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Abstract

Reprogrammed metabolism supports tumor growth and provides a potential source of therapeutic 

targets and disease biomarkers. Mass spectrometry-based metabolomics has emerged as a broadly 

informative technique for profiling metabolic features associated with specific oncogenotypes, 

disease progression, therapeutic liabilities and other clinically relevant aspects of tumor biology. In 

this review, we introduce the applications of metabolomics to study deregulated metabolism and 

metabolic vulnerabilities in cancer. We provide examples of studies that used metabolomics to 

discover novel metabolic regulatory mechanisms, including processes that link metabolic 

alterations with gene expression, protein function, and other aspects of systems biology. Finally, 

we discuss emerging applications of metabolomics for in vivo isotope tracing and metabolite 

imaging, both of which hold promise to advance our understanding of the role of metabolic 

reprogramming in cancer.
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Introduction

Metabolism supports various aspects of normal cell biology, including breakdown of fuels 

such as carbohydrates, fats, and amino acids to generate energy and biosynthetic precursors 

for growth[1]. These fundamental features of cellular metabolism are reprogrammed in 

cancer cells to support their pathological levels of growth and proliferation. Metabolic 

reprogramming in malignant cells is likely the result of the multifactorial effects of genomic 

alterations (i.e. mutations of oncogenes and tumor suppressors), the tumor 

microenvironment (which imposes metabolic stress caused by compromised nutrients and 

oxygen availability), and other influences[1–3]. We need to understand the complete breadth 

of metabolic abnormalities in cancer because some metabolic changes provide opportunities 

to develop novel therapeutic targets and predictive biomarkers.
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Generations of studies reaching back to the 1920s have analyzed metabolic alterations in 

cancer, with enhanced glucose utilization being the most frequently and broadly observed. 

The clinical relevance of metabolic reprogramming in tumors is supported by routine use of 

the glucose analog fluorodeoxyglucose as a radiolabeled tracer for positron emission 

tomography-based imaging (FDG-PET)[4]. As newer technologies have become available to 

characterize tumor metabolism more broadly and specifically than ever before, many other 

examples of potentially clinically-actionable metabolic perturbations have become apparent, 

indicating that the propensity for enhanced glucose uptake is merely the tip of the 

iceberg[5].

Understanding cancer metabolism requires systematic application of analytical techniques to 

assess metabolite levels in biological samples from healthy and diseased tissues. 

Metabolomics has emerged as the most powerful platform to recognize metabolic anomalies 

in urine, serum or tissue samples[6, 7]. In general, metabolomics techniques provide semi-

quantitative or quantitative information about the steady-state abundance of intermediates 

from many metabolic pathways simultaneously, providing the user with an overview of the 

metabolic network and its perturbation in disease[8, 9]. This review discusses metabolomics 

methods and presents examples where metabolomics has been used to uncover new concepts 

in cancer biology or to identify novel targets for diagnostic imaging and therapy.

Metabolomics: An informative platform to study cancer metabolism

Metabolomics requires analytical techniques such as nuclear magnetic resonance 

spectroscopy (NMR) and mass-spectrometry (MS) to measure metabolites in biological 

samples. NMR detects the magnetic spin of molecular nuclei under a defined magnetic 

frequency and is effective at identifying metabolites from complex mixtures, quantifying 

metabolite abundance, and assessing the position of specific nuclei (e.g. 13C) within a 

metabolite of interest, all with excellent reproducibility[10, 11]. NMR has the advantage of 

providing non-destructive analysis and the potential for in vivo metabolite detection in 

humans. Proton magnetic resonance spectroscopy (MRS) provides non-invasive detection of 

D-2-hydroxyglutarate (D-2HG) in gliomas with IDH1/2 mutations, and confirmed the 

previously observed profile of elevated choline and downregulated creatine and N-acetyl 

aspartate in gliomas compared to normal human brain[12, 13]. Similarly, 13C magnetic 

resonance spectroscopy (13C MRS) analysis of healthy individuals infused with [U-13C] 

glucose identified glucose flux into the TCA cycle via pyruvate dehydrogenase in healthy 

brain[14]. Limitations of NMR for comprehensive metabolomic assessment include its 

relatively low sensitivity and selectivity[11].

MS-based techniques rely on the mass/charge (m/z) ratio of a metabolite or its fragments. 

These techniques have extremely high sensitivity, with commercial instruments enabling the 

detection of metabolites in tiny samples of a few thousand cells or less and achieving 

femtomolar sensitivity[11, 15–17]. MS analysis can require parallel extraction procedures to 

recover polar, non-polar and volatile compounds for analysis, and extensive processing can 

lead to sample disintegration with loss of the most labile compounds. However, rapid 

advancements in mass spectrometry hardware, ionization techniques, and data-analysis 

software have steadily increased the scope of MS-based metabolomics experiments in both 
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targeted and untargeted applications, making MS the most prominent technology in modern 

metabolomics[11, 17].

A common application of metabolomics has been to discover biomarkers for diagnosis or to 

predict therapeutic sensitivity and prognosis[18]. For example, relatively early metabolomics 

experiments in breast cancer identified positive associations between levels of choline, 

glycine, and lactate, and histopathological grade and tumor size[19, 20]. Similar work in 

tissue samples from ovarian[21], prostate[22, 23], brain[24, 25], and kidney[26, 27] cancers 

and breath samples from lung cancer patients[28] identified metabolic perturbations within 

tumor grades and sizes. Specifically, choline and related metabolites were elevated in 

prostate and pediatric brain tumors, while lipids were elevated in kidney tumors. These 

studies employed various forms of statistical modelling to determine metabolic signatures 

that differentiated tumor from noncancerous tissues, and distinguished tumor stages and 

grades from each other.

Metabolic disturbances associated with genomic alterations in metabolic 

enzymes

Many early metabolomic studies identified metabolic differences between tumors and non-

cancerous tissues, but lacked understanding of the molecular basis for these differences. 

More recently, the simultaneous implementation of molecular biology techniques and other 

integrative strategies together with metabolomics has played an essential role in deciphering 

the molecular underpinnings of metabolic reprogramming in cancer. We now appreciate that 

genomic or gene expression alterations in key enzymes of metabolic pathways support 

oncogenic transformation and/or enable tumor growth and progression. A current challenge 

is to understand how these changes contribute to tumor biology and which might be 

amenable to therapeutic targeting. In a few important cases discussed in this section, 

mutations in metabolic enzymes result in the accumulation of metabolites that directly 

contribute to malignant transformation. These metabolites are commonly referred to as 

oncometabolites, and although they account for a small subset of reprogrammed 

metabolism, they are highly instructive because they provide insight into mechanisms of 

tumorigenesis and the impact of metabolic perturbation on tissue function.

A. Oncometabolites generated by gain of neomorphic enzyme activity

Isocitrate-dehydrogenases (IDH1, IDH2 and IDH3) catalyze the NAD+/NADP+-dependent 

decarboxylation of isocitrate to α-ketoglutarate (α-KG)[29]. While IDH1 is localized to 

cytosol and peroxisomes, IDH2 and IDH3 are mitochondrial enzymes. About 10 years ago, 

IDH1 and IDH2 mutations were identified in patients with low- and intermediate-grade 

gliomas and in glioblastomas arising from these initially less aggressive lesions[30, 31]. 

These mutations result in suppression of the canonical NADP+-dependent oxidative 

decarboxylation of α-KG. However, the mutations are monoallelic and essentially always 

located in the same residues in the IDH1/IDH2 active site, suggesting a gain-of-function 

mechanism relevant to tumor initiation. Metabolomics identified millimolar levels of D-2-

hydroxyglutarate (D-2HG), a metabolite normally present at trace levels, in gliomas and cell 

lines expressing mutant IDH1[32]. The R132 mutation in IDH1 confers a neomorphic 
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activity resulting in NADPH-dependent generation of D-2HG from α-KG[32] (Figure 1). 

Soon after this observation, mutations in IDH1 and IDH2 were identified in acute myeloid 

leukemia (AML)[33], thyroid cancer[34], and in other tumor types[35]. Invariably, R132 

mutations in IDH1 result in D-2HG accumulation, suggesting a critical role for D-2HG in 

driving tumorigenesis. Orthogonal studies demonstrated that D-2HG functionally impairs α-

KG dependent dioxygenases, such as histone and DNA demethylases and prolyl 

hydroxylases[35–37] (Figure 1). Small-molecules inhibiting mutant IDH1/2 were 

demonstrated to suppress D-2HG production, reduce tumor growth and/or induce 

differentiation of experimental models of glioma[38] and leukemia[39, 40], indicating the 

therapeutic potential of targeting these mutations. These remarkable discoveries ultimately 

led to the US Food and Drug Administration (FDA) approval of the mutant IDH2 inhibitor 

enasidenib (IDHIFA, Celgene Corp.) for the treatment of AML patients[41], with ongoing 

clinical trials in other forms of IDH-mutant cancer.

B. Oncometabolites generated by loss of enzyme activity

Mutations in the TCA cycle enzymes succinate dehydrogenase (SDH)[42, 43] and fumarate 

hydratase (FH)[44] lead to familial cancer syndromes such as paraganglioma, 

pheochromocytoma and papillary renal cell carcinoma, indicating that these enzymes 

function as tumor suppressors[45]. Unlike IDH mutations, FH and SDH mutations result in 

the loss of enzymatic function, usually through the inheritance of one germline loss-of-

function mutation followed by loss of the second allele in the tumor. This results in the 

accumulation of the substrates fumarate and succinate, both of which inhibit α-KG 

dependent dioxygenases (Figure 1). The mechanisms by which fumarate and succinate 

contribute to tumorigenesis in sensitive tissues are an area of active investigation, with 

evidence indicating some overlap with D-2HG effects. Mechanistically, with varying IC50 

values, fumarate and succinate inhibit α-KG dependent prolyl hydroxylases[46, 47], TET 

enzyme-regulated hydroxylation of methyl-cytosine[48] including in the promoters of HIF-

regulated genes[49], and histone demethylases[48], conferring genome and proteome 

modifications that support oncogenic transformation. Studies suggest that both metabolites 

can modulate the epithelial-mesenchymal transition (EMT). The fumarate driven EMT gene-

signature is independent of HIF signaling but requires inhibition of TET enzyme-dependent 

demethylation of microRNA clusters that negatively regulate metastasis in papillary and 

renal cell carcinoma[50]. In paraganglioma and kidney cells lacking functional SDH, 

succinate inhibits α-KG dependent dioxygenases, resulting in histone hypermethylation and 

acquisition of EMT-like migratory phenotypes[50, 51]. Fumarate also covalently modifies 

reactive sulfhydryl groups on cysteine residues through a process called succination. 

Elevated levels of fumarate result in the conversion of glutathione (GSH) to succinated GSH, 

reducing NADPH abundance and enhancing ROS and HIF1α activation[52]. Fumarate also 

succinates cysteine residues of Kelch Like ECH Associated Protein 1 (KEAP1), abrogating 

its ability to repress nuclear factor erythroid 2–related factor 2 (NRF2), which regulates 

expression of antioxidant genes and promotes tumorigenesis[53].
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Metabolomics identifies subtype-selective therapeutic liabilities in cancer

Metabolomics can be used to reveal metabolic differences among different tumor subclasses 

from the same anatomic location. Some of these differences reflect the cell-autonomous 

effects of specific oncogenotypes, while others reflect the complex effects of evolving tumor 

biology during cancer progression. Regardless of the cause, such metabolic changes might 

present new opportunities for diagnostic imaging or therapy. In this section, we discuss 

applications of metabolomics to identify metabolic features that stratify tumors into 

molecular or biological subclasses.

A. Metabolic abnormalities governed by cancer genotypes

In many non-transformed epithelial and hematopoietic cells, nutrient uptake is tightly 

regulated by growth factor signaling, allowing cells to engage growth-promoting metabolic 

pathways precisely when they receive exogenous signals to proliferate. The PI3K-AKT-

mTOR signaling pathway is a major effector of growth factors and induces numerous 

bioenergetic and biosynthetic pathways through post-translational protein modifications, 

activating transcriptional networks, and other mechanisms[54–58]. This pathway frequently 

becomes constitutively activated in cancer due to mutations/amplifications of key regulatory 

subunits and/or deletion of tumor suppressors. For example, phosphatase and tensin 

homolog (PTEN), the key negative regulator of PI3K, is the most frequently deleted tumor 

suppressor[59–61]. PTEN transgenic mice with additional genomic copies of PTEN 
demonstrate increased energy expenditure and reduced body mass[62, 63], and embryonic 

fibroblasts from these mice display elevated oxidative phosphorylation and reduced 

glycolysis as a result of repressed PI3K/AKT signaling[63]. Chronic engagement of PI3K-

AKT-mTOR signaling through a variety of molecular mechanisms enhances glycolysis and 

anabolic pathways to supply de novo biosynthesis of nucleotides, fatty acids, and amino 

acids for tumor growth. For instance, Epidermal Growth Factor Receptor (EGFR)-mutant 

lung adenocarcinoma cell lines require PI3K-AKT-mTOR signaling to maintain a growth-

promoting metabolic program, and inhibition of the signaling pathway suppresses 

glycolysis[64]. These tumors do not respond to RAS/MEK/MAPK pathway inhibitors, but 

NRAS-mutant melanoma tumors do require concomitant MEK and PI3K signaling[65]. 

These examples highlight the orchestration of oncogenic signals to modulate cellular 

metabolism in cancer.

Several recent studies have used metabolomic profiling to identify metabolic liabilities 

within specific molecular subsets of cancer. In these cases, signaling or transcriptional 

networks imposed by a mutation or combination of mutations can render cells exquisitely 

dependent on an activity that is dispensable in cells with different oncogenotypes. For 

example, in non-small cell lung cancer (NSCLC), metabolomics revealed marked 

differences between cells and tumors with concomitant mutations in the oncogene KRAS 
and tumor suppressor protein LKB1 compared to cells/tumors with mutant KRAS and wild-

type LKB1[66]. Specifically, the co-mutants had broad alterations in pathways of nitrogen 

metabolism and expressed high levels of carbamoyl phosphate synthetase-1 (CPS1), the 

rate-limiting enzyme of urea cycle. CPS1’s physiological role in the liver is to initiate 

nitrogen disposal by condensing ammonia and bicarbonate in the mitochondria. 
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Surprisingly, in KRAS/LKB1 co-mutant NSCLC cells, carbamoyl phosphate from CPS1 

instead stimulates an unconventional pathway of pyrimidine biosynthesis[66] (Figure 2a, 

Left). Suppressing CPS1 depletes the pyrimidine pool in co-mutant cells, resulting in DNA 

polymerase stalling, DNA damage, reduced tumor growth and increased sensitivity to 

cisplatin, whereas cells with wild-type LKB1 are resistant to CPS1 loss[66]. Similarly, high-

grade KRASG12D/G12D-mutant lung cancer with TP53 null background exhibits elevated 

glycolysis and glucose-derived carbon flux into the TCA cycle and glutathione 

biosynthesis[67] (Figure 2a, Right). These tumors are strikingly more sensitive to combined 

treatment with the glycolytic inhibitor 2-deoxy-D-glucose (2DG) and the glutathione 

biosynthesis inhibitor buthionine sulfoximine (BSO), whereas both KRAS wild-type tumors 

and KRASG12D/+ tumors with wild-type TP53 are relatively resistant to these treatments.

More than 90% of pancreatic ductal adenocarcinoma (PDAC) contain the KRASG12D 

mutation[68]. Combined transcriptomics and metabolomics in KRASG12D-mutant PDAC 

revealed elevated glycolysis and increased fluxes into the hexosamine biosynthetic pathway 

(HBP) to maintain protein glycosylation and the non-oxidative pentose phosphate pathway 

(non-oxidative PPP) to generate DNA/RNA[68] (Figure 2b). These KRASG12D tumors 

require MAPK signaling, but not the PI3K-AKT pathway, to maintain glucose flux through 

the HBP and the non-oxidative PPP. Oncogenic KRAS also diverts glutamine-derived 

aspartate to malate in the cytoplasm through increased expression of glutamic-oxaloacetic 

transaminase 1 (GOT1) in PDAC cells[69]. Subsequently, malate-derived oxaloacetate 

generates pyruvate and NADPH via malic enzyme, and the NADPH is used to maintain a 

reduced GSH pool for ROS homeostasis[69]. Such rewiring of glutamine metabolism 

confers independence of the oxidative pentose phosphate pathway for NADPH production. 

KRAS-mutant colorectal cancer (CRC) cells convert glutamine-derived aspartate to 

asparagine and show sensitivity to inhibitors of asparagine synthetase (ASNS)[70]. 

Interestingly, KRAS-mutant CRC cells maintain asparagine levels through PI3K-AKT-

mTOR pathway mediated ASNS expression[70]. Thus, oncogenic KRAS has pleiotropic 

metabolic effects that result in different metabolic liabilities in different cancer types.

BRAF, another member of the RAS family of oncogenes, is also frequently mutated in 

cancer. Numerous studies have illustrated the impact of the BRAF V600E on metabolic 

phenotypes. Genome wide shRNA screening identified 3-hydroxy-3-methylglutaryl-CoA 

lyase (HMGCL) as a metabolic vulnerability associated with BRAF V600E melanoma[71]. 

HMGCL generates the ketone body acetoacetate, which physically binds to mutant BRAF 

protein to stabilize its interaction with Mitogen-Activated Protein Kinase Kinase 1 (MEK1), 

thus potentiating BRAF-dependent signals[71]. These BRAF and MAPK dependent 

melanomas show reduced mitochondrial metabolism and decreased expression of 

peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PCG1α)[72]. In 

patient-derived melanoma xenografts, the BRAF V600E genotype is associated with 

abundant glycolytic metabolites and enhanced activity of the glycolytic pathway in vivo[73].

MYC family members are the most frequently amplified or otherwise activated oncogenic 

transcription factors across human tumor types[74]. MYC stimulates glucose and glutamine 

metabolism by regulating expression of genes related to these pathways, including lactate 

dehydrogenase-A (LDHA)[75], glucose transporter (GLUT1)[76] and glutaminase (GLS1)
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[77]. Metabolomic studies have broadened our understanding of the diverse functions of 

MYC in regulating many other metabolic pathways in cancer. In triple negative breast 

cancer, MYC regulates metabolites and genes involved in fatty acid oxidation, resulting in 

enhanced levels of acylcarnitine intermediates and rendering tumors sensitive to inhibitors of 

carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in this pathway[78]. MYC 

also regulates 2-hydroxyglutarate (2-HG)-dependent DNA hypermethylation in tripe 

negative breast cancer[79]. Global metabolic profiling of MYC-driven colorectal tumors 

identified significant metabolic dysregulation at the advanced adenoma stage[80]. In this 

model, MYC regulates genes involved in purine/pyrimidine metabolism, glycolysis, and the 

pentose phosphate pathway as well as fatty acid synthesis. However, in contrast to its role in 

triple negative breast cancer, MYC overexpression downregulates fatty acid oxidation genes 

in colorectal cancer[80], further emphasizing that the metabolic effects of oncogene 

activation may manifest differently in different tumors.

B. Metabolic dysregulation associated with tumor progression or aggressiveness

Cellular metabolism is thought to evolve during cancer progression, and several studies 

demonstrate how metabolomics can be used to nominate evolving metabolic features as 

biomarkers or therapeutic targets. To identify non-invasive biomarkers for diagnosis and 

prognosis of prostate cancer, Sreekumar et. al used metabolomics to assess global metabolic 

alterations in urine, serum, and prostate cancer tissues[81]. Sarcosine, a naturally-occurring 

N-methylated form of glycine, was progressively elevated in localized and metastatic tissues 

(Figure 3) and urine samples. Treating benign prostate epithelial cells with sarcosine or 

silencing the sarcosine-degrading enzyme sarcosine dehydrogenase (SARDH) enhanced 

invasive properties, while knockdown of the sarcosine-synthesizing enzyme glycine N-

methyltransferase (GNMT) reduced invasion of prostate cancer cells[81]. Several[82, 83] but 

not all[84, 85] subsequent studies have validated elevated sarcosine level in tissues and urine 

samples from prostate cancer patients.

The metabolomics data generated by Sreekumar et al[81] have subsequently been used to 

identify other metabolic networks contributing to prostate cancer progression. We observed 

that inhibition of the hexosamine biosynthesis pathway (HBP) promotes castration-resistant 

prostate cancer (CRPC)[86] (Figure 3). While the HBP is essential for localized prostate 

cancer growth[86], its downregulation promotes CRPC, making the HBP an example of 

metabolic rewiring associated with cancer progression. Additionally, metabolomics of 

androgen-dependent and castration-resistant prostate cancer cell lines identified correlations 

between UDP-glucuronosyltransferase expression and disease progression[87]. In CRPC, 

constitutive activation of the androgen receptor (AR) is associated with resistance to 2nd 

generation anti-androgens. Interestingly, AR-V7, a spliced form of full-length AR that is 

expressed in anti-androgen enzalutamide and abiraterone-acetate resistant CRPC 

patients[88], was found to decrease the abundance of citrate[89] and increase utilization of 

glutamine-derived reductive carboxylation of α-KG in prostate cancer LNCaP cells 

expressing AR-V7[89]. Similarly, steroid receptor coactivator-2 (SRC-2), a nuclear receptor 

interacting protein with histone acetyltransferase activity, is elevated in metastatic prostate 

cancer and regulates glutamine-derived reductive carboxylation of α-KG in CRPC and 

metastatic cell lines[90].
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Many similar studies have focused on breast cancer, another hormone-sensitive cancer. 

However, breast cancer frequently becomes independent of hormone signaling in the 

aggressive/metastatic stages. Triple negative breast cancer (TNBC) is aggressive and 

therapeutically intractable. It is characterized by loss of estrogen and progesterone receptors 

(ER and PR) and lacks expression of the epidermal growth factor receptor HER-2. Cao et al. 

used high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS 

MRS) to differentiate metabolic profiles between TNBC and tumors positive for ER, PR, 

and HER-2[91]. TNBC tumors displayed elevations of choline and glutamate, while HER-2 

positivity was associated with elevated glycine and glutamine[91]. Interestingly, in a 

separate study, choline and glutamic acid were identified as components of an 11-metabolite 

panel associated with breast cancer recurrence[92].

Clear cell renal cell carcinoma (ccRCC) is the most commonly diagnosed kidney cancer. 

These tumors typically display constitutive expression of hypoxia inducible factors (HIF1α 
and/or HIF2α) due to frequent loss of the tumor suppressor Von-Hippel Lindau (VHL), 

which normally facilitates the oxygen-dependent degradation of HIF-α subunits[93–95]. 

ccRCC displays hallmarks of perturbed metabolism including dramatic accumulation of 

lipids and glycogen. A large metabolomics analysis of more than 130 matched ccRCC 

tumors and adjacent kidney samples revealed decreased citrate and increased glutathione, 

dipeptides, and α-hydroxybutrate in stage 4 tumors[96] (Figure 3). The study also found 

positive associations between α-hydroxybutyrate and disease recurrence, and between 

metabolites of the one-carbon and cysteine/methionine cycles and disease progression. 

These latter correlations are consistent with several other studies in suggesting that ccRCC 

tumors acquire robust anti-oxidant and methylation capacity[97–100]. We used 

metabolomics, Dixon-MR imaging of fat content, and lipidomics to assess regional 

heterogeneity of fat deposition and its relationship with metabolite abundance and tumor 

grade in ccRCC. This study revealed marked heterogeneity of lipids and aqueous 

metabolites, with relative depletion of lipid content and accumulation of several amino acids 

in higher-grade tumors[100].

A comprehensive, integrative analysis incorporating gene expression and metabolomics data 

observed elevated glycolytic metabolites and decreased expression of the gluconeogenic 

enzyme fructose-1,6-bisphosphatase 1 (FBP1) in ccRCC, with FBP1 expression declining as 

the disease progressed[99]. FBP1 expression suppressed glycolysis, thereby interrupting the 

pseudohypoxic metabolic state of cells with chronic HIF-α expression. Surprisingly, this 

study identified a second, non-catalytic function of FBP1 in ccRCC. Nuclear-localized FBP1 

directly associated with HIF-α subunits, interfering with the expression of HIF target genes 

and resulting in reduced cell proliferation.

A key question in cancer metabolism is how metabolic reprogramming influences 

metastasis, because metastasis is the primary determinant of mortality in many forms of 

cancer. Melanoma provides an excellent opportunity to study the metabolic basis of 

metastasis, because these tumors metastasize frequently in patients and because mouse 

models of melanoma exhibiting frequent metastasis are available for study. We used 

metabolomics to profile a panel of patient-derived melanoma xenografts (PDXs) in which 

the metastatic efficiency of the tumors in mice correlated with progression to stage IV 
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melanoma (i.e. distant macrometastases) in the donor patients[101]. In this panel of PDXs, 

subcutaneous tumors that frequently gave rise to distant macrometastases had increased 

levels of trimethyllysine (TML) and dimethylarginine (DMA), two metabolites related to 

histone methylation[73] (Figure 3). TML abundance correlated with two distinct 

trimethylation marks on histone H3, H3K9me3 and H3K27me3. Erasing these marks by 

silencing or inhibiting the methyltransferases SET Domain Bifurcated 1 (SETDB1) and 

Enhancer Of Zeste Homolog 2 (EZH2) reduced free TML levels and decreased in vitro 
invasion and in vivo metastasis without impacting subcutaneous tumor growth[73]. These 

findings indicate that metabolomics can be sensitive enough to detect changes in the 

epigenetic state and can identify activities that enable metastasis in vivo.

Another study using these same melanoma PDXs focused on metabolic differences between 

tumor cells at the subcutaneous site, in the circulation and in metastases in visceral organs 

[102]. Tumor cells in the circulation and in visceral metastases had evidence of oxidative 

stress and enhanced activity of the folate pathway to generate NADPH for ROS homeostasis, 

indicating that ROS imposed a bottleneck on metastasis in these models (Figure 3). Treating 

tumor-bearing mice with the antioxidant N-acetyl cysteine (NAC) increased the number of 

tumor cells in circulation and enhanced metastatic burden, whereas imposing modest 

oxidative stress with low-dose methotrexate suppressed metastasis[102]. Additional 

mechanistic studies in cell culture further support a role for ROS mitigation in anchorage-

independent survival and growth, key determinants of the metastatic cascade. Loss of 

NADPH production from the pentose phosphate pathway was observed to limit the survival 

of non-transformed cells during loss of anchorage, and this could be overcome by expressing 

an oncogene[103]. In cancer cells, loss of attachment to a 2-dimensional matrix was 

associated with enhanced levels of mitochondrial ROS which limited the growth of detached 

tumor spheroids[104]. In this system, mitigating mitochondrial ROS required transfer of 

NADPH from the pentose phosphate pathway in the cytosol into the mitochondria. The 

transfer mechanism involved NADPH-dependent reductive carboxylation of cytosolic α-KG 

by IDH1, followed by entry of the resulting isocitrate/citrate into the mitochondria where it 

supplied IDH2-depenent NADPH production[104]. Altogether, these studies demonstrate 

how metabolism is rewired to mitigate elevated ROS associated with disease progression and 

metastasis.

C. Metabolic cross-talk between cancer cells and immune cells

Cancer cells compete for nutrient availability with non-malignant cells in the tumor 

microenvironment, including macrophages, dendritic cells, lymphocytes, natural killer cells, 

fibroblasts, adipocytes, pericytes and others[105–107]. Metabolism of these cells may also 

be perturbed during tumorigenesis, and therefore, understanding their metabolism could help 

develop better therapeutic strategies. Tumor-infiltrating T cells (TILs) and tumor-associated 

macrophages (TAMs) exhibit marked metabolic adaptations in the tumor microenvironment. 

Activated CD8+ T cells demonstrate elevated HIF1α/VEGFA signaling which corresponds 

positively with their anti-tumor acivities[108]. Tumor-promoting TAMs demonstrate 

elevated oxidative phosphorylation and reliance on glutamine metabolism and fatty acid 

oxidation, while tumor-inhibiting TAMs demonstrate elevated glycolysis and pentose 
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phosphate pathway activity[109]. Several excellent reviews describe metabolic adaptations 

in immune cells in various diseases, including cancer[106, 110].

With the approval of anti-PD1 and anti-PDL1 immunotherapy such as nivolumab for 

advanced cancer, there is an emerging interest in deciphering metabolic alterations 

associated with immunotherapy. Giannakis et al. used LC/MS-based metabolomics to 

identify changes in the serum of melanoma and RCC patients treated with nivolumab[111]. 

Melanoma patients that responded to therapy showed increased levels of kynurenine[111], 

an intermediate of tryptophan degradation with inflammatory and immunomodulatory 

properties[112]. In RCC, nivolumab non-responders showed increased adenosine and poor 

progression free survival[111]. Frankel et al. conducted a similar but prospective study to 

determine both gut microbiome and metabolite alterations in melanoma patients treated with 

ipilimumab (anti-CLA4 antibody); nivolumab (anti-PD1 antibody); ipilimumab with 

nivolumab; or pembrolizumab (anti-PD1 antibody). Metabolomics on stool samples revealed 

several altered pathways among the treatment groups, and metagenomics of stool revealed a 

significant increase in the expression of bacterial enzymes related to fatty acid synthesis in 

patients responding to therapy[113]. Many ongoing clinical trials will further explore the 

interplay between immunotherapy and cancer metabolism, with the goal of identifying 

metabolic inhibitors to enhance the efficacy of immunotherapy.

Systems biology to integrate metabolomics with genomics, 

transcriptomics, and proteomics

Cancer originates from genomic alterations that rewire the landscape of transcriptome, 

proteome, and metabolome. While changes in gene and protein expression have pleiotropic 

effects on the cell, changes in the metabolome often occur in the closest proximity to 

changes in cell biology; in other words, many changes in the cellular phenotype are most 

closely related to changes in metabolic activity downstream of altered transcription and 

protein function (Figure 4). This principle emphasizes the benefits of including 

metabolomics in the overall assessment of tumor phenotypes. Moreover, recent work has 

revealed many processes that place metabolic alterations “upstream” of changes in the 

genome, transcriptome, and proteome. Examples include the impact of 2-HG on epigenetic 

reprogramming, the ability of short-chain acyl-CoA esters to modify protein function, and 

the impact of ROS and xenobiotics on mutagenesis (Figure 4). Thus, metabolism should be 

considered as a dynamic network with the potential both to respond to and influence other 

networks. Systems biology provides a powerful approach to integrate high-content data 

generated from genomics, transcriptomics, proteomics, and metabolomics. For years, 

concordance-based analyses of high-content data sets have recognized roles of transcription 

factors and signaling pathways in regulating metabolism. Massie et al. identified increased 

AR binding to regulatory regions of the metabolic genes including glucose transporter 

(GLUT1), hexokinases (HK1/2), and glutathione-disulfide reductase (GSR), involved in 

glycolysis and amino acid metabolism in prostate cancer cells treated with androgen[114]. 

Subsequently, metabolomics analysis confirmed alterations in these pathways in androgen 

treated cells[114]. Hakimi et al used pathway-based enrichment analysis to identify 

alterations in several metabolic pathways in ccRCC, but also demonstrated lack of uniform 
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concordance between metabolite levels and corresponding enzyme-coding gene expression 

in ccRCC[96]. This observation likely reflects the myriad regulatory mechanisms in addition 

to gene expression that regulate pathway activity, and argues that advanced applications of 

systems biology are needed to improve our understanding of interactions between genes, 

proteins, and metabolites.

In recent years, novel pathway and network-based integrative approaches have been 

developed to combine data from multi-omics studies, especially metabolomics and 

transcriptomics. We used the Oncomine concept map (OCM)[87] and network based gene 

set analysis (NetGSA)[86] to combine data from transcriptomics and metabolomics in 

prostate cancer. OCM is a pathway-based analysis platform that requires a list of differential 

enzyme-coding genes or metabolites to test the enrichment of associated biological 

processes, also termed as molecular concepts, using Fisher’s exact test[115]. Advanced 

network-centric framework utilizes information on gene-gene/protein-protein interactions 

and reactome based information with associated stoichiometry. We applied network-based 

integrative analysis in prostate cancer to first derive pathway scores from gene-expression 

data using gene set analysis (GSA) and from metabolomics data using network-based gene 

set analysis (NetGSA)[86]. Unlike gene-set enrichment analysis, NetGSA utilizes reactome-

based metabolite-interactions and stochiometric information, which increases the power of 

this statistical model[116]. Finally, the pathway scores were combined using a bootstrap 

resampling procedure to nominate significant enrichment of the HBP and pathways of 

riboflavin, biotin, cysteine, and valine-isoleucine metabolism in prostate cancer[86].

Others have applied similar network-based approaches. Zhang et al. used weighted co-

expression network analysis (WGCNA) to identify highly interconnected nodes of metabolic 

pathways associated with fatty acid metabolism in pancreatic ductal adenocarcinoma 

(PDAC)[117]. First, the authors generated a matrix of pairwise Pearson correlation 

coefficients for each metabolite in all tumors, then defined an adjacent matrix using a power 

function. The resulted weighted network was assessed using WGCNA to enrich for highly 

interconnected modules based on network topology. Next, genes corresponding to top 

altered metabolites were analyzed in tumor samples to determine their association with 

pathways derived using WGCNA[117].

Several other studies have used various forms of integrative approaches to classify novel 

interactions between metabolomics and other dimensions of systems biology. Su et al. 

interrogated metabolomics and gene-expression from the NCI-60 cell lines to study 

relationships between metabolite and transcripts[118]. They observed that the metabolome 

can distinguish cancer subtypes and that metabolite levels correlate well with gene 

expression under strong correlation models[118]. Yang et al. performed a comprehensive 

assessment of metabolomics and gene expression from cervical cancer patients and 

identified potential diagnostic biomarkers[119]. Using a similar approach that also 

incorporated pathway over-representation analysis, Fahrmann et al. combined metabolomics 

and proteomics to identify altered nicotinamide and polyamine metabolism in lung 

adenocarcinoma[120]. Using parameters of biochemical reactions, enzyme expression and 

metabolite levels, Auslander et al. combined gene-expression and metabolomics data from 

breast cancer patients to identify significant metabolite-gene correlations in both malignant 

Kaushik and DeBerardinis Page 11

Biochim Biophys Acta Rev Cancer. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and non-malignant tissues, with more abundant correlations in cancer tissues[121]. 

Interestingly, the authors developed a support vector machine model that predicted 

metabolite levels based on gene-expression data and performed quite well in breast cancer 

and hepatocellular carcinoma[121]. Altogether, these studies highlight the potential of 

systems-based approaches, and many online tools are available to perform such integrative 

analyses[122–124].

A current challenge in integrative analysis is to identify common metabolomic alterations 

across multiple cancer types; such alterations could shed light on common mechanisms of 

transformation and might uncover opportunities for generalizable therapies. These analyses 

have proven difficult in part because of the lack of standard methods to combine datasets 

generated in different tumor types, from different institutions, and/or incorporating different 

metabolomics methods. These hurdles were highlighted in a meta-analysis of clinical 

metabolomics studies from diverse tumor types[125]. The authors combined data using 

binary vote-counting methods, which uses a voting function of +1 for elevation and −1 for 

downregulation for each metabolite across all cohorts to derive a composite voting score. 

This approach identified high levels of lactate and glutamic acid in cancer tissues from 

multiple cohorts. It also noted the dearth of complete and raw datasets in many of the 

published studies, perhaps because of the lack of universally-accepted metabolomics 

practices, limiting the scope of meta-analyses[125]. Hopefully the dissemination of standard 

metabolomics protocols via the Metabolomics Workbench[126] and other efforts will 

improve the implementation of integrative approaches.

A related challenge in integrative analysis is the incomplete coverage of the metabolome 

provided by different methods. To address this challenge, multiple groups are developing 

improved extraction and chromatography techniques and enhancing mass-spectrometry 

sensitivity to increase the breadth of metabolites that can be quantified in a single 

experiment[127, 128]. In recent years, techniques of untargeted LC/MS metabolomics have 

been successfully applied to improve metabolome coverage from biological samples. Novel 

bioinformatics software, such as XCMS[129–131], can perform non-linear integration of 

raw spectral peaks and identify thousands of novel metabolic features across multiple 

biological samples. Thus, the next few years should bring improved implementation of 

targeted and untargeted metabolomics techniques to map global metabolic changes in cancer 

and other diseases.

Advanced applications of metabolomics

In vivo isotope tracing and metabolite imaging have emerged as advanced techniques to 

assess metabolism. In this section, we briefly discuss applications of these techniques to 

generate insights about cancer metabolism in intact tissues.

A. Tracing of isotope labeled metabolites

Unlike metabolomics, isotope tracing (i.e. monitoring distribution of an isotope label 

originating on a nutrient of interest) provides information about metabolic pathway activity. 

Isotope tracing has been used extensively to characterize altered metabolic fluxes arising 

from mutations in tumor suppressors and oncogenes, or resulting from various metabolic 
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stressors in cancer cells. The reader is referred to several reviews discussing principles and 

experimental techniques in isotope tracing[132–134]. Here we discuss a few original papers 

that helped shape current concepts in cancer metabolism. Isotope tracing with 13C-glucose 

and 13C-glutamine using NMR-compatible bioreactors that enabled long-term, steady-state 

labeling highlighted the prominence of anaplerotic fluxes in proliferating cancer cells; these 

fluxes, which can be provided by either glucose or glutamine, allow the TCA cycle to 

provide biosynthetic precursors for macromolecular synthesis[135, 136]. Subsequent isotope 

tracing in tumor-bearing mice and cancer patients also revealed extensive glucose oxidation 

and anaplerosis in vivo, with pyruvate carboxylation providing an anaplerotic flux in lung 

and brain tumors[137–140]. Several in vivo analyses of tumor metabolic flux have 

highlighted the importance of both cell-intrinsic (e.g. genetic) and cell-extrinsic (e.g. impact 

of the tissue/culture environment) determinants on metabolic phenotypes[137, 138, 141, 

142].

The fact that cancer metabolism is influenced by such a complex set of factors makes 

metabolic analysis in primary human tumors essential. Neither the full complement of 

genetic diversity in human tumors nor the precise composition of human tumor 

microenvironments are recapitulated in mouse models of cancer. Progression of low-grade 

neoplastic lesions to disseminated macrometastatic disease can take years in humans, and it 

is not feasible to model this key aspect of cancer in mice. A number of studies have used 

isotope tracing in patients as a primary means to describe tumor metabolism in vivo, then 

turned to mouse models to test hypotheses arising from the human studies. Most published 

studies to date have focused on brain and lung tumors. Human gliomas and brain metastases 

tumors are metabolically active and display substantial glucose oxidation in vivo[139]. Non-

small cell lung tumors are reported to a) oxidize glucose at rates exceeding the adjacent 

lung[143], a departure from the classical view of suppressed glucose oxidation in cancer cell 

lines (Figure 5, Left); b) display substantial inter- and intratumor metabolic 

heterogeneity[144]; and c) exhibit nutrient preferences associated with the degree of tissue 

perfusion, with the best-perfused areas complementing glucose oxidation with oxidation of 

additional fuels[144]. An interesting outcome of in vivo human infusion studies has been to 

identify some of these alternative fuels. Tumors in the human brain were observed to use the 

short chain fatty acid acetate as a carbon source for the TCA cycle[145]. In lung tumors in 

both humans and mice, lactate from the circulation provided carbon for the TCA cycle, a 

surprising finding given the long-standing expectation that lactate is primarily a waste 

product in cancer[146, 147].

Conventional methods in isotope tracing usually capitalize on a priori knowledge of which 

downstream metabolites should carry label from the precursor. A number of newer 

approaches allow the user to perform unbiased detection of isotope-labeled molecules, 

providing the opportunity to detect truly novel pathways. These techniques, which include 

nontargeted tracer fate detection (NTFD)[148] and X13CMS[149], require extensive 

computation and statistical modelling and pose challenges in data interpretation[150]. 

Nevertheless, a recent study applied few of these concepts in a targeted analysis in mice fed 

with liquid diet containing [U-13C] glucose for up to 48 hours. This study demonstrated 

significant enrichment of 13C in wide range of metabolic pathways, including HBP, PPP, 
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lipids, as well as in proteins[151], documenting the feasibility of global metabolite labeling 

in vivo.

B. Metabolite Imaging

The tumor metabolomics and isotope tracing experiments described above assessed 

metabolites extracted from tissue fragments containing mixtures of distinct cell types. In 

addition to cancer cells, the tumor microenvironment contains a number of non-malignant 

cell populations, including fibroblasts, endothelial cells, immune cells and others. A major 

ongoing challenge is to deconvolve the contributions of different cell types to understand 

how they interact metabolically with each other. High resolution matrix-assisted laser 

desorption ionization (MALDI)-based mass spectrometry imaging (MSI) has the potential to 

address this challenge by assessing localized metabolite distribution across a plane of tissue. 

This technique has proven to be particularly useful in assessing the spatial resolution of 

larger metabolites like lipids[152, 153]. Kawashima et al. used MALDI-MSI to identify 

spatial distribution of phosphatidylinositol species in malignant cells in breast cancer and to 

correlate the abundance of these lipids with invasive phenotypes[154]. Dilliol et al[155] used 

MALDI-MSI to study proteins and metabolites in mouse models of glioblastoma (Figure 5, 

Right). They employed Fourier Transform Ion Cyclotron Resonance (FTICR)-MALDI-MSI 

to demonstrate changes in protein compositions in high-grade gliomas, then validated their 

findings using microproteomics in laser-capture microdissected tumor tissue sections. 

MALDI-MSI also revealed accumulation of glucose-6-phosphate, ribose-5-phosphate, 

glycine, UDP-N acetyl glucosamine, and TCA cycle intermediates in tumors compared to 

adjacent tissue[155]. MALDI-MSI and the related technique desorption electrospray 

ionization MSI (DESI-MSI) have been used to assess regional metabolite distribution in 

tissues from human and mouse models of renal cell carcinoma[156, 157], prostate 

cancer[158], gastric cancer[159], and sarcoma[160], in some cases identifying specific 

metabolic effects of oncogenic drivers in the tumor tissue. MSI approaches have also been 

used to detect conversion of precursor to product molecules, thereby providing proof of 

principle that the technique has the capability to monitor some metabolic activities[161]. 

Altogether, these studies illustrate the emerging role of MSI in studying cancer metabolism 

and understanding the role of the native microenvironment in dictating metabolic 

phenotypes in vivo[162–164].

Future Perspective

Recent years have seen the expanded use of metabolomics to study cancer. These studies 

have been propelled by rapid improvements both in our understanding of the molecular basis 

of metabolic reprogramming, and in the analytical systems with which cancer metabolism 

can be studied. The availability of isotope labeling methods, metabolite imaging, and tools 

to integrate metabolic data with genomics, transcriptomics, and proteomics have the 

potential to accelerate research in cancer metabolism even further, particularly in the context 

of intact tumors in mice and humans. We anticipate further advancements in global 

metabolite profiling, hopefully with an increasing emphasis on methodological consistency 

to facilitate durable data sharing and reproducibility across centers.
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Abbreviations

MS Mass-Spectrometry

NMR Nuclear Magnetic Resonance Spectroscopy

MRS Magnetic Resonance Spectroscopy

D-2-HG D-2-Hydroxyglutarate

α-KG α-Ketoglutarate

OAA Oxaloacetic acid

TET Ten-Eleven Translocation

GSH Glutathione

ROS Reactive Oxygen Species

LKB1 Liver Kinase B1

PPP Pentose Phosphate Pathway

HBP Hexosamine Biosynthesis Pathway

SAM S-Adenosylmethionine

UDP-GlcNAc Uridine Diphosphate N-Acetylglucosamine

NSCLC Non-Small Cell Lung Cancer

PDAC Pancreatic Ductal Adenocarcinoma

CRPC Castration-Resistant Prostate Cancer

CRC Colorectal Cancer

TNBC Triple Negative Breast Cancer

ccRCC Clear Cell Renal Cell Carcinoma

PDX Patient-Derived Xenograft

LC/MS Liquid Chromatography-Mass Spectrometry

OCM Oncomine Concept Map

NetGSA Network-Based Gene Set Analysis
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WGCNA Weighted Co-Expression Network Analysis

MALDI Matrix-Assisted Laser Desorption Ionization

MSI Mass Spectrometry Imaging
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Figure 1. Oncometabolites inhibit α-KG-dependent dioxygenases
α-KG is required for the function of a family of dioxygenase enzymes including histone 

demethylases, which remove methyl groups from lysine residues in histone proteins; 5-

methylcytosine hydroxylases, which initiate demethylation of cytosine bases; and prolyl 

hydroxylases, which hydroxylate proline residues in proteins such as the α subunits of 

hypoxia inducible factors (HIFs). These dioxygenases can be inhibited by high levels of 

other dicarboxylic acids, which compete with α-KG. Dicarboxylic acids demonstrated to 

inhibit dioxygenases include D-HG (a product of mutant IDH1/2) and fumarate and 

succinate, which accumulate due to loss-of-function mutations in FH and SDH, respectively.
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Figure 2. Examples of genotype-driven metabolic reprogramming in cancer
a. Non-small cell lung cancer (NSCLC) with concomitant mutations in KRAS and LKB1 

use an unusual form of pyrimidine biosynthesis initiated by carbamoylphosphate 

synthetase-1 (CPS1). NSCLC with mutations in KRAS and p53 display glucose-dependent 

glutathione (GSH) biosynthesis. b. KRAS-mutant pancreatic ductal adenocarcinoma 

(PDAC) requires MAPK signaling to regulate glucose flux into the hexosamine biosynthesis 

pathway (HBP) and non-oxidative pentose phosphate pathway (Non-Oxidative PPP). These 

pathways contribute to protein glycosylation and nucleic acid synthesis, respectively.
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Figure 3. Metabolic rewiring during cancer progression
In prostate cancer, elevated sarcosine is associated with metastasis while downregulation of 

the hexosamine biosynthesis pathway (HBP) is associated with castration-resistance. In clear 

cell renal cell carcinoma (ccRCC), elevated glutathione (GSH), dipeptide metabolites, and 

metabolites from the 1-carbon/folate pathway are associated with metastasis while α-

hydroxybutyrate is associated with disease recurrence. Decreased levels of lipids and citrate 

are observed as lower-grade tumors progress to high-grade ccRCC. In melanoma, 

trimethyllysine, dimethylarginine, and induction of the 1-carbon/folate pathway are 

associated with metastasis, while elevated ROS is associated with inhibition of metastasis.
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Figure 4. Systems biology approaches to understand biological interactions between the 
metabolome and other regulatory networks
Metabolic changes define many phenotypic aspects of genetically-determined diseases. 

These diseases generally originate with genomic mutations and are executed through 

changes in the transcriptome, proteome and metabolome. Recent work has emphasized the 

importance of signaling effects caused by perturbed metabolic states, resulting in changes in 

protein function, transcription, and other effects. Examples include post-translational protein 

modification or regulation of these modifications by 2-HG, Acetyl-CoA, and UDP-GlcNac, 

all of which can impact cell signaling. Other metabolites regulate epigenetic control of the 

transcriptome or promote further genomic alterations. Systems biology provides systematic 

techniques to interrogate the complex interaction of genes and proteins with metabolites. 

Broadly, high throughput data generated from multiple compartments can be integrated with 

metabolomics using three different approaches. Concordance analysis uses direct 

information from the transcript/protein expression of enzymes and levels of product and 

substrate of the reaction. As an example, high levels of glucose and glucose 6-phosphate 

(Glucose-6-P) correlate with elevated hexokinase 1 (HK1) expression. Pathway based 

enrichment analysis uses statistical tests, such as Fisher’s exact test, to determine the 

likelihood of observing alterations in groups of metabolites/genes associated with specific 

metabolic pathways. In the corresponding figure, node size represents the number of 

metabolites in a pathway, and enrichment score represents directionality of enriched 

pathways based on composite score of differential metabolites. Network based integration 

uses interaction information about genes, proteins and metabolites as well as stoichiometry 

information of reactomes to design networks to test enrichment of metabolic pathways using 

several mathematical models. In the figure, node size corresponds to number of metabolites 

in a pathway, and interaction between pathways and directionality of flux are represented by 

arrows of varying width.
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Figure 5. Advanced in vivo applications of metabolomics
Isotope tracing (left) and metabolite imaging (right) are two examples of advanced 

applications of metabolomics. Isotope tracing studies in lung cancer patients have 

established that glucose and lactate are oxidized in the TCA cycle in vivo. These studies 

have also revealed the activity of both pyruvate dehydrogenase and pyruvate carboxylase 

(PDH and PC) in vivo. In the illustration, PDH activity results in TCA cycle intermediates 

with two 13C nuclei and PC activity results in TCA cycle intermediates with three 13C 

nuclei. Metabolite imaging (right) using matrix assisted laser desorption/ionization 

(MALDI) provides temporal and spatial resolution of metabolite abundance to observe 

metabolic differences across tissue sections. Metabolite imaging has been used in murine 

glioma models to assess changes in glycolytic and TCA cycle intermediates.
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