 

data is likely to be worth his/her time in going through a potentially complex access 

authorization procedure. The Beacon project of the Global Alliance for Genomics and 

Health21 aims to enrich support for such decisions by providing minimal, privacy-preserving 

extracts of actual data, thus blurring the lines between data and metadata, in the genomic 

equivalent of indexing PubMed abstracts in addition to classic bibliographic data.

A combination of well structured, well indexed metadata and modern approaches like these 

advanced privacy-preserving query interfaces will be required for efficient discovery and 

reuse of data from a multitude of large scale studies like the NHLBI Program on Trans-

Omics for Precision Medicine (TOPMed)22, which now envisions to sequence more than 

100,000 individuals and provide a rich source of additional ‘omics data. For example, the 

capacity to filter, select, and construct on-demand synthetic cohorts for data (re)use in 

targeted research depends critically upon our ability to expose, structure, and exploit 

metadata optimally.

Section II Indexing and Search

Introduction

Indexing and search are long standing topics in data science, whose significant impact and 

wide utility are exemplified by search engines like Google. Without them, it would be 

impossible to find the information one desires when browsing the Web. The Google search 

engine uses web crawlers to automatically collect web pages on the Internet. It uses this 

aggregated information to create and maintain a large index of keywords, where these 

keywords may present in both web pages and the metadata of the web pages. Google’s 

search results are then ranked by the PageRank algorithm23, which uses the metadata and 

hyperlinks in web pages to evaluate the relevance and importance of web pages to the search 

keyword(s).

The same challenges are facing biomedical fields, in which data of all types is produced at 

an unprecedented rate. There are many types of digital objects that include but are not 

limited to datasets, data repositories, knowledgebases, reports, standalone software and 
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tools, analytic pipelines, online services, and application programmable interfaces (APIs). 

Various efforts have been undertaken to make these digital objects FAIR, of which many 

focus on specific types of data. For example, PubMed contains more than 27 million 

citations and abstracts of biomedical publications from MEDLINE and life science journals, 

as well as books available on the NCBI Bookshelf. It stores and indexes metadata from these 

publications in a database and provides a Google-like search engine. A keyword-based query 

will be expanded to add appropriate metadata field names, e.g., Boolean operators, and 

relevant MeSH terms8, 9 to be posted against the metadata database. The results will include 

a list of publications ranked by their relevance to the queried keywords.

Computational Infrastructure Supporting Index and Search

An index structure is an auxiliary data structure built to organize the storage of data and to 

facilitate the search, enhancing the findability of the data. With the help of a well-designed 

indexing structure, the search algorithm aims to efficiently and accurately locate relevant 

information or data for the users. Cloud-based infrastructures provide the flexibility to scale 

on demand for support of fluctuating web traffic and workloads. The available cloud 

services support public, private, or hybrid storage depending on the security requirements 

and privacy concerns. Several of the household names are Amazon Web Services (AWS)1, 

Google Cloud Platform24, and Microsoft Azure25.

These platforms currently employ key technologies to render digital objects FAIR. 

Specifically, a digital object needs to have a unique persistent identifier (e.g., DOI4, 5), 

metadata that adequately describes the intrinsic properties of the object (e.g., data type), and 

the provenance of the object (e.g., source of the data, the time it was generated). Different 

repositories may use different metadata schema. How the metadata is physically represented 

and stored may vary as well: it may be in an extensible markup language (XML) file26, e.g., 

the mass spectral files for peptides in a proteomics study; a JavaScript object notation 

(JSON) file27, e.g., variation data representation and exchange28; a text document, e.g., a 

PDF file or an Word file; or held within the data structures of a relational graph or a 

document database. It is often made available via a representational state transfer API or as 

SPARQL Protocol29 and Resource Description Framework (RDF) Query Language 

endpoints30. The FAIRness (in particular, interoperability) of the data objects across 

different repositories therefore largely depends on how well these metadata could be 

accessed and understood by human and computer programs. An efficient strategy by a 

search engine is to transform these metadata into a harmonized metadata schema so that 

digital objects can be efficiently indexed and examined on a unified platform.

In the era of data science in cardiovascular medicine, the two most relevant questions to an 

investigator are (i) what are the datasets that harbor the necessary information to answer the 

biomedical questions of his/her interest, and (ii) what types of tools and resources are best 

suited to extract information from these datasets? With metadata acting as points of 

reference throughout the sea of biomedical digital objects, comprehensive indexing 

comprises the multidimensional coordinates of our explorers’ map, while search tools act as 

a navigation system to guide researchers to potential areas of novel biomedical discovery. 

Employing effective metadata templates and structures facilitates indexing of both datasets 
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and tools. For example, one effective tool to locate datasets is OmicsDI31, an open-source 

cloud-based platform to discover, access, and disseminate omics datasets. Powered by an 

institutionally supported search engine (hosted on the EMBL-EBI private cloud), it currently 

harmonizes and indexes over 90,000 digital objects from 15 repositories in four continents. 

Metadata from these repositories are enriched and converted to a common XML format. The 

EBI search engine (running Apache Lucene32) creates indices on the XML documents 

stored in MongoDB, which in turn enables robust and scalable search capability. In parallel, 

AzTec (aztec.bio) is an open-source cloud-based platform for discovering and accessing 

biomedical tools and resources. Running on Amazon EC2, AzTec currently hosts over 

10,000 resources spanning 17 domains, including imaging, gene ontology, text mining, data 

visualization, and various omics analyses. The metadata are converted into JSON format and 

indexed by Apache Lucene32, which are then enhanced by the semantic information retrieval 

engine called Aztec-IR.

Cardiovascular Use Case

In view of the rapid development of cloud-based technologies and the revolutionary 

advancements of data science in the biomedical field, we envision the wide utility of an 

indexing and search platform for cardiovascular researchers. Let us examine a use case 

scenario where application of indexing and search engine platform might be applied to 

support advancement in cardiovascular medicine. Several cardiovascular investigators are 

interested in the Multi-Ethnic Study of Atherosclerosis (MESA) dataset hosted by 

TOPMed22, which represents patient datasets, including various study goals, high-

dimensional variables, and rich molecular information on phenotype and genotype. The 

study of any TOPMed dataset is contingent upon carefully guarded privacy and restricted 

access. The investigators wish to identify a dataset validating a molecular signature of their 

own patient cohorts of atherosclerosis (see Section III below for identification of molecular 

signatures). Furthermore, they are interested in learning about model systems that could 

enable further understanding of underlying molecular mechanisms, for which they turn to 

Model Organism Databases (MODs)33. To accomplish their tasks, it would require an 

effective search of properly indexed TOPMed datasets as well MODs, which are a cluster of 

organized molecular datasets with highly curated information and complete open data. These 

search tasks can be accomplished by creating a central entry point for targeted search 

activities in a data commons – from simple keyword searches to more advanced searches 

through privacy-preserving interfaces – facilitating the identification of a spectrum of 

relevant biomedical digital objects.

The central entry point will be a unified interface that integrates multiple current search 

engines (for example, AzTec and OmicsDI) designed for different types of digital objects. 

To harmonize the integration, one could employ a unique persistent identifier (such as DOI, 

which is already widely used and is adopted by both AzTec and OmicsDI) and construct a 

comprehensive and standardized metadata representation for all types of digital objects. 

Metadata harmonization requires employing controlled vocabularies and ontologies; 

normalizing the entities of different data objects using the existing metadata schemas; and 

standardizing the representations of clinical, technical, and analytical protocols. In 

particular, with respect to standardization of the metadata for clinical datasets, the 
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integration of MeSH terms8, 9 and International Statistical Classification of Diseases 

(ICD-10)34 would be beneficial.

Once the datasets most useful to a particular study have been discovered and located, there 

remain challenges in transferring this data from its host source to the computational 

workspace, be that an individual computer or a cloud-based server. Many requirements must 

be met in order to carry out point-to-point transmission of large datasets in a secure fashion; 

security and encryption are especially important with regards to clinical health data. 

Currently, there exist software and infrastructure (see changes below) that researchers can 

utilize for these purposes with confidence that transmission will be successful and secure. 

Globus is designed as an infrastructure solution for all data management and transfer 

concerns for researchers, enabling them to securely store and share data without having 

significant back-end knowledge of data management35. Globus highlights their “fire and 

forget” approach, in which users may run a command, and Globus will handle any concerns 

that come up (e.g. connection interruptions) with minimal user interaction. More 

information on Globus and its options can be accessed at https://www.globus.org/. Similarly, 

bbcp allows for file copying from one point to another at higher speeds, requiring only that 

both the source and target have installed the software. This software and its documentation 

may be accessed at https://www.slac.stanford.edu/~abh/bbcp/. Researchers using AWS can 

use Snowball, which is capable of transferring data at the petabyte scale into and out of the 

AWS cloud. Snowball can be accessed at https://aws.amazon.com/snowball/. All of these 

options provide biomedical researchers, regardless of their knowledge of sophisticated data 

management architectures, with avenues to effectively gather and acquire data for their own 

investigations.

Section III Molecular Phenotyping of Cardiovascular Diseases

Introduction

Many modern cardiovascular research studies have focused on elucidating underlying 

molecular mechanisms of a particular biological process and/or clinically relevant question. 

To this end, data science offers great opportunities to support such investigative endeavors. 

Where traditional biological research may be akin to panning for gold, with access to only a 

small stream of data, data science provides access to the main vein of gold contained deep 

within the ever growing mountain of data. Recently, data science tools have been developed 

to surpass what human power may reach. For biomedical data with high complexity and 

heterogeneity, machine learning, as a burgeoning discipline in data science, offers powerful 

capacity to tackle such computational challenges. Below, we have selected a generalized 

cardiovascular case scenario to introduce computational resources available for their dataset 

interrogation and extraction, making new discoveries and advancing cardiovascular 

medicine.

Machine Learning-empowered Molecular Signature Extraction

Let us consider given molecular datasets based on two or more longitudinal cohorts in 

cardiovascular diseases, Control and Treatment groups. Machine learning-based analytical 

methods can be employed to (i) extract molecular signatures that differentiate the two 
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cohorts, (ii) draw multilevel causal inference between clinically relevant variables and 

phenotypes, and (iii) build predictive models for clinical outcomes. The following three 

types of machine learning approaches can be used to build models that are suitable for such 

analyses: deep learning36, class imbalance learning37, and probabilistic graphical 

models38, 39; their key capabilities are summarized in Table 1.

Deep learning36 is a branch of machine learning algorithms that revolutionized many fields 

including image recognition, speech recognition, natural language processing, and machine 

translation by delivering comparable or better performance than human experts. Deep 

learning uses multilayer artificial neural networks to learn feature representations of the data 

based on the assumption that the observed data were generated by the interactions of layered 

factors corresponding to levels of abstractions or compositions of features at varying 

resolutions. The specific network architecture and composition of artificial neurons at each 

layer may vary depending on the tasks to be accomplished. For supervised learning tasks, 

deep learning models obviate feature engineering by transforming observed data into 

intermediate features, as well as derive layered architectures that disentangle interactions 

between these features and discover the ones that are useful in improving outcome. Deep 

learning models have recently demonstrated superior performance in medical image 

segmentation and classification40, clinical decision support (using electronic health 

records)41, drug discovery42, and understanding gene regulation43; specific to cardiovascular 

research, deep learning has been employed to detect multiple types of cardiac arrhythmias 

from wearable heart rate monitor data44and build models to predict heart failure onset45, 

among other studies. Deep learning has recently been applied to rare disease datasets46; this 

currently is a burgeoning area of research in cardiovascular medicine47.

Rare disease cohorts pose a challenge for traditional machine learning methods in that the 

number of individuals available to be studied who bear the disease is far less than the 

number of individuals to be studied without the disease, thereby causing an imbalance. Class 

Imbalance Learning (CIL)37 has proven to be effective in building predictive models for 

biomedical applications, particularly when subjects with positive clinical outcomes greatly 

outnumber the subjects with negative clinical outcomes. The CIL algorithms include data 

sampling and cost-sensitive learning methods. Data sampling methods are model agnostic, 

allowing investigators to either use linear models for better interpretability or non-linear 

kernel/deep networks for high predictive accuracy. Cost-sensitive methods are 

computationally more efficient than sampling methods for large datasets. CIL has been 

effectively applied in the prediction of acute cardiac complications48 as well as for 

cardiovascular risk stratification49 using both data sampling and cost-sensitive-based 

approaches. In addition, CIL methods have recently been combined with incremental 

learning algorithms50 to address the challenges associated with learning from data streams 

and dynamic time series data51. Although CIL is very effective in predicting clinical 

outcomes and identifying the molecular signatures in rare diseases, it may not be able to 

infer multilevel causal relationships between clinically relevant factors and phenotypes.

To identify the factors (e.g., genes, proteins, medical history, environmental factors) most 

relevant to the target variable (e.g., phenotype) in a multilevel manner, probabilistic 

graphical models (PGM) can be used, as they can represent multilevel causal relationships 
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between measured variables and disease phenotypes. Graphical models can reveal how a 

combination of factors impact the disease, partition cohorts in subpopulations of specific 

characteristics and associations to phenotypes, and lead to more personalized disease 

management protocols, as has been demonstrated on large scale gene expression datasets for 

Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD)52. 

Dynamic Bayesian networks, a type of probabilistic graphical model, are used in the 

integration of multiple high-dimensional datasets to create gene regulatory networks in 

cardiac differentiation53 and in the temporal abstraction of coronary disease outcomes using 

longitudinal clinical data54. Graphical models have the tendency to become very 

computationally expensive, particularly with high-dimensional datasets. They also impose 

some unrealistic assumptions like no presence of cycles in the underlying graph or the 

unimodal nature of variable types (i.e., all variables to be continuous or discrete only). More 

recently, new algorithms that learn graph structures over mixed data types have been 

proposed and used in chronic lung diseases52 and sickle cell55. Graphical model-based deep 

learning architectures also exist, but their predictive performance is generally inferior to 

those commonly used neural networks based deep learning methods. Moreover, drawing 

multilevel causal inference on temporal data using graphical models presents unique 

challenges and is an open avenue of research.

The advance of data acquisition technologies has exponentially expanded the scope and 

dimension of modern biomedical datasets, necessitating scalable, collaborative, community-

based computational endeavors. With the molecular signatures acquired at hand, 

investigators could further pursue data harmonization, data annotation, and data mining via a 

number of existing computational resources; most of them are accessible on the cloud. 

Distributed cloud resources facilitate collaborative analysis by giving a better vantage point 

and better access to powerful tools. Below, we highlight several data science resources that 

have gained considerable user appreciation in the broad scientific community; we use them 

as examples to support the research efforts in understanding data harmonization, data 

annotation, and data mining.

Data Harmonization, Annotation, and Mining

The effective analysis of multi-omics datasets is contingent on the integration of these 

disparate data types; there are specific aspects of each data type that present unique 

challenges, making this task arduous and computationally complex. To address this, 

Harmonizome was created as an amalgamation of information from 114 datasets. Stored in a 

relational database, the web interface allows users to submit queries and download relevant 

data; a combination of statistical and machine learning methods have created over 71 million 

associations between close to 300,000 attributes and 55,000 genes, illustrating the clear 

utility of such a unified resource56. The creators of Harmonziome have provided a REST 

API for remote computation or integration into other programs. The platform can be 

accessed at: http://amp.pharm.mssm.edu/Harmonizome/.

Once specific datasets have been identified and accessed, the next goal is to acquire in-depth 

understanding of any information out there relevant to the datasets of interest. This type of 

data annotation effort can be supported by tools like Enrichr, which is an open-source, freely 
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available tool for analysis and visualization of gene enrichment using unbiased lists of genes 

or proteins generated from genome wide, ChIP-seq, RNA-seq, microarray, and MS studies. 

These unbiased lists are used to compute gene enrichment against existing knowledge 

contained in ontologies and other annotated lists of gene set libraries organized by the 

functional groups of genes57. Legacy datasets are maintained to preserve past analyses and 

to address the issue of provenance, a key component of the FAIR doctrine. Enrichr utilizes 

the Data Driven Documents (D3) JavaScript library to present enrichment results. A REST 

API has also been provided for Enrichr, intended for users aiming to further enrich their own 

data programmatically. The analysis platform utilizes 114 libraries with over 210,000 

annotated gene sets; over 7.2 million gene lists have been analyzed using Enrichr as of July, 

2017. Accessible at http://amp.pharm.mssm.edu/Enrichr/.

The resources available to constantly aggregate relevant information for one specific 

molecule and to manually distill it into an accessible format is currently limited. The Gene 
Wiki portal, as part of the Molecular and Cellular Biology Wikiproject on Wikipedia, aims 

to leverage crowdsourcing efforts to annotate encyclopedic knowledge of individual genes 

and proteins58–60. Gene Wiki exists within Wikipedia as human gene and protein pages, 

which serve as living documents with an ever-increasing annotation network that both 

researchers and citizen scientists from a broad variety of backgrounds can contribute to by 

providing structured information. For example, embedded semantic linking within the Gene 

Wiki pages enables increased access to primary scientific knowledge by the general public. 

Over 10,000 individual gene pages are encompassed in Gene Wiki, among which there exist 

well annotated pages for the top 50 popularly studied cardiovascular proteins61, 62, including 

natriuretic peptide B, angiotensin-converting enzyme, sodium channel protein type 5 subunit 

alpha, potassium voltage-gated channel H2, and C-reactive protein. The Gene Wiki pages 

are also nicely clustered around organelle subproteomes; in the context of the mitochondrial 

subproteome, it covers all major metabolic pathways and over 550 mitochondrial proteins. 

The total pages are edited over 15,000 times and visited more than 50 million times in a 

single year. More information can be found at: https://en.wikipedia.org/wiki/

Portal:Gene_Wiki.

In the context of cellular processes, most molecules do not function in isolation; rather, a 

cascade of molecules work together to achieve a biological outcome. Through its intuitive 

interface and computational analysis tools, Reactome enables users to extract information 

from multidimensional datasets with high complexity63, 64. Users can supply their own 

datasets and employ highly optimized, in-memory pathway analysis tools to visualize 

carefully crafted, enriched pathways65. Moreover, this analysis tool provides the capability 

to explore the visualization of pathways in the Pathway Browser, which supports such 

features as zooming and event highlighting, as demonstrated in Figure 266–75. Reactome 

presents curated information on proteins, complexes, reactions, and pathways from 19 

species, including 10,684 human proteins and isoforms, and 66 cardiovascular pathways. 

Reactome’s data as well as software tools are freely available for download at: http://

reactome.org/.

A cloud-based virtual space can provide an environment as a sandbox to accommodate 

datasets, computational tools, and analytic pipelines to work synergistically. Galaxy is an 
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open-source platform with a wide range of analytical tools to perform biomedical research 

on open-source large datasets. By uploading their own data to the computational 

infrastructure of Galaxy, users can answer biomedical questions surrounding omics datasets 

by utilizing the countless tools on the site; informatics experience is not a requirement for 

performing these high throughput analyses, as the platform allows users to deploy 

preexisting computational workflows and create their own pipelines76. The project currently 

has over 4,500 publications that cite, mention, or discuss Galaxy, demonstrating its broad 

use in many fields of biological research. The platform can be accessed, along with in-depth 

tutorials, at https://usegalaxy.org/. Another popular open-source software platform is 

Cytoscape, used for analysis, visualization, integration, and annotation of complex networks 

such as molecular interaction networks and biological pathways77. The platform enables 

enhancement of the network data by integrating a wide variety of metadata formats using 

APIs from external sources and databases into the network structure. Two powerful aspects 

of Cytoscape are its extensibility and its active user community; using the Java-based open 

API, over 320 applications have been authored by third party developers to create added 

functionality and interoperability, with nearly 1 million App Store downloads as of July 

2017. Cytoscape is accessible at http://cytoscape.org/. In a similar fashion, more recent 

project such as Apache Taverna and Synapse of Sage Bionetwork aim to empower users 

with limited programmatic experience to perform biomedical computation. Taverna, now 

part of the Apache incubator, is designed as a workflow management system where users 

have ultimate customization of analytical workflows (accessible at: https://

taverna.incubator.apache.org/). Sage Bionetworks created Synapse with the intention of 

providing a collaborative platform for researchers to track their investigations; they have 

multiple API clients for a variety of programming frameworks and languages (available at: 

https://www.synapse.org/).

With the recent advancement of cloud-based computational technologies, many software 

applications have been engineered for portability in parallel to interoperability. Utilizing 

open-source data APIs MyGene.info and MyVariant.info serve to compile biomedical 

information regarding genes and variants into structured annotations; MyGene.info contains 

information for multiple species, whereas MyVariant.info contains information solely 

regarding human variations. The platforms benefit from an Elastic search-based indexing 

engine that clusters data objects across multiple repositories of data, which enables high-

performance querying and scalability78, 79. Both tools, on average, receive more than 3 

million requests per month and cover information regarding 19 billion genes and variants 

spanning. The APIs can be accessed at http://mygene.info/ and http://myvariant.info/.

In addition to these tools with widespread biomedical scope, there are tools and platforms 

that have been developed to specifically tackle cardiovascular research questions. The 

Cardiac Atlas Project was created as a database for the open sharing of cardiovascular 

imaging data. Including the MESA study among its epidemiological cohorts, the project 

houses this data for widespread access in order to catalyze computational modeling and 

high-througput statistical analyses80, 81. More information can be found at http://

www.cardiacatlas.org/. Moreover, the American Heart Association recently began 

collaboration with Amazon Web Services (AWS) to launch the AHA Institute for Precision 

Cardiovascular Medicine. Leveraging the computational infrastructure in AWS, the AHA 
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Precision Medicine Platform was created as a cloud-based source of openly accessible data 

and state-of-the-art tools to foster synergistic investigations among researchers. Details may 

be accessed at https://precision.heart.org/about.

A typical biomedical research workflow inspired by modern informatics would involve well 

thought-out steps and the integration of many resources to draw together, cluster, and 

aggregate all necessary information, producing new knowledge. An example of such a 

workflow is detailed in Figure 3. Employing cutting-edge machine learning technologies in 

conjunction with aggregated knowledgebases, analytical workspaces, and other digital 

resources can be tailored to the needs of individual investigators and the specific question 

they have at hand. As cloud-based technologies render these resources more accessible than 

ever before, their utilities and benefits are increasingly appreciated by the scientific 

community. With the field of data science rapidly transforming, especially in the context of 

cardiovascular medicine, the sustainability of the domain and the community hinges on 

deploying FAIR principles wherever possible.

Concluding Remarks

In the immediate future, we foresee cloud-based solutions making substantial contributions 

to advancing precision cardiovascular health. Regardless of what computational solutions 

the long-term future holds, we believe a computational environment built on the guiding 

principles of collaborative teamwork as well as shared common resources will prevail. As 

summarized, biomedical researchers are benefiting from collaborative analytical 

environments, such as Sage Bionetwork’s infrastructure, where multiple teams in different 

geographical locations can work on model system or cohort study analyses. Fundamentally, 

these platforms facilitate innovation and discovery by bring people together across the 

world. From a patient-care perspective, one prospective use of cloud-based technologies is 

enabling real-time virtual patient and physician communications on secure, individual health 

commons, thereby empowering patients to approach their care in unique ways which best 

suit their needs. These advances can be furthered through the use of mobile health devices to 

monitor cardiovascular parameters (e.g., heart rate, blood pressure) and lifestyle (e.g., 

physical activity, social media), collecting and analyzing these types of data to gain personal 

insights into one’s health.

As the digital paradigm has shifted from individually produced, isolated digital objects to 

those available on the cloud, cardiovascular investigators potentially have myriad resources 

at their fingertips. Employing FAIR principles in an integrated, cloud computing interface 

can drive both biomedical research and clinical practice forward by encouraging and 

inspiring users to perform data-based research without needing in-depth information about 

the infrastructural capacity required to perform the computational analyses best suited to 

their study.

Having said that, there are some initial costs in deploying a cloud computing environment. 

First, data (and metadata) that are typically stored on local databases and public data 

repositories need to be migrated to cloud storage. Importing these legacy data into the cloud 

often requires data cleaning and harmonization, which may entail disk file transfers from 
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one system to another, custom software, human annotation and curation, and other methods. 

The specific method depends entirely on the systems involved and the nature and state of the 

data being migrated. Deploying existing software and applications on the cloud may also be 

non-trivial, depending on their current implementation. In some rare cases where a software 

or application was not implemented in a programming language that is supported by the 

cloud infrastructure and/or requires system configurations that are not compatible with the 

cloud infrastructure, reimplementation of (part of) the software or application may be 

needed. Similar challenges present themselves if one wishes to migrate from one cloud to 

another or to build a cloud environment that bridges multiple cloud computing platforms. 

Serious considerations need to be given to ensure compatibility, interoperability, and 

portability. The success of deploying a cloud computing environment also depends on initial 

user acceptability and degree of adaptation. This requires a change of mindset for many 

users to embrace a new and more collaborative research environment and computing 

platform. Training activities and onsite technical supports may be needed to facilitate the 

transition.

In a cloud environment, the data physically reside in remote locations, aggravating concerns 

about data security and privacy protection. A number of techniques have been proposed by 

researchers for data protection and to attain the highest level of data security in the cloud. 

However, there are still many gaps to be filled by making these techniques more effective. 

These have been the focus of data governance that concerns the entire lifecycle of data 

management, including its organization, integrity, confidentiality, availability, privacy, and 

security. Better data governance policy and practice may not only support data privacy, 

security, and user trust but also play a key role in metadata generation and management; 

preserving data provenance and lineage; allowing simplified methods for tracing errors and 

correcting them; and enhancing reproducibility in data aggregation, analytics, and 

integration. This will also enable proper credit attribution and encourage good scientific 

practice and user engagement.

The sea of biomedical data is rising, and the scientific community demands tools to not only 

stay afloat, but also navigate the waters to their final destinations. The fundamental paths to 

biomedical discovery have been forged, thanks largely in part to the trailblazing investigators 

that have created analytical tools and repositories. Looking forward, there abounds 

opportunities for efficient extraction of the rich information hidden in untapped datasets; a 

community effort involving novel approaches to cloud-based computing will empower 

investigators to seize the gems of biomedical research and propel the transformation of 

cardiovascular medicine into a new era.
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Non-standard Abbreviations and Acronyms

API Application Programming Interface

AWS Amazon Web Services

CC-BY Creative Commons Attribution

ChIP-seq Chromatin Immunoprecipitation Sequencing

CIL Class Imbalance Learning

DATS Data Tag Suite

dbGaP database of Genotypes and Phenotypes

DOI Digital Object Identifier

EBI European Bioinformatics Institute

EDAM EMBRACE Data and Methods

EGA European Genome-phenome Archive

ER Endoplasmic Reticulum

FAIR Findable, Accessible, Interoperable, Resuable

GUID Globally Unique Identifier

ILD Interstitial Lung Disease

JATS Journal Article Tag Suite

JSON JavaScript Object Notation

MESA Multi-ethnic Study of Atherosclerosis

MOD Model Organism Database

MS Mass Spectrometry

PGM Probabilistic Graphical Models

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

TOPMed Trans-Omics for Precision Medicine

UPR Unfolded Protein Response

XML Extended Markup Language
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Figure 1. A Cloud-based Computing Platform
A unified computational platform leverages digital biomedical resources of many types. (a) 

To index and standardize datasets, metadata is extracted to create a metadata index. This 

information is utilized by the data search engine, which has both query and retrieval 

capabilities. (b) Similarly, indexing and standardization of tool and resource metadata 

employs the same framework to create a tool metadata index and corresponding resource 

search engine. The resulting metadata indices are then aggregated to empower a unified 

search interface composed of search processing engines optimized for each digital object 

type. The successful integration of disparate resources requires employing a unique 

Ping et al. Page 20

Circ Res. Author manuscript; available in PMC 2019 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



persistent identifier such as digital object identifier (DOI) and standardized metadata 

representation. The entry point of the platform is a graphical user interface where users can 

query for digital objects. Through this interface, users can find relevant datasets and 

software tools with a single query. (c) This will facilitate data analysis, molecular signature 

extraction and building of new computational models using machine learning algorithms. To 

further the ingenuity from the extracted information and support collaborative creativity on 

the cloud, data harmonization and annotation are performed via existing biomedical 

computational resources. The amalgamation of multi-omics, imaging, and text data on the 

same unified platform allows users to efficiently establish genotype-phenotype associations, 

construct multidimensional knowledge graphs, and perform data enrichment through 

existing knowledgebases.
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Figure 2. Overview of Pathways Involved in Protein Metabolism as Annotated in the Reactome 
Pathways Database66

Terms in italics reference the labels in the figure. Metabolism of proteins, as annotated here, 

covers the full life cycle of a protein from its synthesis to its posttranslational modification 

and degradation. Protein synthesis is accomplished through Translation of an mRNA 

sequence into a polypeptide chain. Protein folding is achieved through the function of 

molecular chaperones that recognize and associate with proteins in their non-native state; as 

well as facilitate their folding by stabilizing the conformation of productive folding 

intermediates67. Following translation, many newly formed proteins undergo Post-
translational modification, essentially irreversible covalent modifications critical for their 

mature locations and functions68, including Ubiquitination, Methionine oxidation, 

Carboxyterminal post-translational modifications, Neddylation, and Phosphorylation. Most 

mitochondrial proteins are encoded in the nucleus, synthesized in the cytosol and then by the 

process of Mitochondrial protein import sorted and targeted to four locations, outer 

membrane, intermembrane space, inner membrane, and matrix69–72. Peptide hormones are 

synthesized as parts of larger precursor proteins whose cleavage in the secretory system 

(endoplasmic reticulum, Golgi apparatus, secretory granules) is annotated in Peptide 
hormone metabolism. After secretion, peptide hormones are modified and degraded by 

extracellular proteases73. Two responses to protein damage are annotated in Reactome. The 

Unfolded Protein Response (UPR) is a regulatory system that protects the Endoplasmic 

Reticulum (ER) from overload. First, the UPR is provoked by the accumulation of 

improperly folded protein in the ER during times of unusually high secretory activity74. 

Second, Protein repair enables the reversal of damage to some amino acid side chains caused 

by reactive oxygen species. Pulmonary surfactants are lipids and proteins that are secreted 

by the alveolar cells of the lung that decrease surface tension at the air/liquid interface 

within the alveoli to maintain the stability of pulmonary tissue75. Nuclear regulation, 
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transport, metabolism, reutilization, and degradation of surfactant are described in the 

Surfactant metabolism pathway. Amyloid fiber formation, the accumulation of mostly 

extracellular deposits of fibrillar proteins, is associated with tissue damage observed in 

numerous diseases including late phase heart failure (cardiomyopathy) and 

neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. The figure 

has been copied under CC-BY with permission from Reactome, an interactive version with 

links to more detailed sub-pathway representations is accessible at [http://

reactome.ncpsb.org/PathwayBrowser/#/R-HSA-392499]
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Figure 3. Workflow Detailing Data Science Elements in Research Experimental Design or 
Clinical Study Design
This regenerative workflow overviews the experimental design that drives biomedical 

research forward in the age of data science. (a) Data can be collected from either human 

cohorts or model systems. Through techniques and methods tailored to the individual 

dataset, phenotypic and/or molecular data are acquired that may comprise one or more 

variables. (b) As there are many types of data and many features that can describe the data, 

e.g., sequencing technology used for a transcriptomics dataset, we will begin by first 

conducting data harmonization; subsequently, we will extract the metadata pertaining to the 

dataset in order to enable indexing and standardization. (c) With this data transformed into 

an accessible format and integrated into a unified interface, the investigator can then search 

for and retrieve relevant digital objects, i.e., datasets or computational tools most appropriate 

for the proposed study. (d) These resources can be deployed to perform state-of-the-art 

analyses, such as machine learning and predictive modeling, to discover robust genotype-

phenotype associations and establish molecular signatures for the cohort. (e) Once we have 

molecular signatures at hand, they will be processed and further analyzed to gain novel 

mechanistic, therapeutic, and clinical insights. (f) Armed with these new insights, 

investigators can contribute to the network of biomedical knowledge and inform new 

hypotheses to continue the upward spiral of cardiovascular research. Notably, this is not a 

closed cycle; this workflow demonstrates two potential scenarios. First, an investigator can 

charter through the course of experimental design and repeat, forging their continued path 

onto their next projects. Second, by fomenting and inspiring other investigations to be 
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conducted in parallel, the data collected from one set of studies may foster and cultivate joint 

analyses and further propagate collaborative discovery among the biomedical community.
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