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ABSTRACT Probiotic gut bacteria employ specific metabolic pathways to degrade
dietary carbohydrates beyond the capabilities of their human host. Here, we report
how individual commercial probiotic strains degrade prebiotic (inulin type) fructans.
First, a structural analysis of commercial fructose oligosaccharide-inulin samples was
performed. These �-(2-1)-fructans differ in termination by either glucose (GF) or fruc-
tose (FF) residues, with a broad variation in the degrees of polymerization (DPs). The
growth of individual probiotic bacteria on short-chain inulin (sc-inulin) (Frutafit CLR),
a �-(2-1)-fructan (DP 2 to DP 40), was studied. Lactobacillus salivarius W57 and other
bacteria grew relatively poorly on sc-inulin, with only fractions of DP 3 and DP 5 uti-
lized, reflecting uptake via specific transport systems followed by intracellular metab-
olism. Lactobacillus paracasei subsp. paracasei W20 completely used all sc-inulin
components, employing an extracellular exo-inulinase enzyme (glycoside hydrolase
family GH32 [LpGH32], also found in other strains of this species); the purified en-
zyme converted high-DP compounds into fructose, sucrose, 1-kestose, and F2 (inulo-
biose). The cocultivation of L. salivarius W57 and L. paracasei W20 on sc-inulin re-
sulted in cross-feeding of the former by the latter, supported by this extracellular
exo-inulinase. The extent of cross-feeding depended on the type of fructan, i.e., the
GF type (clearly stimulating) versus the FF type (relatively low stimulus), and on fruc-
tan chain length, since relatively low-DP �-(2-1)-fructans contain a relatively high
content of GF-type molecules, thus resulting in higher concentrations of GF-type DP
2 to DP 3 degradation products. The results provide an example of how in vivo
cross-feeding on prebiotic �-(2-1)-fructans may occur among probiotic lactobacilli.

IMPORTANCE The human gut microbial community is associated strongly with host
physiology and human diseases. This observation has prompted research on pre-
and probiotics, two concepts enabling specific changes in the composition of the
human gut microbiome that result in beneficial effects for the host. Here, we show
how fructooligosaccharide-inulin prebiotics are fermented by commercial probiotic
bacterial strains involving specific sets of enzymes and transporters. Cross-feeding
strains such as Lactobacillus paracasei W20 may thus act as keystone strains in the
degradation of prebiotic inulin in the human gut, and this strain–exo-inulinase com-
bination may be used in commercial Lactobacillus-inulin synbiotics.
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Probiotics are live microorganisms that, when administered in adequate amounts,
confer a health benefit to the host (1). Probiotic bacteria are typically found in the

genera Bifidobacterium and Lactobacillus; however, some strains of Enterococcus and
Escherichia also exhibit interesting probiotic properties. Providing bacteria with prebi-
otic compounds enables the selective stimulation and enrichment of desirable bacterial
strains important for sustaining human health. Prebiotics are defined as the substrates

Received 22 June 2018 Accepted 23 August
2018

Accepted manuscript posted online 31
August 2018

Citation Boger MCL, Lammerts van Bueren A,
Dijkhuizen L. 2018. Cross-feeding among
probiotic bacterial strains on prebiotic inulin
involves the extracellular exo-inulinase of
Lactobacillus paracasei strain W20. Appl Environ
Microbiol 84:e01539-18. https://doi.org/10
.1128/AEM.01539-18.

Editor Andrew J. McBain, University of
Manchester

Copyright © 2018 American Society for
Microbiology. All Rights Reserved.

Address correspondence to Lubbert
Dijkhuizen, L.Dijkhuizen@rug.nl.

MICROBIAL ECOLOGY

crossm

November 2018 Volume 84 Issue 21 e01539-18 aem.asm.org 1Applied and Environmental Microbiology

https://doi.org/10.1128/AEM.01539-18
https://doi.org/10.1128/AEM.01539-18
https://doi.org/10.1128/ASMCopyrightv2
mailto:L.Dijkhuizen@rug.nl
https://crossmark.crossref.org/dialog/?doi=10.1128/AEM.01539-18&domain=pdf&date_stamp=2018-8-31
https://aem.asm.org


that are selectively utilized by host microorganisms conferring a health benefit (2). A
prominent class of prebiotics is constituted by dietary nondigestible carbohydrates.
These nondigestible carbohydrates escape metabolism by human digestive enzymes
and are therefore available as carbon and energy sources to bacteria residing in the
lower gastrointestinal tract (3).

There are several classes of prebiotic carbohydrates, including arabino xylanooligo-
saccharides (AXOS), maltooligosaccharides (MOS), galactooligosaccharides (GOS), and
fructooligosaccharides (FOS, such as inulin and oligofructose [OF]) (4). Fructose-based
prebiotics are the most-well-studied nondigestible carbohydrates considered for their
prebiotic effects. These include the �-(2-1)-fructans derived by enzyme synthesis from
sucrose and inulin or oligofructose obtained from plant sources. �-(2-1)-Fructans
exhibit structural differences in both their degrees of polymerization (DPs), which may
vary between 2 and 60, and the constituent terminal nonreducing end sugar, being
glucose for GF-type fructans and fructose for FF-type fructans (5, 6).

Bacteria that metabolize prebiotics and other nondigestible carbohydrates produce
short-chain fatty acids (SCFA), such as acetate, propionate, and butyrate. These biolog-
ically important compounds mediate crucial health effects in the human body at the
molecular level (7). Prebiotics thus serve as selective nutritional sources for probiotic
bacteria, and the two independently defined dietary concepts of pre- and probiotics
may synergistically come to action in the human gut.

Probiotic bacteria may benefit selectively from the presence of prebiotic carbohy-
drates through their set of carbohydrate-active enzymes (CAZymes), which include
glycoside hydrolases (GHs), enabling carbohydrate utilization as carbon and energy
sources (8). GHs encoded in bacterial genomes often outnumber the number of human
GH genes by several fold (9). Bacterial species strongly vary in the set of GH enzymes
encoded. Different carbohydrates are thus fermented by different bacterial species,
resulting in the selective growth stimulation of species that benefit from a certain
carbohydrate structure. The modulation of the human gut microbiota by prebiotic
carbohydrates thus may occur at the species level (10). This provides clear opportuni-
ties to supply combinations of probiotic strains and prebiotic compounds with bene-
ficial effects. In practice, however, pre- and probiotic treatments are often still given
independently from each other. It remains largely unknown how the increased bene-
ficial effects of novel probiotic bacterial strains can be potentiated through the addition
of selected prebiotics. Further studies into the physiology and growth of strain-specific
probiotic bacteria on prebiotic oligosaccharides are therefore clearly needed.

The utilization of certain �-(2-1)-fructans has been investigated with various strains
from the genera Lactobacillus and Bifidobacterium (11–14). These studies mostly fo-
cused on the selective utilization of fructans with a certain length per strain. For
instance, Bifidobacterium longum and Bifidobacterium animalis grew better on short-
chain fructooligosaccharide (scFOS) Actilight 950P (low DP) than on inulin from dahlia
tubers (high DP) (11). A study of oligofructose and inulin utilization by 18 Bifidobacte-
rium strains from 10 different species revealed 4 groups, reflecting their individual
catabolic abilities, but none of the strains consumed inulin completely (12). The ability
to utilize specific fructan components differed even among strains from the same
Lactobacillus or Bifidobacterium species (13, 14). No single species used FOS/inulin
completely. Besides being directly stimulated by prebiotic substrates, probiotic bacteria
may indirectly benefit from prebiotic substrates via cross-feeding mediated by smaller
carbohydrate degradation products or by SCFA as the end products of bacterial
fermentation. While the structural identity of SCFA for cross-feeding in other bacteria
often is clear (15–17), little is known about the structures of the extracellular degrada-
tion products of prebiotic fructans that may accumulate through bacterial GH enzyme
activity. The elucidation of such structural features is essential for the further unraveling
of the cross-feeding mechanisms that may occur among human gut microbiota and will
enable the determination of the ecological roles that individual members play and
show how members contribute to the gut microbiome as a whole. In particular, some
bacteria have been assigned a role as a keystone species, present at a relatively low
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abundance but exerting a strong stabilizing influence on the community (18). Only a
single study reported such a role for Lactobacillus, specifically, Lactobacillus reuteri DSM
17938 (19). For the human isolate Lactobacillus paracasei subsp. paracasei 8700:2,
beneficial effects toward other members of the gut microbiota have been observed due
to its extracellular breakdown of inulin-type fructan, but the extent of this effect on
other strains has not been investigated in detail (17, 20).

In this study, we aimed to identify which factors influence FOS/inulin degradation by
pure cultures and defined cocultures of probiotic Lactobacillus strains. The results show
that an extracellular family GH32 enzyme employed by Lactobacillus paracasei subsp.
paracasei W20 increases the availability of suitable FOS carbon and energy substrates
to Lactobacillus salivarius W57 in cocultures. To our knowledge, it has not been shown
before that an extracellular GH32 enzyme can mediate cross-feeding propensity to
another bacterium. These stimulatory properties of L. paracasei toward another gut
bacterium offer possibilities for multispecies synbiotic combinations.

RESULTS
Structural analysis of commercial �-(2-1)-fructans. An increasing number of

�-(2-1)-fructans is commercially available. We first analyzed the structural composition
of 9 commercial �-(2-1)-fructans (Table 1). Two types of compounds were found (6):
fructan chains with a terminal sucrose unit on one end (GF type) and �-(2-1)-linked
fructosyl residues only (FF type). GF-type compounds were present in all products
analyzed, while FF-type compounds were found only in 5 of 9 (Table 1). When we
compared the intensities of peaks obtained by high-pH anion-exchange chromatogra-
phy with pulsed amperometric detection (HPAEC-PAD) analysis (data not shown), the
peak responses for FF-type compounds were the highest in Frutalose OFP and FOS P1.
These compounds were classified as oligofructoses. For Frutafit HD, Frutafit CLR, and
Inulin P2, the signal responses for FF-type compounds were lower, while the numbers
of GF-type compounds found in chromatograms increased. These fructans were thus
classified as inulin-type �-(2-1)-fructans. The highest diversity in structural composition
overall was found in the degree of polymerization (Table 1). Frutafit HD and Inulin P2
offered the broadest range of fructan compounds (DP 2 to DP 60), while Frutalose OFP,
FOS P1, and scFOS P6 had a limited range (DP 2 to DP 7). Most preparations still
contained some glucose and fructose monosaccharides (relative peak heights ranging
between 0.5% and 8.2%) and sucrose (constituting 2% to 15% relative peak heights).
The 1-kestose and nystose samples were pure and comprised only these specific DP-3
and DP-4 compounds, respectively. This comparative structural analysis of 9 commer-
cial fructans provided a firm basis for the subsequent study of the utilization of specific
compounds by probiotic bacteria.

Growth of selected probiotic bacteria on short-chain inulin. Various probiotic
bacteria were tested for their ability to grow on short-chain inulin (sc-inulin; Frutafit
CLR). This prebiotic has been derived from inulin and comprises over 50 individual
compounds with various DPs (see below), of both GF- and FF-type �-(2-1)-fructans

TABLE 1 Composition of commercial prebiotic �-(2-1)-fructans obtained by comparative
HPAEC-PAD analysis

Commercial name Supplier Description

DPa

GF type FF type

Frutafit HD Sensus BV Native inulin 2–60 2–14
Frutafit CLR Sensus BV sc-inulin 2–40 2–14
Frutafit TEX Sensus BV lc-inulin 10–60
Frutalose OFP Sensus BV Oligofructose 2–7 2–7
FOS P1 Winclove BV Oligofructose 2–7 2–7
Inulin P2 Winclove BV Native inulin 2–60 2–14
scFOS P6 Winclove BV scFOS 2–6
Nystose CarboSynth GF3 4
1-Kestose CarboSynth GF2 3
aDP, degree of polymerization.
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(Table 1). Frutafit CLR thus shows all the structural variations that are unique to
prebiotic �-(2-1)-fructans, enabling an analysis of their effects on the growth of
individual probiotic bacteria. Various strains of lactobacilli and bifidobacteria, plus
Enterococcus faecium and Pediococcus acidilactici, were tested. The growth responses of
individual strains with sc-inulin varied greatly, e.g., in the lengths of the lag phase and
in the final values for optical density at 600 nm (OD600) reached (Fig. 1A to C). All strains
grew well on glucose (positive control), reaching final (100%) OD600 values at stationary
phase of approximately 1.0 in microtiter plates and 2.0 in Hungate tubes, set as a
relative OD600 value of 1.00. When incubated with sc-inulin, most strains reached a
stationary-phase relative OD600 of around 0.4, indicating that sc-inulin compounds
were supporting the growth of these strains only partly compared to that of the
positive control (Fig. 1C).

Carbohydrate analysis of sc-inulin consumption. Following bacterial growth, the
culture supernatants were analyzed for the presence of any remaining components
from the sc-inulin mixture. A carbohydrate analysis revealed four patterns. (i) L. sali-
varius W57, E. faecium W54, and P. acidilactici W143 specifically used only fructose, GF
(sucrose), and GF2 (1-kestose) (Fig. 2A). (ii) Bifidobacteria utilized sc-inulin compounds
with the preference F2 � F3 � F4 and GF � GF2 � GF3 � GF4, but only the F2
[�-D-Frup-(2¡1)-D-Fru] and F3 [�-D-Frup-(2¡1)-�-D-Frup-(2¡1)-D-Fru] compounds were
completely used, at 24 h for Bifidobacterium animalis subsp. lactis W51 and B. lactis W53
and at 36 h for B. lactis W52 (Fig. 2B). (iii) Lactobacillus acidophilus W37 utilized
short-chain compounds of the FF and GF types. (iv) L. paracasei W20 utilized all GF- and
FF-type compounds present in sc-inulin. These results clearly highlight that probiotic
bacteria have diverse substrate specificities for the utilization of �-(2-1)-fructans.

Utilization of �-(2-1)-fructans by L. paracasei W20. L. paracasei W20 was clearly
exceptional by consuming all GF- and FF-type compounds present in sc-inulin. To
analyze its fructan metabolism in more detail, we grew L. paracasei W20 on sc-inulin
and GF3 (both GF-type fructans) and Frutalose oligofructose (FF-type fructan). An
analysis of the changes in fructan compositions over time revealed a preferential
degradation of fructose and all sc-inulin compounds larger than a DP of 3 in culture
supernatants harvested from L. paracasei W20 at the mid-exponential phase (Fig. 1A) (L.
paracasei, t � 12 h), while sucrose (GF) and 1-kestose (GF2) were present in relatively
large amounts (Fig. 3A). Also, the degradation of the pure GF3 compound nystose by
L. paracasei W20 first resulted in the release of 1-kestose (not shown) in the superna-
tant, followed by sucrose GF (Fig. 3C). In time, oligofructose degradation resulted in the
formation of GF and GF2 and of the disaccharide F2 (Fig. 3B). All compounds had been
consumed completely in stationary-phase samples (not shown). These results show that
L. paracasei W20 degrades �-(2-1)-fructans in a sequential manner, leading to tempo-
rary increases of GF and GF2 in the case of GF-type fructans and F2 in the case of
FF-type fructans.

Identification and activity of a putative extracellular family GH32 �-fructosidase.
Following growth on several �-(2-1)-fructans, we detected �-fructosidase activity in L.
paracasei W20 culture supernatants. This activity degraded sc-inulin into sucrose,
fructose, and glucose (see Fig. S1 in the supplemental material). The supernatants
obtained from the growth of L. paracasei W20 on glucose or fructose clearly had much
lower activities. Via a search of the Carbohydrate-Active enZYmes Database (www.cazy
.org) (dbCAN [21]), the genome of L. paracasei W20 was found to encode one putative
�-fructosidase protein of 1,031 amino acids (family GH32) including a cell wall anchor
motif for Gram-positive bacteria (LPQAG) (GenBank accession no. MH047828). The
subcellular localization of this protein is predicted to be �99% extracellular. The protein
sequence showed 97% identity to �-fructosidases and sucrose-6-phosphorylases pres-
ent in various strains of L. paracasei and L. casei and around 30% identity to exo-
inulinases from Bacteroides species and Bacillus subtilis (22, 23). To characterize the
activity of this putative GH32 enzyme, we cloned the predicted catalytic domain
(residues 188 to 739) into the pET15bLIC vector which added an N-terminal 6-His
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tag (called LpGH32). The overexpression of LpGH32 in Escherichia coli BL21 yielded
a dominant band by SDS-PAGE at the expected molecular mass of 61 kDa; this
protein was purified using His-trap column affinity chromatography. The incubation
of 0.9 �g/ml (excess amount) of the purified LpGH32 with �-(2-1)-fructans revealed

FIG 1 Anaerobic growth of various probiotic bacterial strains with 5 mg/ml prebiotic sc-inulin (scI). (A) Lactic acid bacterial strains were
grown in 160- to 200-�l aliquots in microtiter plates under constant N2 flow and growth was followed over time using a microtiter
plate reader. (B) Bifidobacterium strains were grown as 3 ml cultures in Hungate tubes under a CO2 atmosphere, and growth was
followed by measuring OD600 at 4 or 5 time points. (C) Relative OD600 values at stationary phase (using maximum OD600 of positive
controls on glucose to normalize OD600 obtained with sc-inulin). All values shown are means from 3 biological replicates. Some
standard deviations are smaller than the size of the symbol and therefore not apparent.
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activity on inulin and oligofructose (only at pH 5.0), which was observed before with
culture supernatants. The final products of enzymatic conversion after 40 h were
identified as monosaccharides (Fig. 4A, inulin and oligofructose) and subsequently
separated and identified by HPAEC-PAD as glucose and fructose. This activity was
similar to what was observed before within the culture supernatants of L. paracasei W20
(Fig. S1). We further tested the activity of the enzyme with sucrose and the �-(2-6)-
fructan levan (Fig. 4A, levan and sucrose). While all sucrose was converted into fructose
and glucose after 40 h, levan was not a substrate at pH 4.0 and only partly converted
into fructose at pH 5.0 (indicated by a remaining spot at the bottom of the thin-layer
chromatography [TLC] plate) (Fig. 4A, levan, lanes 3 and 4). Product formation at 40 h
was also analyzed by adding a minimal amount (0.15 �g/ml) of LpGH32 to incubations
with inulin. Besides the monosaccharides glucose and fructose, GF sucrose and GF2
1-kestose accumulated from inulin conversion (Fig. 4B). With oligofructose, we ob-
served an increase of DP-2 F2 plus DP-2 sucrose and DP-3 1-kestose (derived from GF
impurities present in the oligofructose) (Fig. 4C). These results show that larger �-(2-
1)-fructan chains are preferably converted by the LpGH32 enzyme, leading to an
intermediate accumulation of shorter DP-2 to DP-3 �-(2-1)-fructan chains.

Genome analysis explains different fructan utilization patterns in probiotic
bacterial strains. Our results show that L. paracasei W20 employs an extracellular

FIG 2 HPAEC-PAD analysis of FOS/inulin components (DPs of 2 to 20 are shown) in culture supernatants of
probiotic bacterial strains grown on sc-inulin (Frutafit CLR) (see Fig. 1). Peaks were identified using inulin (DP, 2 to
16; polymer) as the standard. (A) Selected probiotic lactic acid bacteria grown for 18 h. (B) B. lactis W51 and B. lactis
W53 grown for 24 h and B. lactis W52 grown for 36 h. mMRS, modified MRS medium.
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exo-inulinase (EC 3.2.1.80, family GH32) to degrade prebiotic �-(2-1)-fructans (LpGH32).
Among the bacteria tested in this study, this enzyme accounts for the ability of L.
paracasei W20 to degrade �-(2-1)-fructans independent of their structural parameters
(GF and FF types; DP 2 to DP 60). Due to the preference of LpGH32 to degrade fructan
chains larger than a DP of 3 first, seen both with the purified enzyme and in superna-
tants of L. paracasei W20, the intermediate breakdown products GF and GF2 for GF-type
fructans and GF, GF2, and F2 for FF-type fructans accumulated (Fig. 3 and 4).

FIG 3 Temporary accumulation of breakdown products in culture supernatants of L. paracasei strain W20 growing
on different prebiotic �-(2-1)-fructans. HPAEC-PAD analysis of sc-inulin Frutafit CLR (A), oligofructose Frutalose OFP
(B), and GF3 nystose (C) and compounds derived in culture supernatants of L. paracasei W20 at mid-exponential
growth phase (Fig. 1A, L. paracasei, t � 12 h).
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FIG 4 Substrate specificity of LpGH32 and release of breakdown products during conversion of different �-(2-1)-
fructans. (A) Products formed by purified LpGH32 enzyme (0.9 �g/ml) incubated with fructan [�-(2-1) and �-(2-6)]
substrates: native inulin [from chicory, �-(2-1)], oligofructose [�-(2-1)], levan [�-(2-6), bacterial origin], and sucrose
[�-(1-2)]. St, standard containing fructose (Fruc), sucrose (Suc), 1-kestose (GF2), and nystose (GF3). Incubation was
at pH 4.0 (lane 3) and pH 5.0 (lane 4) for 40 h; lane 2, substrate control. Accumulation of intermediate breakdown
products liberated by LpGH32 (excess, 0.9 �g/ml, and minimal, 0.15 �g/ml, amounts) during incubations with
GF-type fructan native inulin (B) and FF-type fructan oligofructose (also contains GF-type fructans) (C) and stopping
reactions after 40 h. Main product released was fructose; accumulation of intermediate breakdown products is
highlighted with arrowheads.
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We searched bacterial genomes for genes involved in known pathways of fructose
utilization, sucrose utilization, and fructooligosaccharide/raffinose utilization (22, 24–
31) to explain the strain differences in utilization of GF-type and FF-type components.
Specifically, we identified key glycoside hydrolases and transporters involved in fruc-
tose metabolism. We found that these strains differed highly when comparing genes
from all three pathways mentioned above (Fig. 5 and Table S1). None of these strains
combined all three pathways; rather, one or two pathways were predicted by the
genomic annotation. The genomes of L. paracasei W20 and L. salivarius W57 both
encode a fructose utilization pathway with a PTS transport system, which may account
for the uptake of the free fructose released by LpGH32. The L. salivarius W57 genome
contains a predicted sucrose utilization system with a sucrose PTS transport system,
which was not found in the L. paracasei W20 genome. The Bifidobacterium strains
studied lacked a fructose utilization pathway (also observed experimentally, bifidobac-
terial strains tested could not grow on pure fructose) (Fig. 1B), but sucrose utilization
was predicted in the bifidobacterial representative strain B. longum NCC 2705, with a
sucrose permease and a FOS/raffinose utilization pathway with an ABC transporter and
an intracellular �-fructosidase (Fig. 5 and Table S1). On the basis of the results from the
genome analyses of these probiotic strains, we hypothesize that the diverse distribu-
tion of these pathways may enable interspecies interactions resulting in cross-feeding
during the degradation of inulin. If interspecies interactions occur, these may generate
interesting biotechnological opportunities in the application of combinations of pro-
biotic strains with the prebiotic inulin as novel synbiotic mixtures on the basis of
interspecies cross-feeding properties.

Interspecies interactions between L. salivarius W57 and L. paracasei W20
involving LpGH32 degradation products. To test the interspecies cross-feeding
hypothesis and to identify possible involvement of particular enzymes and transporters
harbored by probiotic bacteria in the degradation of prebiotic fructan components, we
studied the interspecies interactions of the two probiotic strains L. paracasei W20 and

FIG 5 Metabolism of prebiotic �-(2-1)-fructans by L. paracasei W20, L. salivarius W57, and B. longum NCC 2705. Fructose uptake via
a fructose-PTS transport system (FT-PTS), sucrose uptake via a sucrose-PTS system (PTS_ScrA) or a sucrose permease (SucP), and a
FOS/raffinose utilization pathway with a FOS-ABC transport system (Msm_ABC) followed by intracellular �-fructosidases ScrP/GtfA and
ScrB/SacA.
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L. salivarius W57. We chose to use these strains on the basis of the results of their
genome analysis and their different carbohydrate-utilization profiles: while L. salivarius
incubated with sc-inulin showed very specific utilization of fructan compounds with a
DP of �4 (Fig. 2A), L. paracasei was able to utilize all components of �-(2-1)-fructans,
employing an extracellular exo-inulinase. Both strains differ at the transporter level,
with a single sucrose transporter present in L. salivarius W57 (PTS_ScrA) (Fig. 5) but
lacking in L. paracasei W20.

To identify any preference of L. salivarius W57 for GF-type fructans with distinct sizes,
the strain was grown on pure 1-kestose (GF2, DP-3 FOS) and nystose (GF3, DP-4 FOS).
The results show that L. salivarius only grew on 1-kestose, while L. paracasei grew on
both 1-kestose and nystose compounds (Fig. 6A). Nystose thus is the smallest DP
fructooligosaccharide that demonstrates selectivity between the two Lactobacillus
strains and therefore requires the activity of LpGH32 in order to be metabolized. We
then looked for the possible beneficial cross-feeding effects of LpGH32 by adding the
purified enzyme to L. salivarius W57 cultures incubated with nystose. L. salivarius W57
was unable to grow on nystose (Fig. 6A), while the addition of LpGH32 enabled the
strain to completely metabolize this DP-4 fructan (Fig. 6B). To identify the products of
LpGH32 produced by L. paracasei W20 that are potentially available for cross-feeding by
L. salivarius W57, we grew L. paracasei W20 and L. salivarius W57 on several LpGH32
inulin products. While L. salivarius W57 grew equally well on fructose, sucrose, and
1-kestose, reaching stationary phase after 5 h, L. paracasei W20 used fructose rapidly
(stationary after 9 h) but grew quite poorly on 1-kestose (after a long lag phase of 12
h) and on sucrose (Fig. 6C). These results suggest that L. paracasei W20 overall has a
high affinity for fructose, while the GF-type compounds sucrose and GF2 1-kestose are
used at a lower preference. Therefore, sucrose and 1-kestose liberated by LpGH32
activity may be available as cross-feeding products from sc-inulin for metabolism by
other bacteria that are in close proximity to L. paracasei.

To test for in vivo cross-feeding, we cocultured L. salivarius W57 and L. paracasei W20
on two types of �-(2-1)-fructans, sc-inulin containing mainly GF-type fructan chains and
oligofructose (Frutalose OFP) containing mostly pure fructose-composed �-(2-1)-
fructan chains. In the case of sc-inulin, coculturing resulted in a clear increase in CFU/ml
for L. salivarius W57 in the cocultures compared to that in the single cultures (Fig. 7A).
Cross-feeding thus occurred between the two strains, stimulating the growth of L.
salivarius W57, which benefited from the presence of L. paracasei W20, employing the
extracellular GH32 enzyme for the degradation of the GF-type fructan sc-inulin (result-
ing in an accumulation of short-chain FOS DP-2 to DP-3 compounds). The degradation

FIG 6 Beneficial effects of LpGH32 on growth of L. salivarius W57 and abilities of L. salivarius W57 and L. paracasei W20 to grow on LpGH32 breakdown products
liberated from prebiotic inulin conversion. (A) Anaerobic growth of L. paracasei W20 and L. salivarius W57 individually on 5 mg/ml pure 1-kestose (GF2) and
nystose (GF3). (B) Growth of L. salivarius W57 on 5 mg/ml glucose (positive control) or nystose (DP-4 FOS, GF3) with (0.5 �g/ml) or without added LpGH32
enzyme activity. mMRS, modified MRS medium, 100 mM NaCH3COO enzyme buffer. (C) Growth of L. salivarius W57 and L. paracasei W20 on 5 mg/ml of
individual LpGH32 (intermediate) inulin degradation products: fructose (Fruc), sucrose (Suc), and 1-kestose (GF2). All values shown are means from 3 biological
replicates. Some standard deviations are smaller than the size of the symbol and therefore not apparent.
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of oligofructose yields free fructose, which does not result in cross-feeding of L.
salivarius W57 (Fig. 7B).

DISCUSSION

The selective stimulation of the growth of beneficial bacteria in the human gut may
yield in vivo health effects. This study reports the structural characterization of com-
mercial prebiotic �-(2-1)-fructans and their utilization for growth by selected probiotic
bacteria.

The carbohydrate utilization properties of probiotic strains from the genera Lacto-
bacillus and Bifidobacterium were investigated previously. The ability of Lactobacillus
strains to utilize prebiotic carbohydrates appeared much more limited than that of
Bifidobacterium strains (32). The transporters and GH enzymes encoded by the ge-
nomes of these probiotic bacteria varied even among strains from the same species
(13). For instance, Kaplan and Hutkins investigated L. paracasei 1195 for its ability to
degrade FOS, attributing its FOS utilization to an intracellular �-fructosidase enzyme
(30). Later, Hutkins and colleagues identified by whole-genome microarray analysis the
fos utilization operon in the genome of L. paracasei 1195 encoding an extracellular
�-fructosidase enzyme and a fructose/mannose transporter (22). An extracellularly
located �-fructosidase was also found in L. paracasei DSM 23505, used to effectively
convert FOS/inulin into lactic acid (33). Both studies characterized the extracellular
enzyme activity on FOS/inulin of L. paracasei 1195 and L. paracasei DSM 23505 as
exo-inulinase, EC 3.2.1.80. To characterize the extracellular �-fructosidase of L. paracasei
W20, we purified the LpGH32 enzyme after overexpression in E. coli and identified it as
an exo-inulinase (EC 3.2.1.80). Hutkins and colleagues observed for L. paracasei 1195
that the degradation of FOS DP-4 and DP-5 occurred first, resulting in a temporary
increase of glucose, sucrose, and FOS DP-3. A temporary increase of short-chain
fructooligosaccharides was also mentioned in the study using L. paracasei 8700:2, a
human isolate releasing fructose, GF2, and F2 upon oligofructose degradation or
fructose, glucose, and sucrose upon inulin degradation (20). Cultures of L. paracasei
W20 showed preferential utilization of FOS components of a DP of �3 and thus
temporal accumulation of sucrose and DP-3 FOS. This degradation pattern was also
observed using purified LpGH32. These data show that the preferential degradation of
FOS/inulin components with a DP of �3 is due to the activity of LpGH32 synthesized
by L. paracasei W20 and not to selective uptake systems in the host (Fig. 3 and 4).

Unlike L. paracasei W20, L. salivarius W57 displayed a highly specific fructan utiliza-
tion profile which enabled the strain to exclusively utilize GF-type �-(2-1)-fructan with
a DP of 2 and a DP of 3. The preferential utilization of FOS components with a low DP
has not been described for L. salivarius strains before; however, Saulnier et al. reported
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that Lactobacillus plantarum WCFS1 consumes GF2 and GF3 compounds. Using whole-
genome microarrays, three genes were identified as participating in scFOS metabolism
of L. plantarum, i.e., genes encoding a sucrose PTS uptake system, a �-fructo-
furanosidase, and a fructokinase (34). Our annotation of the L. salivarius W57 genome
revealed the presence of a PTS_ScrA gene, explaining the preference of L. salivarius
W57 for scFOS compounds, which, in comparison to L. plantarum WCFS1, shows a
higher specificity for GF-type FOS components with DPs of only 2 to 3.

To specifically stimulate the growth of human gut microorganisms, possibly even at
the species/strains level, the generation of a given metabolic activity which may then
lead to a given health effect is required. Where bacterial cells are limited in their ability
to utilize prebiotic FOS/inulin compounds, the presence of extracellular �-fructosidase
enzymes may stimulate degradation and thus result in an improved growth of a
probiotic bacterium on a given prebiotic (17, 35). For instance, bifidobacterial growth
is very well known to be stimulated by prebiotic FOS/inulin utilization. The enrichment
of this genus through FOS/inulin utilization is so dominant that this was labeled as the
bifidogenic effect. However, Bifidobacterium strains in pure culture are only able to use
FOS/inulin components with a DP of �20 (12). When growing bifidobacteria in cocul-
tures with (commensal) gut species expressing extracellular enzymes from family GH32,
cross-feeding occurs and results in increased bifidobacterial growth (35). As shown in
the present study, L. paracasei W20 exhibits the ability to degrade FOS and inulin
extracellularly using a family GH32 enzyme, an exo-inulinase (LpGH32) that yields
intermediate degradation products of GF- and FF-type �-(2-1)-fructans, respectively
(Fig. 4). GF-type fructan use results in an accumulation of the short-chain FOS DP-2 to
-3 compounds, whereas FF-type fructan use only yields fructose as a product from
LpGH32 activity. This accumulation of intermediate FOS DP-2 to -3 products leads to the
stimulation of growth of another Lactobacillus strain, L. salivarius W57, that specifically
takes up GF (sucrose) and GF2 (1-kestose) using a sucrose transporter. In contrast, any
released fructose (e.g., from FF-type fructans) is more likely to be directly taken up by
L. paracasei W20 using a fructose/mannose transporter (Fig. 5). On the basis of the
results of our study, we can conclude that the ability of a Lactobacillus strain to
benefit from cross-feeding during growth on prebiotic �-(2-1)-fructans is highly
dependent on the use of GF-type (cross-feeding stimulating) or FF-type (relatively
low cross-feeding) fructans. In comparison, cross-feeding mediated by bifidobac-
teria toward butyrate-producing members of the gut microbiome was mediated by
short fractions of oligofructose (FF-type fructan) and thus not the GF-type fructan
as observed in our study (15, 16). Moreover, we conclude that the extent of
cross-feeding among lactobacilli also depends on fructan chain length: �-(2-1)-
fructans with a relatively low DP contain at the molar level a relatively high content
of GF-type molecules, thus resulting in higher concentrations of the breakdown
products of the GF type with DPs of 2 to 3. Our results therefore show that the
extent of bacterial cross-feeding among probiotic lactobacilli is clearly controlled by
the structure of the prebiotic fructan substrate used.

These results provide insights into the mechanism and role of cross-feeding by
�-(2-1)-fructan degradation products, stimulating the growth of bacteria living in the
same environment. To stimulate the growth of probiotic bacteria at the strain level, the
prebiotic �-(2-1)-fructan should be carefully chosen, taking into account its structural
composition (Table 1). In synbiotic mixtures using L. paracasei W20 employing an
extracellular GH32 enzyme, FF-type FOS is preferred when only L. paracasei W20 is
supposed to benefit from prebiotic fructan supplementation (Table 2). When aiming to
stimulate the growth of another strain, preferably GF-type fructan of a relatively low
chain length should be considered. Our results further highlight the advantageous
properties of L. paracasei and its extracellular GH32 enzyme mediated through the
release of intermediate degradation products from large-chain inulin, demonstrating
the potential ability of L. paracasei to act as a keystone species among probiotic
lactobacilli.
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MATERIALS AND METHODS
Bacterial strains and growth conditions. The commercial probiotic bacterial strains Lactobacillus

paracasei subsp. paracasei W20 (L. paracasei W20), Lactobacillus acidophilus W37, Lactobacillus salivarius
W57, Lactobacillus casei W56, Enterococcus faecium W54, Pediococcus acidilactici W143, Bifidobacterium
animalis subsp. lactis W51 (B. lactis W51), Bifidobacterium animalis subsp. lactis W52 (B. lactis W52), and
Bifidobacterium animalis subsp. lactis W53 (B. lactis W53) were provided by Winclove Probiotics B.V.
(Amsterdam, The Netherlands). All strains belonging to lactic acid bacteria (LAB) were maintained in de
Man-Rogosa-Sharpe (MRS) broth (Oxoid, Basingstoke, UK) containing 2% glucose as the carbon source.
Liquid cultures (5 ml) were inoculated in anaerobic culture glass tubes (Boom, Meppel, The Netherlands)
under anaerobic conditions provided by the Hungate system with nitrogen (36) and incubated at 37°C.
For permanent storage, fresh 200-�l aliquots of the cultures were diluted with sterile glycerol to 15%
(vol/vol) in 1.5-ml tubes, and the tubes were maintained at �80°C. The purity of the cultures was
frequently checked by spreading aliquots on agar plates prepared with MRS and Luria-Bertani (LB)
medium and by light microscopy. For growth experiments with �-(2-1)-fructans, modified MRS medium
(mMRS) was used with LAB strains prepared according to reference 32. In brief, 1 liter mMRS contained
10 g peptone, 2.5 g granulated yeast extract, 3 g tryptose, 1 ml Tween 80, 3 g K2HPO4, 3 g KH2PO4, 2 g
ammonium citrate, 0.2 g pyruvic acid sodium salt, 0.575 g MgSO4·7H2O, 0.12 g MnSO4·H2O, and 0.034 g
FeSO4·7H2O. The components were dissolved in double-distilled H2O by bringing the medium to a boil
and then adding 0.5 g/liter cysteine-HCl and adjusting the pH to 6.8. The medium was sterilized by
autoclaving (15 min at 121°C).

Bifidobacterial strains were maintained in Bifidobacterium medium (BM) that was prepared according
to reference 37. One liter BM contained 10 g Trypticase peptone, 2.5 g yeast extract, 3 g tryptose, 3 g
K2HPO4, 3 g KH2PO4, 2 g triammonium citrate, 0.3 g pyruvic acid, 1 ml Tween 80, 0.574 g MgSO4·H2O, 0.12
g MnSO4·H2O, and 5 g NaCl in 1 liter of distilled water. After autoclaving, the BM was supplemented with
0.05% (wt/vol) filter-sterilized cysteine-HCl, and strains were grown at 37°C under anaerobic conditions
maintained by 100% CO2.

Carbohydrates. Native inulin (Frutafit HD; inulin of DP of 2 to 60, �90% [wt/wt]; average chain
length, 11), long-chain inulin (lc-inulin, Frutafit TEX; inulin �99.5% [wt/wt]; average chain length, 22),
short-chain inulin (sc-inulin, Frutafit CLR; inulin/oligofructose, �85% [wt/wt]; average chain length, 7),
and oligofructose (Frutalose OFP; oligofructose, �92% � 2% [wt/wt]; average chain length, 7) were
provided by SENSUS (Roosendaal, The Netherlands). 1-Kestose (�98%) and nystose (�98%) were
purchased from CarboSynth (Compton, UK). FOS P1 (oligofructose of DP of 2 to 8, �93% [wt/wt]), Inulin
P2 (inulin of DP of 2 to 60, �90% [wt/wt]; average chain length, 10), and scFOS P6 (oligofructose of DP
of 3 to 5, �95% [wt/wt]) were obtained from Winclove Probiotics B.V. Levan was produced by sucrose
conversion with B. subtilis as described previously (38). Carbohydrates were dissolved to 1% (wt/vol) in
Milli-Q water and filter sterilized using 0.2-�m cellulose acetate membrane filters (VWR International,
Radnor, PA); lc-inulin was dissolved and sterilized by autoclaving.

Growth experiments. Growth experiments with LAB strains were carried out using 96-well microtiter
plates (Greiner Bio-one, Frickenhausen, Germany). Prior to the inoculation of the plates, cultures of
bacterial strains grown overnight were harvested by centrifugation (2,300 � g for 2 min) and diluted
25-fold in 2� mMRS. Separately, carbohydrate solutions were added in triplicates to wells of plates, while
glucose and double-distilled water served as the positive and negative controls, respectively. Subse-
quently, diluted bacterial suspensions and plates containing carbohydrate solutions were transferred to
an anaerobic glove box (Bohlender, Grünsfeld, Germany) with constant nitrogen flow, and cultures were
inoculated with 2% (vol/vol) of bacteria (total volume of cultures per well, 160 to 200 �l) to provide
anaerobic conditions in microtiter plates. Then, the plate was sealed with an airtight transparent seal
(Simport, Beloeil, Canada) and placed in a plate reader (at 37°C) for the monitoring of the OD600 at 5-min
intervals with continuous shaking at medium speed. The plate reader was installed inside an AtmosBag
(Sigma-Aldrich, Schnelldorf, Germany) and constantly flushed with nitrogen throughout the OD600

measurements. For growing L. salivarius W57 in the presence of the GH32 enzyme from L. paracasei W20
(LpGH32), 10 �l of the recombinantly produced and purified enzyme was added per well, yielding a final

TABLE 2 Prebiotic �-(2-1)-fructans used in this study, ordered according to their potential
to stimulate cross-feeding between L. paracasei W20 and L. salivarius W57a

Commercial name Description

1-Kestose GF2
Nystose GF3
scFOS P6 scFOS
Frutafit CLR sc-inulin
Inulin P2 Native inulin
Frutafit HD Native inulin
Frutafit TEX lc-inulin
FOS P1 Oligofructose
Frutalose OFP Oligofructose
aFrom top (starting with 1-kestose; high cross-feeding) to bottom (ending with oligofructose; low cross-
feeding), the fructans are ranked on the basis of the activity of the extracellular L. paracasei W20 LpGH32
enzyme for releasing more of the GF (sucrose) and 1-kestose (GF2) molecules from the shorter �-(2-1)-
fructans and from fructans comprising more GF-type molecules (and not from oligofructans).
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concentration of 0.5 �g/ml. For coculture experiments, cultures were inoculated with 1% (vol/vol) of
overnight cultures of L. salivarius W57 and L. paracasei W20. To determine the CFU/ml, bacterial cultures
were harvested at 18 h (L. paracasei W20 single cultures and L. paracasei plus L. salivarius cocultures) and
8 h (L. salivarius W57 single cultures). Harvested cultures were diluted to appropriate levels and spread
on MRS agar (MRS medium supplemented with 1.5% [wt/vol] agar). Subsequently, the plates were
incubated anaerobically in jars using the GasPak EZ container system (BD, Sparks, MD). The plates
incubated with both strains were kept at 18°C (growth of L. paracasei W20 only) and 37°C (growth of both
strains).

Bifidobacterial strains were grown in 3-ml cultures in BM supplemented with 0.5% (wt/vol) carbo-
hydrates using anaerobic glass tubes and maintained under anaerobic conditions with 100% CO2 at 37°C.
BM with and without 5 mg/ml glucose was used as the positive and negative controls, respectively.
Growth was followed over time by measuring the OD600 manually directly in anaerobic glass tubes using
the cell density meter WPA CO 8000 (Biochrom, Cambridge, UK).

Structural analysis of fructooligosaccharides. FOS composition was analyzed using thin-layer
chromatography (TLC) as reported previously (39). In brief, samples of 1 �l were spotted up to 3 times
on TLC sheets (silica gel 60 F254; Merck, Darmstadt, Germany) that were developed with n-butanol-
ethanol-water (5:5:3 [vol/vol]). The bands were visualized by urea staining. FOS composition was
determined by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-
PAD) by diluting the samples to an appropriate concentration in 80% (vol/vol) dimethyl sulfoxide. The
samples were analyzed on a CarboPac PA1 column (4 mm by 250 mm; Dionex, Sunnyvale, CA) using a
linear gradient (buffer A, 0.1 M NaOH; buffer B, 0.6 M NaOAc in 0.1 M NaOH): 0 min, 0% B; 10 min, 22%
B; 25 min, 40% B; 25.1 min, 100% B. Glucose, fructose, 1-kestose, and nystose were used as the standards
to determine monosaccharides and short oligosaccharides (40). Inulin synthesized by the InuJ enzyme
(DP range, 2 to 16; inulin polymer) was used to annotate any larger oligosaccharides (39).

Detection of extracellular enzyme activity in bacterial culture supernatants. After 24 h of growth
on FOS, cultures of probiotic bacteria were centrifuged (10,000 � g for 15 min). Subsequently, the
supernatants were filtered using 0.45-�m cellulose acetate filters (VWR International) and mixed 1:1 with
10 mg/ml sc-inulin in 1.5-ml reaction tubes. After incubating for 72 h at 37°C, the (changes in the)
sc-inulin compositions were analyzed by TLC and HPAEC-PAD. The culture supernatants from growth on
glucose served as the negative controls.

Cloning, overexpression, and purification of truncated GH32 enzyme from L. paracasei W20.
Genomic DNA isolation from L. paracasei W20 was performed using a GenElute bacterial genomic DNA
kit (Sigma-Aldrich). Genomic DNA (10 ng) was used as the template in PCRs to amplify the gene encoding
the GH32 enzyme from L. paracasei W20. The primers used in PCRs were LPGH32-Fwd (5=-CAGGGACC
CGGTCCATACCGAAACCAGTATCACTACTCAAGTAGC-3=) and LPGH32-Rev (5=-CGAGGAGAAGCCCGGTTAG
TTCCAAATTGAAGTAATTGGATTGATAGTTAAGTCGC-3=).

The underlined complementary overhangs were used for joining inserts with vector pET15b, which
was modified to enable ligation independent cloning (LIC) of the amplified DNA (41). Phire Hot Start II
DNA polymerase (Thermo Scientific, Waltham, MA) was used for amplification in an MJ Mini personal
thermal cycler (Bio-Rad, Hercules, CA). The reaction mixtures contained 0.05% (vol/vol) dimethyl sulfox-
ide. PCR mixtures yielding sufficient amplification of the desired gene were cleaned up using an Illustra
GFX PCR DNA and Gel Band purification kit (GE Healthcare, Buckinghamshire, UK). Purified PCR products
were then cloned into pET15b according to LIC procedures. In brief, the insert and vector were treated
with T4 DNA polymerase for 60 min at room temperature (RT), followed by inactivation of the enzyme
(20 min at 75°C). T4 DNA polymerase-treated vector and insert were ligated for 15 min at RT, EDTA was
added to a 10 mM final concentration, and the ligation mixture was incubated for another 5 min at RT.
Subsequently, the ligation mixture was transformed into E. coli TOP10 competent cells, and positive
clones were checked by isolating plasmid DNA followed by digestions with NcoI/XhoI. For the overex-
pression of the recombinant protein, plasmid DNA containing the desired gene was transformed into E.
coli BL21 Star (DE3), and precultures of transformed E. coli BL21 Star (DE3) were grown overnight in 5 ml
LB medium containing 50 �g/ml ampicillin. Subsequently, expression cultures of 250 ml LB containing
100 �g/ml ampicillin were inoculated with 1% (vol/vol) of the precultures. The flasks were put into
incubator shakers with agitation at 210 rpm at 37°C, and growth was allowed until the OD600 reached 0.5.
Then, the cultures were put on ice and expression was started by adding 0.1 mM IPTG (isopropyl-�-D-
thiogalactopyranoside). Expression was continued in incubator shakers at 18°C and 160 rpm for 16 h.
Bacterial pellets were collected by centrifugation (10 min at 3,500 � g), resuspended in 20 ml 20 mM Tris
HCl (pH 8.0) supplemented with 1 mM CaCl2, 5 mM �-mercaptoethanol, and 4 mM imidazole, and
sonicated 10 rounds for 15 s using a Soniprep 150 Plus (MSE, Lower Sydenham, UK). Between every
sonication step, the suspension was put on ice for 30 s. Afterwards, the cell extract was centrifuged
(15,000 � g for 20 min) and added to a HisTrap HP 1-ml column (GE Healthcare) connected to a peristaltic
pump for protein purification. The column was equilibrated with 1.5 ml buffer A (20 mM Tris HCl [pH 8.0]
supplemented with 500 mM NaCl, 3 mM CaCl2, and 3 mM MgCl2), eluted with 1.5 ml of elution buffer
(containing 500 mM imidazole), and again equilibrated with 1.5 ml buffer A. Then, the protein sample
was applied to the column, washed with 5 column volumes of buffer A, and eluted with 1.5 ml each of
imidazole of 10 to 500 mM. Protein content and purity of collected fractions were analyzed by running
samples by SDS-PAGE using 12% (vol/vol) polyacrylamide gels. Subsequently, the elution fractions with
the highest content of purified protein were combined and dialyzed overnight against 100 mM sodium
acetate buffer (pH 5.4) as described previously (39).

Analyzing substrate specificity of GH32 enzyme. Substrates (10 mg/ml) were incubated with
excess and minimal amounts of LpGH32 using 100 mM citric acid buffer at pH 4.0 and pH 5.0. Reaction
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volumes (100 �l) were supplemented with 0.01% (wt/vol) NaN3 to prevent microbial growth, and
incubations were carried out at 37°C for 40 h. Product formation through GH32 enzyme activity was
checked by TLC and HPAEC-PAD.

Statistical analysis. All growth experiments are biological triplicates; the OD600 values are expressed
as averages. Medium without bacterial inoculation was used to obtain blank values during OD600

measurements. Differences in the growth results between L. salivarius W57 and L. paracasei W20 in single
and coculture were assessed by running nonparametric unpaired t tests. Tests yielding P values of �0.05
were considered significantly different.

Accession number(s). The putative fructose and fructan utilization gene clusters of L. paracasei W20
were assigned the following accession numbers: fructose utilization, MH035726; fructan utilization,
MH047828. The putative fructose and sucrose utilization gene clusters of L. salivarius W57 were assigned
the following accession numbers: fructose utilization, MH047826; sucrose utilization, MH047827.
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