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ABSTRACT Antibiotic resistance is a global concern, although it has been studied

most extensively in developed countries. We studied Escherichia coli and class 1 inte-

grons in western Uganda by analyzing 1,685 isolates from people, domestic animals,

and wild nonhuman primates near two national parks. Overall, 499 isolates (29.6%)

were resistant to at least one of 11 antibiotics tested. The frequency of resistance

reached 20.3% of isolates for trimethoprim-sulfamethoxazole but was nearly zero for

the less commonly available antibiotics ciprofloxacin (0.4%), gentamicin (0.2%), and

ceftiofur (0.1%). The frequency of resistance was 57.4% in isolates from people,

19.5% in isolates from domestic animals, and 16.3% in isolates from wild nonhuman

primates. Isolates of livestock and primate origin displayed multidrug resistance pat-

terns identical to those of human-origin isolates. The percentage of resistant isolates

in people was higher near Kibale National Park (64.3%) than near Bwindi Impenetra-

ble National Park (34.6%), perhaps reflecting local socioeconomic or ecological con-

ditions. Across antibiotics, resistance correlated negatively with the local price of the Received 3 July 2018 Accepted 27 August
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reflects environmental diffusion of bacteria or their genes, perhaps facilitated by lo-
cal ecological and socioeconomic conditions.

KEYWORDS antibiotic resistance, Escherichia coli, Africa, protected areas, primates,
class 1 integrons

ntibiotic resistance is ubiquitous in the developing world (1-3). In some African

countries, resistance to commonly available antibiotics can exceed 75% (3-9). Cost,
ease of use, and time on the market influence the use of antibiotics in Africa and the
consequent resistance of bacteria to those antibiotics (10). Antibiotic resistance is also
ubiquitous in African livestock, deriving from diverse genetic mechanisms of resistance
in common bacteria, such as Escherichia coli (11).

Most reports of antibiotic resistance in Africa are from studies of urban populations,
often in settings such as hospitals and schools (3, 9, 12). However, patterns and drivers
of resistance may be different in rural settings, where the majority of sub-Saharan
Africa’s population lives (13) and where people experience higher disease burdens and
perhaps increased need for antibiotics (12). Additional factors, such as unregulated use
and counterfeit antibiotics, may compound the development and maintenance of
resistance in such settings (14, 15). Moreover, studies that consider both animals and
humans as contributors to antibiotic resistance in low-resource settings are rare but
needed (16).

We conducted a study of antibiotic resistance and class 1 integrons, which are
horizontally transmissible genetic elements that may contain resistance-conferring
genes (17), in E. coli bacteria from rural western Uganda. We sampled not only people
and domestic animals, but also wild nonhuman primates, the habitats of which overlap
extensively with that of people and livestock in this region, with documented conse-
quences for environmentally mediated bacterial transmission (18-21). Antibiotic use in
the region occurs in people and, to a lesser extent, in domestic animals, but it is almost
entirely absent in the region’s wild primates (18-21). The setting therefore offers an
opportunity to examine resistance and its dissemination in a context where extensive
ecological overlap occurs among host species, but where patterns of use differ among
these species.

RESULTS

A total of 485 E. coli isolates were collected and analyzed from 202 people in rural
western Uganda near two national parks (Fig. 1). The median age of participants was 14
years (range, <1 year to 77 years), with most either 6 to 10 years old (21.8%; n = 44)
or 21 to 49 years old (21.8%; n = 44), and the population consisted mainly of
subsistence farmers of the Batooro tribe, who keep small herds of domestic livestock
(cattle, goats, pigs, and sheep). People in this population report frequent interactions
with wild primates, especially in locations where forest habitats occur near agricultural
lands (22, 23). A total of 37 (18.3%) participants reported taking an antibiotic within 4
weeks prior to donating a fecal sample, but the identity of the antibiotic taken could
be determined in only three (8.1%) of these cases.

Overall, 155 (76.7%) people harbored E. coli isolates resistant to at least one
antibiotic, and 119 (58.9%) E. coli isolates were resistant to at least two antibiotics. The
proportion of people harboring at least one resistant isolate was highest for
trimethoprim-sulfamethoxazole (61.9%; n = 125), followed by streptomycin (48.5%;
n = 98) and tetracycline (47.5%; n = 96). The proportion of individuals harboring at
least one resistant isolate was lowest for ciprofloxacin (1.0%; n = 2), nalidixic acid (2.0%;
n = 4), and gentamicin (0.5%; n = 1). This measure of resistance was higher in the
youngest (0 to 6 years) and oldest (40 to 77 years) age categories than in the
intermediate age categories (adjusted odds ratios of 4.37 [1.40 to 13.60] and 7.53 [1.94
to 29.26] and P values of 0.01 and 0.004, respectively) and nearly twice as high in people
living near Kibale as in people living near Bwindi (64.3% versus 34.6%, respectively;
Fisher's exact test, P < 0.001). Across all antibiotics, there was a statistically significant
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FIG 1 Map of Uganda (in East Africa) showing the locations of Kibale National Park (Kibale) and Bwindi
Impenetrable National Park (Bwindi).

and nonlinear decrease in the proportion of resistant isolates with increasing local
antibiotic prices (> = 0.68; t = —3.8; P = 0.007; Fig. 2), with the most expensive
antibiotics (nalidixic acid and ciprofloxacin) associated with very low resistance pro-
portions (0.8% and 0.4% of isolates, respectively).

A total of 1,200 E. coli isolates from 259 animals were analyzed (Table 1). Overall, the
proportion of resistant isolates was approximately three times lower in animals than in
people (17.7% and 57.4%, respectively; Fisher's exact test, P < 0.001; Table 1). Within
and across both locations, isolates from domestic animals and wild primates showed
statistically indistinguishable proportions of resistance (19.5% versus 16.3% of isolates,
respectively; Fisher's exact test, P = 0.1468). The most frequent patterns of multiple
resistance in human-derived isolates also occurred with the highest frequency in animals
(Table 2). Among primates, the red-tailed monkey (Cercopithecus ascanius) in Kibale har-
bored isolates with nearly four times higher resistance rates than those in other primate
species (Table 1).

Class 1 integrons were detected in 33.2% of phenotypically resistant E. coli isolates
(Table 3). Class 1 integrons were present in 42.9% of isolates from humans but in only
15.4% of isolates from animals (Fisher's exact test, P < 0.001). The proportion of isolates
containing class 1 integrons was higher in people living near Bwindi than in people
living near Kibale (61.2% versus 39.5%, respectively; Fisher's exact test, P = 0.0073).
Class 1 integrons were present in isolates from domestic animals at a frequency of
26.9%, which was 3.5 times higher than the frequency of class 1 integrons in isolates
from wild primates (7.7%; Fisher’s exact test, P = 0.0007).

The 166 class 1 integrons detected by PCR contained nine distinct gene cassettes
comprised of different combinations of 11 common resistance-conferring genes, rang-
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FIG 2 Antibiotic resistance versus price. The plot shows the percentages of 485 human-origin isolates
resistant to nine antibiotics available in western Uganda for which local price information (Ugandan
shillings [USH] per dose) was also available. Abbreviations for antibiotics are shown beside data points.
AMP, ampicillin; CEP, cephalothin; CIP, ciprofloxacin; CHL, chloramphenicol; DOX, doxycycline; NAC,
nalidixic acid; STP, streptomycin; SXT, sulfamethoxazole-trimethoprim; and TET, tetracycline.
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ing in frequency from 0.2% to 18.8% (Table 3; GenBank accession numbers MH560801
to MH560966). Of these 11 genes, five encoded dihydrofolate reductase (dfrA) (24),
three encoded aminoglycoside adenyltransferase (aadA) (25), one encoded class D
beta-lactamase (blagy,) (26), one encoded chloramphenicol acetyltransferase (catB)
(27), and one encoded aminoglycoside N(6')-acetyltransferase (aacA) (28). Eight distinct
gene cassettes were present in isolates from humans, five were present in isolates from
domestic animals, and one was present in isolates from primates (Table 3).

DISCUSSION

Our results highlight the ubiquity of antibiotic resistance in people in the develop-
ing world, including in Africa (1-3), and they offer insights into carriage of resistance
and resistance-conferring genes in animals. In the human populations in our study,
approximately 20% of E. coli isolates were resistant to the commonly available antibi-
otic combination sulfamethoxazole-trimethoprim, with approximately 15% of isolates
resistant to ampicillin, tetracycline, doxycycline, streptomycin, sulfamethoxazole-
trimethoprim, and cephalothin. In contrast, the proportion of isolates resistant to
ciprofloxacin, gentamicin, and nalidixic acid was less than 1%, and ceftiofur, a veterinary
antibiotic not available in Uganda at the time of the study, showed near-zero resistance.

Because accurate data on antibiotic use were not available, we cannot attribute
differences in resistance directly to differences in use of antibiotics. However, our
observation that the proportion of resistant isolates decreases with increasing local
antibiotic price per dose is suggestive. In western Uganda, as in many similar settings,
some antibiotics are available over the counter from local clinics and dispensaries, often
without the oversight of a physician (29, 30). Compounding this problem are incom-
plete dosing and a ubiquity of counterfeit, substandard, and degraded drugs (14). We
speculate that such local economic conditions influence antibiotic use, which might in
turn drive resistance. We caution that route of administration, mechanism of action,
availability, clinical effects/side effects, and many other factors may have contributed to
the trend observed and that antibiotic consumption is increasing globally (31). We
encourage further research into the economic drivers of antibiotic use in developing
countries, such as Uganda and elsewhere, and the associated cofactors and confound-
ers that may contribute to the phenomenon.

Our results confirm previous findings that, within the commonly accessible human
antibiotics assessed, people and animals harbor bacteria with phenotypically similar
(often identical) antibiotic resistance profiles (18-20). In animals, the proportion of
resistant isolates was approximately three times lower than that in humans, with
isolates from domestic animals and wild primates showing comparable proportions of
resistant isolates. The most frequent patterns of multiple resistance in human-derived
E. coli isolates were also the most frequent patterns of multiple resistance in E. coli
isolates from both livestock and wild primates. Five of the nine class 1 integron gene
cassettes present in phenotypically resistant E. coli isolates were present in isolates from
either livestock or wild primates (Table 3). These results point to a ubiquity of resistant
bacteria and resistance-conferring genes in this setting, regardless of the host species
from which the bacteria were derived. Our results show that such patterns vary
geographically. The frequency of resistant isolates was lower in people living near
Bwindi than in people living near Kibale, with the frequency of class 1 integrons
showing the reverse pattern. The reasons for these differences are not clear but could
reflect local variation in ecology or socioeconomics.

The mechanisms by which resistant bacteria or resistance-conferring genes diffuse
across the landscape and among species in western Uganda are not clear. Our previous
work has documented that rates of enteric bacterial transmission between species in
western Uganda are enhanced where ecological overlap is high because of such factors
as ecotourism (21, 32), forest fragmentation (20), or animal husbandry practices (19). In
these cases, environmental contamination appears to be the likeliest mode of trans-
mission. For example, water sources in our study communities tended to be unpro-
tected wells used by both people and livestock, situated at the edges of forest habitats
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containing primates. Similarly, livestock tended to be grazed in pastures near agricul-
tural fields frequented by people, where primates often raid crops. Fecal contamination
of soil, vegetation, and water as a result of shared activity spaces might therefore
explain the patterns observed (22, 23). Such effects could also explain the higher
proportions of resistant isolates in red-tailed guenons than in other sympatric primates;
red-tailed guenons are notorious for entering agricultural lands to raid crops (33).

Even though we studied commensal E. coli, horizontal gene transfer might reduce
the efficacy of antibiotics for pathogenic bacteria. We note that the antibiotic for which
we found the highest resistance, sulfamethoxazole-trimethoprim, has been routinely
administered prophylactically to patients infected with human immunodeficiency virus
(HIV), which substantially burdens western Uganda (34, 35). Our previous studies (21,
32) show that ape populations used for tourism are at particular risk for the acquisition
of antibiotic-resistant E. coli. In the present study, we found only two E. coli isolates that
were resistant to ceftiofur, an extended-spectrum veterinary cephalosporin not avail-
able in Uganda at the time of the study; these isolates were from an adult male
silverback gorilla in Bwindi and an adult male human who was employed to guide
tourists to these gorillas. Such observations, although anecdotal, draw attention to
potential ecological pathways of transmission.

Overall, our results demonstrate broad diffusion of antibiotic-resistant bacteria and
resistance-conferring genetic elements among locations and host species in rural
Uganda. For class 1 integrons (which are only one of many types of genetic elements
that often, but not always, contain resistance-conferring genes [17]), our results show
their composition to be entirely similar to what has been documented worldwide,
suggesting either widespread dispersal of such genes or an inherently limited reper-
toire of class 1 integron cassettes in E. coli. Our results also suggest that future research
into reservoirs of resistance, including water, crops, soil, food, and other features of the
physical environment where gastrointestinal bacteria and their genes are deposited
and persist, would be fruitful (36). Similarly, our results suggest that local economic
factors may influence patterns of resistance, and this too merits further study, especially
as agriculture in Uganda and other African countries intensifies (37). To the extent that
our findings can be generalized, they illustrate the environmental ubiquity of resistant
bacteria and their genes in the developing world, including how ecological and
socioeconomic conditions might influence spread and persistence.

MATERIALS AND METHODS

The study took place in rural western and southwestern Uganda in two national parks and the
communities surrounding them, Kibale National Park and Bwindi Impenetrable National Park (Fig. 1).
Kibale is a 795-km? forested park near the foothills of the Rwenzori Mountains (0°13’ to 0°41’ N, 30°19’
to 30°32" E) (38) containing a high diversity and density of primates, including Uganda’s largest
population of chimpanzees (Pan troglodytes schweinfurthii), which form the focus of a thriving ecotourism
industry (39). Bwindi (0° 53’ to 1° 08" N, 29° 35’ to 29° 50’ E) encompasses 331 km? of predominantly
montane forest and is home to approximately 45% of the world’s remaining mountain gorillas (Gorilla
beringei beringei), also representing a popular tourist destination (40).

We enrolled volunteers from March through December 2005 in communities surrounding each park.
All volunteers were asked to provide a fecal sample in a sterile cup, which was collected within 24 h.
From May to August 2005, we also collected fecal samples from domestic animals and wild nonhuman
primates in and near the parks, following methodologies described elsewhere (19, 20). At the time of
sample collection, we recorded local antibiotic prices per dose during visits to local pharmacies. Survey
data about health, medication, livelihoods, and contact with animals were collected and have been
reported previously (18-21, 32).

E. coli was cultured from fecal samples, and up to five isolates per individual were tested for
resistance to 11 different antibiotics using the disk diffusion method, following previously described
methods (20, 21). Briefly, fecal samples were streaked for isolation on MacConkey agar, putative E. coli
isolates were collected and confirmed using standard biochemical tests, and confirmed E. coli isolates
were reisolated and stored frozen in glycerol stocks for further testing. Resistance to antibiotics was
assessed using the disk diffusion method following Clinical and Laboratory Standards Institute (CLSI)
protocols (41), as previously described (20, 21), with resistance cutoffs following CLSI guidelines (41).
Antibiotics included in the analysis were as follows: ampicillin (AMP), chloramphenicol (CHL), ciprofloxa-
cin (CIP), doxycycline (DOX), tetracycline (TET), gentamicin (GEN), streptomycin (STP), trimethoprim
sulfate (SXT), nalidixic acid (NAC), cephalothin (CEP), and ceftiofur (XNL).

PCR was used to detect class 1 integrons using published methods (42). Specifically, reactions were
performed in 25-ul volumes containing 2 mM MgCl,, 0.2 mM each deoxynucleoside triphosphate, 0.4 uM
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primer 5'-CS (5'-GGCATCCAAGCAGCAAGC-3’) and primer 3'-CS (5'-AAGCAGACTTGACCTGAT-3'), and
0.25 U DyNAzyme EXT DNA polymerase (Finnzymes; Espoo, Finland) with 1X DyNAzyme EXT buffer
(without MgCl,) and 2.5 ul template. Reactions were cycled in an iCycler thermocycler (Bio-Rad; Hercules,
CA) at 94°C for 3 min, followed by 30 cycles at 94°C for 30 s, 62°C for 30 s, and 72°C for 5 min, and ending
with a 72°C final extension step for 7 min and an indefinite 4°C soak. To control for PCR failure, a separate
positive-control PCR was performed on each isolate using primers complementary to positions 9 to 27
of the 16S rRNA gene (16S rRNA Forward 5'-GAGTTTGATCCTGGCTCA-3’) and positions 2669 to 2654 of
the 23S rRNA gene (23S rRNA Reverse 5'-CCGGTCCTCTCGTACT-3’) under the same conditions as the class
1 integron PCR, except with an annealing temperature of 60°C (43). Isolates were reextracted and
retested if the positive control PCR failed. Isolates were considered to be negative for a class 1 integron
only if they yielded a 16S rRNA amplicon but did not yield an integron amplicon.
PCR products were electrophoresed at 100 V for 30 to 45 min on 1% agarose gels containing 0.5
ng/ml ethidium bromide in Tris-acetate-EDTA (TAE) buffer. Gels were visualized under UV light, and all
putative class 1 integron bands were excised for DNA extraction. DNA was recovered using the
Zymoclean gel DNA recovery kit (Zymo Research; Orange, CA). Purified amplicons were sequenced
directly on ABI 3730XL capillary sequencers. Sequences were edited by hand and PCR products were
resequenced to resolve any ambiguous bases. Nucleotide BLAST searches (44) were performed to
determine the gene(s) present in each integron cassette based on identity to known sequences.
Frequencies of resistance, multiple resistance, and class 1 integrons were compared among populations
using statistical methods implemented in the computer programs SPSS version 17.0 (IBM Corp., Armonk,
NY) and SAS version 9.3 (SAS Institute, Cary, NC) with a Bonferroni correction implemented to account
for multiple comparisons. Frequencies of antibiotic resistance were compared to local antibiotic prices
using nonlinear regression.
All protocols were reviewed and approved by the Uganda National Council for Science and
Technology, the Uganda Wildlife Authority, and the Institutional Review Board and Institutional Animal
Care and Use Committees of the University of lllinois at Urbana-Champaign and the University of
Wisconsin-Madison.
Accession number(s). Sequences of the integron casettes described here have been deposited in
GenBank under the accession numbers MH560801 to MH560966.
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