Skip to main content
. 2018 Oct 11;12:49. doi: 10.3389/fnsys.2018.00049

Figure 2.

Figure 2

The desynchronized state facilitates feature coding by single neurons. (A) Example of simultaneous LFP and single neuron activity in anesthetized auditory cortex of gerbils in the synchronized (top) and desynchronized state (bottom). Note that in the synchronized state most single unit activity tracks the large-amplitude fluctuations in the LFP. (B) Responses to tones are more selective and reliable over stimulus repetitions in the desynchronized state. Top panel shows the auditory spectrogram of the frequency modulated tone and the bottom panel shows the responses in rasterplots for two example cells to repetitions of the same stimulus recorded in the synchronized (top) and desynchronized state (bottom). Note the temporally precise and selective activity of the two example cells in the desynchronized condition compared to the non-selective responses in the synchronized condition. (C) Three measures of improved feature coding by single neurons in the desynchronized state. Top responses to tones had higher direction selectivity index, e.g., preference for upward vs. downward frequency modulated sweeps (computed as: response to preferred direction − opposite)/(preferred + opposite). Middle: responses during the desynchronized state were more temporally precise in their spiking (computed as the amount of jitter necessary to render the response uninformative, low value is higher precision) and, bottom, had higher reliability (computed as the signal-to-noise ratio). All figures adapted under Creative Commons Attribution License from Pachitariu et al. (2015).