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DRUG-seq for miniaturized high-throughput
transcriptome profiling in drug discovery
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Here we report Digital RNA with pertUrbation of Genes (DRUG-seq), a high-throughput
platform for drug discovery. Pharmaceutical discovery relies on high-throughput screening,
yet current platforms have limited readouts. RNA-seq is a powerful tool to investigate drug
effects using transcriptome changes as a proxy, yet standard library construction is costly.
DRUG-seq captures transcriptional changes detected in standard RNA-seq at 1/100th the
cost. In proof-of-concept experiments profiling 433 compounds across 8 doses, transcription
profiles generated from DRUG-seq successfully grouped compounds into functional clusters
by mechanism of actions (MoAs) based on their intended targets. Perturbation differences
reflected in transcriptome changes were detected for compounds engaging the same target,
demonstrating the value of using DRUG-seq for understanding on and off-target activities.
We demonstrate DRUG-seq captures common mechanisms, as well as differences between
compound treatment and CRISPR on the same target. DRUG-seq provides a powerful tool for
comprehensive transcriptome readout in a high-throughput screening environment.
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igh-throughput screening has been a staple in drug dis-

covery over the past four decades!. Target-based drug

discovery relies heavily on singular readouts such as
reporter gene expression or modification of enzymatic activity
in response to small molecule treatment. However, with a
recent renewed focus on phenotypic based drug discovery?
there is an increased interest in more comprehensive and less-
biased screening methods that combine aspects of both target-
based and phenotypic screening, such as RNA-seq. However,
there is a need to develop RNA-seq methods that are higher
throughput and have reduced cost, so that it becomes feasible to
screen large sets of compounds under multiple experimental
conditions.

For that purpose, multiple transcriptional profiling platforms
have been developed. Targeted sequencing-based approaches,
such as RASL-seq?, measure up to a few hundred specific genes or
splicing events. RASL-seq is particularly useful for studying genes
of interest or genomic loci, where a focused panel of events can be
assessed®. The Luminex L1000 platform, used for the Con-
nectivity Map (CMAP), measures a fixed panel of about 1000
landmark genes and about half of the additional genes in the
transcriptome are imputed in silico®. The latest release of CMAP
provides a huge collection of phenotypic data of various pertur-
bagens including compounds, shRNA and c¢DNA®, and has
facilitated identification of small molecule leads for various dis-
ease studies®”. 1000 has provided a very useful and cost-effective
platform for transcriptional profiling. However, it currently only
measures around 1000 genes and relies on imputation of the
remaining genes instead of direct measurement’.

Whole transcriptome RNA-seq has become an attractive
option to allow deeper interrogation of complex changes, yet
most of the standard protocols are labor intensive and cost
prohibitive for high-throughput use. The latest development,
PLATE-seq, allows samples in 96 wells to be profiled at about
$15 per sample®. However, it requires lengthy RNA purification
steps with special oligo(dT) grafted plates, and at 96 well format,
severely limits the number of treatment conditions that can be
tested in a single experiment (Supplementary Fig. 1). It would
be ideal to have a cost effective, massively parallelized tran-
scriptome profiling method in 384- and 1536-well format to
measure all genes in an unbiased manner to fully capture
the transcriptional diversity induced by compound or genetic
perturbation for drug discovery.

Results

DRUG-seq is a cost effective digital transcriptional profiling
method used for high-throughput profiling. We developed a
cost-effective method with increased throughput termed (DRUG-
seq), which costs $2-4 per sample including sequencing expense
and enables profiling in both 384- and 1536-well formats. By
forgoing RNA purification and employing a multiplexing strat-
egy, DRUG-seq simplifies multi-well processing to direct lysis and
RT reaction steps and drastically cuts down library construction
time and costs (currently $0.9 per well for 384-well plate and $0.2
for 1536-well plate). Furthermore, DRUG-seq allows the com-
plete operation to be integrated with high-throughput automation
(Fig. 1a). By incorporating specific barcodes into RT primers,
c¢DNAs from individual wells are labeled and then pooled after
first-strand synthesis, significantly reducing labor involved in
multi-well processing. The template switching property of reverse
transcriptase adds poly(dC) after first-strand cDNA synthesis and
allows the binding of a template switching oligo (TSO) for pre-
amplification by PCR. Following tagmentation and amplification,
libraries are size-selected and sequenced with custom primers. RT
primers also contain a 10 nucleotide Unique Molecular Index

(UMI)? to monitor potential PCR amplification artifacts (Fig. 1a,
b, see details in Methods and Supplementary Methods).

To assess potential well-to-well cross contamination during
sample processing, in a mixed species pilot experiment, we
interweaved mouse origin C2C12 and human origin 293 T cells
in the same 384 well plate and pooled material after indexed
RT reaction (Supplementary Fig. 2a). After sequencing and
read mapping, more than 98% of the wells have >96% species
specific UMI. Samples were separated by species in hierarchical
clustering, and wells from the same species strongly correlate
with each other, suggesting high reproducibility among wells and
very little cross contamination during sample processing
(Supplementary Fig. 2b and 2c).

DRUG-seq is digital and counts the 3’ end of transcripts with
the potential to reduce read depth and sequencing cost relative to
standard RNA-seq. We tested the effect of reducing the read
depth on the number of genes detected as well as on the accuracy
of capturing differentially expressed genes under compound
perturbation. A potent transcription inhibitor Cmp_078 (tripto-
lide) and a translation inhibitor Cmp_263 (homoharringtonine)
were chosen to provide different MoA for benchmarking.
Samples were treated in triplicates either with DMSO or
increasing doses of compounds at 0.1puM, 1pM, or 10uM.
DRUG-seq libraries were sequenced at estimated 2 million reads/
well and 13 million reads/well and compared with standard
population RNA-seq sequenced at an average of 42 million reads
per sample. Compared with a median 17 K entrez genes detected
in population RNA-seq, DRUG-seq detected a median of 11K
genes at 2mil reads/well and 12K genes at 13 mil reads/well
(Fig. 2a), including most of the L1000 landmark genes
(Supplementary Fig. 3a). Even at the shallow read depth of
2 mil reads/well, gene expression was highly consistent across
wells (Supplementary Fig. 4a and 4b). A common concern shared
by all 3’ counting platforms is the misquantification of
pseudogenes. However, we did not observe significantly skewed
quantification of pseudogenes in the DRUG-seq platform
compared with population RNA-seq (Supplementary Fig. 4c).
The majority of gains from population RNA-seq compared to
DRUG-seq derives from lowly expressed genes with FPKM
between 0 and 1, indicating recovery of low abundance
transcripts is limited by starting materials. Comparing the
performance of 2 and 13 million read depths per well, sequencing
more than 6-fold deeper at 13 vs 2 million did not drastically
increase gene detection (Fig. 2b). Differentially expressed genes
detected by population RNA-seq were reliably detected by
DRUG-seq at both read depths in ROC curve analysis
(Supplementary Fig. 3b), and these genes separated samples into
distinct treatment groups in response to compound treatment
(Fig. 2c). Compound specific dose-dependent expression patterns
in responses to treatment were maintained across platforms
and read depths (Fig. 2d, Supplementary Fig. 3c as control).
DRUG-seq is capable of capturing transcriptome changes related
to specific perturbations even at lower read depths. This
sequencing depth is comparable with previously published
results® and reduces sequencing cost to about 1/100t of standard
libraries ($3/sample on Illumina Hiseq 4000 platform). The
continuing drop in sequencing cost will further reduce the cost of
DRUG-seq.

DRUG-seq can be used to profile compounds and cluster them
based on their transcriptional profile. We utilized the DRUG-
seq platform to profile a collection of 433 compounds with pre-
dominantly known targets (Supplementary Data 3) in triplicates
for 8 doses (10uM, 3.2uM, 1uM, 0.32puM, 0.1 uM, 32nM,
10 nM, and 3.2nM) in the osteosarcoma U20S cells. Optimum
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Fig. 1 DRUG-seq overview. a DRUG-seq workflow. See details in Methods. Following compound treatment, cell lysis and RT reaction assembly are carried
out with automation. Incubation steps are carried out in 384-well thermocyclers (Biorad C1000 Touch). All sequencing reaction was performed on lllumina
Hiseq 4000 or Nextseq 500 platforms. b DRUG-seq chemistry. After cell lysis, mRNAs are directly reverse transcribed by a modified poly(dT) primer,
which contains a well position specific 10mer barcode and a random 10mer sequence as unique molecular index (UMI). Template switching activity of
the RT enzyme adds oligo(dC) to the first-strand cDNA, which allows binding of the template switching oligo (TSO). Samples are pooled after the RT and
template switching. After pre-amplification and tagmentation, paired end libraries are sequenced to identify well position, UMI and transcript information

treatment time is compound and application dependent. We
chose 12h to balance detection of compound effectiveness and
loss of material due to toxicity. Fifty-two out of the 433 com-
pounds that induced transcriptome changes are also present in
the Connectivity Map database (https://clue.io/). We compared
the number of differentially expressed genes detected by DRUG-
seq with the transcription impact score measured in Connectivity
Map. In spite of different technology platforms, the two mea-
surements correlate well (r=0.80, Supplementary Fig. 3d),
indicating compound potency differences are reliably captured in
DRUG-seq.

Transcriptional signatures after compound treatment can
group compounds with similar MoA and facilitate mechanistic
studies of novel compounds®. Out of the 433 compounds, 88 were
identified as potent compounds with more than 50 genes
significantly changed (|log2(Fold Change)|>1 and padj < 0.05).
Using changes of these genes as measurements in tSNE clustering
analysis, we observed distinct signatures (Fig. 3a). Known targets
of compounds in the same cluster can functionally implicate
common pathways affected under different treatments. MoA of
compounds with unknown targets can be inferred from their

neighbors in the cluster. For example, in cluster II, although
Cmp_308 (brusatol) is a Small Molecule with Unknown Target
(SMUT), it closely clusters with Cmp_263 (homoharringtonine),
Cmp_253 and Cmp_282 (cycloheximide), which target EIF4E,
EIF2AKI and RPLS6, respectively, all components of the translation
machinery. This suggests that Cmp_308 (brusatol) may also share
similar MoA. Interestingly, this was supported by a recent report
identifying inhibition of Nrf2 by this compound through
targeting the translation machinery!?. While additional follow-
up experiments will need to be conducted to confirm the newly
proposed MoA, this is a valuable validation of our platform and
in silico proof-of-concept.

Cluster IV consists of many compounds targeting cell cycle
machineries, most of which govern G1-S or G2-M transition
(Fig. 3a, b). Interestingly, many genes involved in cell cycle
functions, such as CDC20 and CCNF, were downregulated under
these compound treatments (Fig. 3c), indicating systematic cell
cycle perturbation by targeting a single component. However,
dose-dependent kinetics of dysregulation of the same target is
distinct for each compound, reflecting compound specificity and
potency (Fig. 3c).
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Fig. 2 DRUG-seq performance is on par to standard population RNA-seq. a Gene detection distribution in population RNA-seq and DRUG-seq sequenced
at 13 mil/well and 2 mil reads/well. b Gene detection comparison between population RNA-seq, DRUG-seq sequenced at 13 mil/well and 2 mil reads/well.
Mean number of genes detected with standard deviation was broken down into different levels, n =72 for each platform and read depth. ¢ Differential gene
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under the heatmaps represent the average correlation between clusters of the tree branch. See details in Methods
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In cluster III, compounds targeting genes involved in indicating commonly affected pathways. Interestingly, recent
epigenetic regulation, such as Brd4, BrdT, HDACI, and HDAC4, publications classified both compounds as dual kinase-
are closely grouped (Fig. 3a). Cmp_126 (BI2536) and Cmp_127 bromodomain inhibitors!"12. Of the three compounds targeting
(BI6727, volasertib), which target PLKI, are also nearby, Brd4, Cmp_466 (JQ1) and Cmp_464 (CPI-203) are structurally
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Fig. 3 DRUG-seq profiling of compounds produces mechanistic insights. a tSNE clustering using 4289 dysregulated genes under compound treatment
at 10 pM. Each compound and its target are labeled and closely clustered compounds with labeled common mechanisms are grouped by colors.

b Compounds in cluster |V arranged based on the functions of their targets during cell cycle?!-33, CDK7 and ERCC3, being part of TFIIH complex, are
involved in DNA repair34. CDK9 is the catalytic subunit of transcription elongation complex P-TEFb34 ¢ Dose-dependent gene expression changes under
the treatment of compounds in b. Mean gene expression level and standard deviation (n=3) for each compound and dose combination represented.
d Structure of 3 compounds targeting Brd4. e Dose-dependent gene expression changes under the treatment of Brd4 compounds. Mean gene expression
level and standard deviation (n = 3) for each compound and dose combination represented. f Venn diagram of the number of dysregulated genes under

increasing dose by Brd4 compounds

related, while Cmp_048 (I-BET151) is more distinct (Fig. 3d). At
10 uM, there is significant overlap of genes affected by all three
compounds, including genes involved in chromatin assembly/
disassembly and cell death (Supplementary Fig. 5). Although all
three compounds similarly impact gene expressions at high doses,
Cmp_048 (I-BET151) has a much milder effect at mid to low
doses while Cmp_466 (JQ1) and Cmp_464 (CPI-203) track each
other closely (Fig. 3e). Few genes are dysregulated by Cmp_048
(I-BET151) at 0.32 uM even though it affects a similar number
of genes at higher doses as the other two compounds (Fig. 3f).
This not only indicates that DRUG-seq is a powerful tool to
identify compounds with similar MoA, but also demonstrates
that it is sensitive enough for detailed comparisons of related, yet
distinct, compounds.

DRUG-seq can be used to profile CRISPR knockout cells to
uncover gene and compound function. Gene editing with
CRISPR/CAS9 has increasingly become an important tool in early
pharmacological target validation when target-specific com-
pounds are not available. As proof-of-concept, we set out to
compare the effect of CRISPR knockout and compound inhibi-
tion of a well-validated compound, Cmp_282 (cycloheximide),
with its established target, RPL6, using DRUG-seq. The ability to
multiplex many treatment conditions accommodates CRISPR
control and treatment replicates all in the same plate, and the
large number of genes profiled allows for comprehensive com-
parison. Two plates were set up for each experiment; one plate
was processed through the DRUG-seq workflow, and a duplicate
plate was processed and sequenced for specific CRISPR-induced
indel generation to determine the efficiency of generation of
loss of function alleles!3. In addition, cell confluency was closely
monitored to capture potential knockout phenotypes. CRISPR
guides targeting RPL6 demonstrated dramatic phenotypic chan-
ges. Four days post-transfection, markedly reduced confluency
was observed in replicate wells and indel analysis confirmed
significant frameshift mutations between 53 to 71% (Fig. 4a). In
knockouts mediated by sgRPL6_10 and sgRPL6_5, RPL6 level
was among the most significantly reduced transcripts (65 and
75%, padj=1.4x10740 and 8.5x 107, respectively), while
knockout by sgRPL6_9 resulted in a much milder reduction
(28%, padj =0.0006) (Fig. 4b). Unlike CRISPR treatment, com-
pound Cmp_282 (cycloheximide) for 12 h did not reduce RPL6
mRNA (Fig. 4b). Interestingly, there is only a partial overlap
between the transcriptomes of the CRISPR- and compound-
treated cells, likely due to the different mechanism of CRISPR
gene knockout vs. compound treatment and/or the difference in
kinetics: Slow for CRISPR and rapid for compound treatment.
Genes affected by compound treatment did partially overlap with
genes dysregulated in CRISPR knockouts (Fig. 4c), many of
which are involved in translation and rRNA metabolic processes.
The result is expected for the function of a ribosomal subunit and
a compound impacting the translational machinery. Using this
set of genes, treated samples from both compound and CRISPR
perturbations were clustered together and clearly separated from

DMSO treatment and non-targeting control samples in hier-
archical clustering (Supplementary Fig. 6), suggesting a shared
mechanism under both treatments. Interestingly, there were
many more genes that were uniquely affected by the compound
and these include regulators of cell death, localization, and
cellular response to DNA damage stimulus (Fig. 4c). This may
indicate that Cmp_282 (cycloheximide) has additional uni-
dentified targets.

DRUG-seq has advantages over L1000 and RASL-seq. Besides
significant cost reduction, another advantage of the DRUG-seq
platform compared to L1000 and RASL-seq is the ability to
directly measure > 10000 genes without computational inference,
many of which were not included in L1000 assay (Supplementary
Fig. 3a). To compare the accuracy of the two platforms, tSNE plus
K-means clustering using genes either directly measured or
measured + inferred in L1000 was compared with DRUG-seq
results. Clustering in DRUG-seq was more accurate with better
separations (Supplementary Fig. 7a-d). The 1351 differentially
expressed genes detected by DRUG-seq but not by L1000 +
inferred are enriched for pathways involved in mitochondria
functions, tretinoin response, EZH2 targets and genes located in
9934 (Supplementary Data 4 and Supplementary Fig. 7e),
underscoring the advantage of a more comprehensive tran-
scriptome by DRUG-seq. This indicates that targeted approaches
such as RASL-seq or L1000 capture some but not all transcrip-
tional changes afforded by a less-biased approach such as
DRUG-seq.

Discussion

In summary, we developed a massively parallelized, automated,
low-cost next-generation sequencing-based method to profile
whole transcriptome changes under chemical and genetic per-
turbations and successfully applied it in an industrial high-
throughput screening environment. DRUG-seq is a powerful
tool that has advantages over other technologies such as RASL-
seq, PLATE-seq and L1000. It is easier to perform, has higher
throughput, is unbiased and is cost-effective. DRUG-seq is a
powerful tool to assist novel compound mechanistic studies,
compound repurposing efforts and identification of genetic
transcriptional networks with CRISPR/CAS9-based gene
knockout.

Methods

Cell lines and compound treatment. C2C12 (ATCC CRL-1772), 293 T (ATCC
CRL-3216), and U20S(ATCC HTB-96) cells were used in compound profiling
experiments. Passage number was limited to 50 before being replaced with

a new batch of cells. Cells were plated down to 50-80% density in 384-well plates or
24-well plates for at least 6 h before compound treatment. For 384-well treatment,
compounds were added at half log decreasing dose for 8 doses: 10 uM, 3.2 uM,
1uM, 0.32 uM, 0.1 uM, 32 nM, 10 nM, and 3.2nM in triplicates with DMSO as a
control. For population RNA-seq study, compounds were added to cells grown in
24-well plates at 10 uM, 1 nM, and 0.1 uM in triplicates with DMSO as a control.
After 12 h, 384-well plates were collected and cells were lysed for DRUG-seq
library preparation. Cells in 24-well plates were processed following the standard
population RNA-seq procedure below.
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Population RNA-seq library construction. Cells were collected from wells and
RNA was purified with RNeasy mini kit (Qiagen). RNA QC was carried out with
Bioanalyzer RNA 6000 nano kit (Agilent). Population RNA-seq libraries were
constructed according to manufacturer’s instruction (Illumina Truseq library
construction), and sequenced on a Hiseq 4000 instrument with a minimum of 30
mil read depth.

Population RNA-seq data analysis. Population RNA-seq data were processed
using a standard RSEM workflow!4. The resulting FPKM values were used for
comparison with DRUG-seq. Gene detections were evaluated with NCBI Entrez
genes present in Ensembl reference.

For clustering comparison between population RNA-seq and DRUG-seq,
unsupervised meta-clustering was performed using the nclustl R package available
at (http://bcf.isb-sib.ch/nclust/v1/). Briefly, as similarity measures, Fisher Z-
transformation of Pearson’s correlation is combined across datasets using random
effect meta-analysis summary!®. Average linkage is used as the clustering criterial®.
For visualization of the dendrogram, the height of the tree branches corresponds to
the correlation obtained by inversing the Fisher Z-transformation of the average
linkage scores. Row clustering is performed on pooled data matrix. For
visualization, they are stratified by the dataset of origin, but maintaining the
ordering of the pooled data.

DRUG-seq library construction and sequencing. Cells attached to wells were
lysed directly in wells with 15 pl lysis buffer. Then plates were sealed and placed on
a microplate shaker for 15 min at 900 rpm. Barcoded DRUG-seq RT primers
(Supplementary Data 1) were dispensed into individual wells with an Echo liquid
handler (Labcyte Inc), and cell lysate was transferred into 384-well PCR plates pre-
dispensed in each well with RT mix and diluted ERCC mix1 (Thermo Fisher).
Plates were incubated at 42 °C for 2 h. Material from each well in a 384-well plate
was pooled into a single sample, purified with DNA clean & concentrator-100 kit
(Zymo Research) and Agencourt RNAClean XP beads (Beckman Coulter). After
Exol treatment, material was pre-amped with DRUG-seq PCR primers and pur-
ified. The pre-amped material was fragmented with Nextera enzyme (Illumina),
and individual libraries were indexed and quantitated with gPCR before sequen-
cing on a Hiseq 4000 (Illumina). See Supplementary Information for specific
barcode and primer sequences and detailed protocol.

DRUG-seq data analysis. DRUG-seq data processing was carried out with a
custom script. Briefly, 10-base well position barcodes and 10-base UMI informa-
tion from read1 fastq are first incorporated into read2 fastq as part of sequence ID.
Then read2 sequence was aligned to transcriptome by STAR!7 with hg38 reference
index and Ensembl gene references. The resulting uniquely mapped alignments are
then demultiplexed and the transcript UMI for each gene is counted for each
sample well. A gene expression matrix is then used for differential gene expression
analysis with DESeq2 in R!® for each triplicate samples representing unique
compound/dose combination with DMSO treatment as control.

Clustering analysis was carried out using tSNE method!. Compounds were
selected if at 10 uM more than 50 genes in differential gene expression analysis
meet the cutoff criteria (padj < 0.05, [log2(Fold Change)| > 1). Then log2(Fold
Change) compared to DMSO was quantile normalized. For each qualified
compound, up to 200 differentially expressed genes were selected as candidate
genes to avoid a dominating effect by potent compounds. Then candidate gene lists
for all compounds were combined, resulting in 4289 genes total, and the quantile
normalized log2 (Fold Change) for each gene under each compound treatment was
used as the measurement. Up to 3000 iterations were performed to generate
optimum clustering using the tsne package in R. Over-represented gene categories
were generated using gene set enrichment analysis®’.

Gene selection for hierarchical clustering analysis of Cmp_078 (triptolide) and
Cmp_263 (homoharringtonine) was carried out similarly, with up to 1000
candidate genes selected for each compound. The quantile normalized log2 (Fold
Change) was used to calculate Euclidean distance in clustering analysis.

From population RNA-seq results, differentially expressed genes with log2
(Fold Change) > 2 were used as true positives in ROC curve analysis for DRUG-seq
samples with the same compound/dose combination.

DRUG-seq profiling of CRISPR mutants. To profile CRISPR mutations, synthetic
targeting and control gRNAs were reverse transfected using Lipofectamine
RNAIMAX (Thermo Fisher) in 4 replicates to a U20S cell line stably expressing
Cas9 at 2500 cells per well in a 384-well plate. Cells were monitored daily after
transfection and collected at day 4 for indel and transcriptome profiling. Library
construction, sequencing and data analysis were carried out the same way as
compound-treated samples. Differentially expressed genes were selected with cutoff
of padj < 0.05 and [log2(Fold Change)| > 0.6 for both CRISPR mutations and
Cmp_282 (cycloheximide) treatment. Over-represented gene categories were
generated using gene set enrichment analysis?’.

CRISPR indel detection. CRISPR indel detection were carried out as previously
described!3. To prepare the samples for sequencing, two rounds of PCR were
performed. The first round of PCR utilized locus-specific primers to amplify the

edited region (Supplementary Data 2). The product formed during the first round
was then used as a template for a second round of PCR to add dual indices
compatible with the Illumina system. Libraries were quantitated by qRT-PCR and
subsequently sequenced on the Illumina MiSeq system. For sequence analysis, raw
reads were aligned to a reference sequence, then tallied based on genotype. Finally,
tallied genotypes were binned into one of three categories: wild type, in-frame, and
frameshift.

Statistics. Statistical test used in differential gene expression analysis is provided
by DESeq2 R package!8. All sample correlations are calculated using Pearson
method with two tailed ¢ test. GSEA employs statistical test detailed in ref. 20. All
barplots are overlaid with scatter plots to show individual data points with the
exception of Fig. 2b, where it was not possible to plot all the points and the GSEA
analysis in Fig. 4c, where each bar represents a single -log10(FDR) value.

Computer code availability. All custom computer codes are available upon rea-
sonable request from the corresponding author (A.K.).

Note on cell lines. C2C12, 293 T, and U20S are not on the latest list of ICLAC
commonly misidentified cell lines, and the identity of a particular cell line is
immaterial to the technical assessment of DRUG-seq. Cell lines are also obtained
from ATCC, which authenticates cell lines by STR testing. Internally, all cells are
routinely tested for mycoplasma contamination.

Data availability
The RNA-seq data has been deposited at GEO under the accession code GSE120222. All
other data are available upon reasonable request from the corresponding author (A.K.).
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