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Abstract

Human brain functional connectivity (FC) networks, estimated based on resting-state functional 

magnetic resonance imaging (rs-fMRI), has become a promising tool for imaging-based brain 

disease diagnosis. Conventional low-order FC network (LON) usually characterizes pairwise 

temporal correlation of rs-fMRI signals between any pair of brain regions. Meanwhile, high-order 

FC network (HON) has provided an alternative brain network modeling strategy, characterizing 

more complex interactions among low-order FC sub-networks that involve multiple brain regions. 

However, both LON and HON are usually constructed within a fixed and relatively wide 

frequency band, which may fail in capturing (sensitive) frequency-specific FC changes caused by 

pathological attacks. To address this issue, we propose a novel “multi-frequency HON 

construction” method. Specifically, we construct not only multiple frequency-specific HONs 

(intra-spectrum HONs), but also a series of cross-frequency interaction-based HONs (inter-
spectrum HONs) based on the low-order FC sub-networks constructed at different frequency 

bands. Both types of these HONs, together with the frequency-specific LONs, are used for the 

complex network analysis-based feature extraction, followed by sparse regression-based feature 

selection and the classification between mild cognitive impairment (MCI) patients and normal 

aging subjects using a support vector machine. Compared with the previous methods, our 

proposed method achieves the best diagnosis accuracy in early diagnosis of Alzheimer’s disease.

1 Introduction

As an irreversible, severe degenerative neurological disease, Alzheimer’s disease (AD) is 

notorious for progressive perceptive and cognitive deficits. Mild cognitive impairment 

(MCI) is known as an intermediate stage between normal aging and AD. Although some 

individuals with MCI remain stable over time, more than half of MCI subjects progress to 

dementia within ~5 years, at a ratio of about 10–15% per year [1]. Such a high conversion 

rate could possibly be reduced if receiving proper treatments in this “early AD” stage. Thus, 

early detection of MCI is significantly important and clinically valuable for delaying AD 

progression. However, accurate MCI diagnosis based on brain imaging is still challenging, 

since brain anatomical and functional changes at this stage are considerably subtle [2, 3].

Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the blood 

oxygenation level-dependent (BOLD) signals as a neurophysiological index of neural 

Correspondence to: Dinggang Shen.

HHS Public Access
Author manuscript
Connectomics Neuroimaging (2017). Author manuscript; available in PMC 2018 October 
18.

Published in final edited form as:
Connectomics Neuroimaging (2017). 2017 ; 10511: 9–16. doi:10.1007/978-3-319-67159-8_2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity, has been successfully applied to identify functional pathological biomarkers for 

MCI diagnosis [4]. Functional connectivity (FC), defined as the temporal correlation of 

BOLD signals between any pair of brain regions, has been widely applied to explore brain 

intrinsic functional architectures, with which a whole-brain FC network can be constructed; 

such connectomics information has contributed considerably to brain disease diagnosis [5, 

6]. While promising, the previous mostly-adopted FC network is a typical low-order 
network (LON), since it usually characterizes the pairwise relationship between brain 

regions by using the temporal synchronization of BOLD signals. As a result, this type of 

network can hardly reveal the potentially complex relationship and high-level interactions 

among multiple brain regions, which may be more sensitive to the subtle MCI-related 

changes.

One of recent promising technique advances on brain network modeling is called high-order 
FC network (HON), which quantifies high-level inter-regional interactions by using 

topographical resemblance information between low-order sub-networks [7, 8]. However, 

both LON and HON are constructed at a fixed and relatively wide frequency band, which 

may be insensitive and insufficient to capture the frequency-specific changes caused by early 

pathological attacks. Actually, it has been suggested that the neuronal oscillations at distinct 

frequency bands have different biophysiological meanings and may contribute differently to 

FC [9]. Thus, the frequency-specific FC as well as the cross-frequency interaction analysis 

have opened up a new effective way for exploring basic neuroscience problems on high-level 

cognitive functions [10], and could be used for revealing subtle pathological variations in a 

scenario where the traditional LON is less effective to detect [11].

In this study, we propose a novel brain connectomics-based disease diagnosis frame-work 

based on frequency-specific HONs from rs-fMRI. Specifically, we construct multiple 

frequency-specific HONs and multiple cross-frequency interaction-based HONs (based on 

the LONs calculated at each frequency band). The frequency-specific HONs (namely, intra-
spectrum HONs) are constructed based on the topographical similarity between low-order 

sub-networks for each sub-frequency band, which characterize the intra-spectrum high-level 

interactions. On the other hand, the cross-frequency interaction-based HONs (namely, inter-
spectrum HONs) are constructed by quantifying cross-frequency-band topographical 

similarity between low-order sub-networks derived from different frequency bands. Since 

different frequency bands carry different neurobiological functions, such inter-spectrum 
HONs are able to measure high-level modulations among brain functional systems. To 

evaluate the effectiveness of these new network modeling metrics, we use both types of 

these HONs, along with frequency-specific LONs, for classification between MCI patients 

and normal controls (NC). We conduct extensive comparisons between our framework and 

other state-of-the-art methods in MCI diagnosis. The results show our framework can 

significantly outperform comparison methods.

2 Methods

Our proposed framework consists of the following 6 steps. (1) For each subject, the regional 

mean time series of BOLD signals in each ROI are decomposed into multiple frequency sub-

bands. (2) Within each sub-band, one LON is constructed by calculating Pearson’s 
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correlation between each pair of the frequency-specific regional mean time series. (3) An 

intra-spectrum HON is thus estimated based on the topographical similarity between each 

pair of the low-order FC sub-networks constructed from the same frequency sub-band. (4) 

An inter-spectrum HON is further estimated based on the topographical similarity between 

each pair of the low-order FC sub-networks that are constructed from two different 

frequency sub-bands. (5) From each of the constructed FC networks, the complex network 

property-related features are extracted using weighted clustering coefficients for each 

“node” [12]; among them, the discriminative features are selected using sparse regression-

based feature selection. (6) Support vector machine (SVM) with a linear kernel is trained on 

the selected features for MCI classification. Figure 1 illustrates the main flowchart of our 

proposed multi-frequency HONs construction approach.

2.1 Multi-frequency High-Order FC Networks

Suppose that X ∈ ℝP×R denotes regional mean time series with P time points from a total of 

R regions-of-interest (ROIs), where each mean time series has been band-pass filtered at a 

relatively wide frequency band. A full-spectrum FC is derived by computing the Pearson’s 

correlation Cij between the mean time series of the i-th and the j-th ROIs. By estimating the 

FC between each possible pair of ROIs, a FC network can be constructed as a symmetric 

matrix C = [Cij] ∈ ℝR×R. Without loss of generality, we assume each column of X has been 

de-meaned and also variance-normalized by dividing by the standard deviation. The FC 

network can thus be equivalently computed by C = XTX. This defines one LON by simply 

calculating temporal correlation between mean time series from any pair of brain ROIs. In 

addition, this LON is a full-spectrum FC network (i.e., 0.015–0.15 Hz in this study), which 

could be incapable to capture the subtle pathological changes particularly at specific 

frequency spectrum.

In this study, we address the above issue by the construction of multi-frequency HONs. By 

fast Fourier transformation, the mean time series X can be decomposed into frequency-band-

specific time series Xk ∈ ℝP×R (k = 1, 2, 3 and 4) at four different sub-bands: SB1 = 0.015–

0.0488 Hz, SB2 = 0.0488–0.0825 Hz, SB3 = 0.0825–0.1163 Hz, SB4 = 0.1163–0.15 Hz 

(through equal separation of 0.015–0.15 Hz). Within the k-th sub-band, one LON can be 

constructed as Ck = (Xk)TXk, and thus totally four frequency-specific LONs can be 

obtained. Different from full-spectrum analysis, these frequency-specific LONs (constructed 

at their respective sub-frequency bands) are able to reveal those frequency-specific 

pathological variations.

Alternatively, each frequency-specific LON Ck can also be rewritten as 

Ck = c1
k, c1

k, …, cR
k ∈ ℝR × R, where the i-th column ci

k (or the i-th row due to the symmetry of 

Ck) delineates the connectivity pattern between the i-th ROI and all other ROIs and can be 

regarded as a low-order “sub-network”. Thus, a high-order FC can further be defined as pair-

wise topographical similarity between low-order sub-networks. Similar to the frequency-

specific LONs, the intra-spectrum HON at the k-th sub-band can be constructed by 

calculating the high-order FC between every pair of low-order sub-networks as Hk = 

(Ck)TCk. The difference between the frequency-specific LONs and the intra-spectrum HON 
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is that the latter characterizes high-level interactions among brain regions in each frequency 

sub-band, and totally there are four intra-spectrum HONs.

To comprehensively explore high-level FC, we further construct an inter-spectrum HON 

which is calculated based on the correlation of low-order sub-networks defined at two 

different sub-bands. Specifically, the inter-spectrum high-order FC between two different 

frequency sub-bands, i.e., SBk and SBl, is estimated by computing Pearson’s correlation 

between ci
k and c j

l k, l = 1, …, 4, k ≠ l; i, j = 1, …, R, i ≠ j . With a unified form, an inter-

spectrum HON between two different sub-bands can be constructed by Hkl = (Ck)TCl. Such 

inter-spectrum HON provides a straightforward way to characterize the high-level cross-

frequency modulations among brain regions. For the four sub-frequency bands, we have 

totally C4
2 = 6 inter-spectrum HONs.

2.2 Feature Extraction and Classification

For each subject, a total of 14 FC networks are constructed, including (1) four frequency-
specific LONs, (2) four intra-spectrum HONs, and (3) six inter-spectrum HONs. But, the 

feature dimensionality will be rather high, if directly using the connectivity strengths from 

these 14 networks as features. An effective alternative is using complex network properties, 

extracted by graph theoretic analysis, as high-level features. To this end, we compute a 

weighted local clustering coefficient [12, 13] for each node (for reflecting the efficiency of 

information transferring in a local range) in each network as a feature, and then concatenate 

all these features to form a long feature vector with the length of 14 × R. Since there could 

be some redundant features which may affect classification, we conduct feature selection 

based on sparse regression [14, 15] to derive a subset of features with best discriminability. 

Finally, the SVM with a linear kernel is trained on the selected feature subset for MCI 

classification.

3 Experiments

3.1 Data

We use the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (http://

adni.loni.usc.edu/) for validation of the proposed multi-frequency HONs in MCI 

classification. Totally, 59 NC subjects and 53 MCI patients (consisting of both early and late 

MCIs) are selected from ADNI-2 for our experiments. Subjects from both classes are age- 

and gender-matched, and they were all scanned using 3.0T Philips scanners. The rs-fMRI 

data are preprocessed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8/) according to the well-accepted pipeline. Specifically, the first three volumes of each 

subject are discarded before preprocessing for magnetization equilibrium. Then, rigid-body 

registration is used to correct head motion. The rs-fMRI data are normalized to Montreal 

Neurological Institute (MNI) space, and further spatially smoothed by a Gaussian kernel 

with full-width-at-half-maximum (FWHM) of 6 × 6×6 mm3. Of note, we do not perform 

scrubbing to the data with large (i.e., >0.5 mm) frame-wise displacement. However, the 

subjects who have more than 2.5 min rs-fMRI data with large frame-wise displacement are 

excluded for further analysis. Head motion parameters and also the mean BOLD time series 

Zhang et al. Page 4

Connectomics Neuroimaging (2017). Author manuscript; available in PMC 2018 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/


of white matter and cerebrospinal fluid are regressed out to further remove artifacts that may 

interfere with FC estimation. According to the Automated Anatomical Labeling (AAL) 

atlas, the rs-fMRI data are parcellated into 116 ROIs. Regional mean rs-fMRI time series of 

each ROI is band-pass filtered between 0.015 and 0.15 Hz.

3.2 Performance Evaluation

The leave-one-out cross-validation (LOOCV) scheme is adopted to evaluate the diagnosis 

performance of the proposed method. Specifically, in each fold of LOOCV procedure, an 

additional inner LOOCV is carried out on the training data to determine the optimal hyper-

parameters for both sparse regression (used for feature selection) and SVM (used for 

classification). The classification performance is measured based on classification accuracy 

(ACC), area under ROC curve (AUC), sensitivity (SEN), and specificity (SPE). To fairly 

evaluate the effectiveness of our proposed framework, extensive experimental comparisons 

are carried out based on the following 9 methods (1) LONF: Low-order FC networks 

constructed using full-spectrum BOLD signals; this is the most widely used method. (2) 

HONF: High-order FC networks constructed based on the LONF. (3) LONF+HONF: 

Combination of the full-spectrum low- and high-order FC networks. (4) LONIA: Intra-

spectrum low-order FC networks, which were previously used mainly for group-level 

analysis. (5) HONIA: Intra-spectrum high-order FC networks, newly proposed by us. (6) 

Inter-spectrum high-order FC networks, newly proposed. (7) LONIA+HONIA: Combination 

of the intra-spectrum low- and high-order FC networks. (8) HONIA+HONIE: Combination 

of the intra-spectrum and inter-spectrum high-order FC networks. (9) LONIA+HONIA

+HONIE: Combination of intra-spectrum low- and high-order FC networks as well as inter-

spectrum high-order FC networks, i.e., our full method.

Table 1 summarizes the classification performance on MCI diagnosis for all of the 9 

aforementioned methods. Compared with LONs, HONs achieved better classification 

performance in either full-spectrum or multi-spectrum FC analysis. From another aspect, 

multiple-spectrum FC analysis outperformed full-spectrum FC analysis for either LONs or 

HONs. By exploiting the high-level interactions among brain regions across different 

frequency spectrums, the HONIE produced the best performance among all comparison 

methods using a single type of the FC networks. On the other hand, integrating different 

types of FC networks further improved the classification results. The combination of 

LONIA, HONIA and HONIE yielded the best classification performance (i.e., 83.9% in 

accuracy). This indicates that all the three types of FC networks, characterizing brain 

functional organizations from different aspects, provide complementary information to each 

other for MCI diagnosis.

3.3 Intra-spectrum and Inter-spectrum HONs

Figure 2 presents the group-averaged HONIA (0.015–0.0488 Hz), HONIA (0.0488–0.0825 

Hz), and HONIE (across two sub-bands) for NC and MCI groups as an example. The 

discriminability index [16], calculated as an r2-value for each connection in each type of the 

FC network, is also shown. Larger r2-value indicates higher separability of the feature 

distribution patterns between two classes. From these results, we can see that the three 

HONs identified several different discriminative FC links, indicating that they may serve as 
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complementary features for MCI diagnosis. This also offers an additional evidence for the 

highest classification performance achieved by the combination of three types of networks.

4 Conclusion

In this paper, we have presented a novel framework based on multi-frequency high-order FC 

networks for MCI diagnosis. Rather than using the full-spectrum FC, we construct both 

intra-spectrum HONs and inter-spectrum HONs to capture those previously ignored 

frequency-dependent high-order FC and cross-frequency modulation-related high-order FC. 

Both multi-frequency LONs and HONs are jointly used for MCI diagnosis. Experimental 

results show that different brain networks do provide valuable complementary information 

for MCI classification, and our full method achieves the best performance. This indicates the 

promise of the proposed brain network modeling method for brain connectomics-orientated 

studies.
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Fig. 1. 
Illustration on how to construct intra-spectrum low-order and high-order FC networks, as 

well as inter-spectrum high-order FC networks.
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Fig. 2. 
Group-averaged FC networks of HONIA (0.015–0.0488 Hz), HONIA (0.0488–0.0825 Hz), 

and HONIE (across two sub-bands) for NC and MCI groups, as well as the separability 

matrices between two groups for each type of the networks.
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Table 1

Performance comparison of different methods in MCI classification.

Method ACC (%) AUC SEN (%) SPE (%)

LONF 61.6 0.648 56.6 66.1

HONF 65.2 0.658 56.6 72.9

LONF + HONF 67.9 0.698 60.4 74.6

LONIA 70.5 0.746 66.0 74.6

HONIA 73.2 0.747 71.7 74.6

HONIE 75.0 0.757 71.7 78.0

LONIA + HONIA 75.9 0.798 73.6 78.0

HONIA + HONIE 79.5 0.833 77.4 81.4

LONIA + HONIA + HONIE 83.9 0.908 79.3 88.1
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