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Abstract

The most commonly studied prokaryotic sensory signal transduction systems include the

one-component systems, phosphosignaling systems, extracytoplasmic function (ECF)

sigma factor systems, and the various types of second messenger systems. Recently, we

described the regulatory role of two separate sensory systems in Streptococcus mutans

that jointly control bacteriocin gene expression, natural competence development, as well

as a cell death pathway, yet they do not function via any of the currently recognized signal

transduction paradigms. These systems, which we refer to as LytTR Regulatory Systems

(LRS), minimally consist of two proteins, a transcription regulator from the LytTR Family and

a transmembrane protein inhibitor of this transcription regulator. Here, we provide evidence

suggesting that LRS are a unique uncharacterized class of prokaryotic sensory system.

LRS exist in a basal inactive state. However, when LRS membrane inhibitor proteins are

inactivated, an autoregulatory positive feedback loop is triggered due to LRS regulator pro-

tein interactions with direct repeat sequences located just upstream of the -35 sequences of

LRS operon promoters. Uncharacterized LRS operons are widely encoded by a vast array

of Gram positive and Gram negative bacteria as well as some archaea. These operons also

contain unique direct repeat sequences immediately upstream of their operon promoters

indicating that positive feedback autoregulation is a globally conserved feature of LRS.

Despite the surprisingly widespread occurrence of LRS operons, the only characterized

examples are those of S. mutans. Therefore, the current study provides a useful roadmap to

investigate LRS function in the numerous other LRS-encoding organisms.

Author summary

The ability to sense stimuli triggered by the extracellular environment is a fundamental

requirement of all cellular life. For prokaryotes, there are a variety of recognized classes of

sensory systems that are used to detect and respond to environmental stimuli. In the
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current study, we provide the first evidence for the existence of a potentially new class of

prokaryotic sensory system, which we refer to as LytTR Regulatory Systems (LRS). Here,

we show that LRS are broadly distributed among prokaryotes and are distinct from the

other commonly studied sensory systems like two-component signal transduction systems

and ECF sigma factor systems. Presently, there are only two characterized examples of

LRS, both from Streptococcus mutans. We employ these LRS as models to first define the

key features of LRS and then demonstrate how some of these characteristics are likely uni-

versally conserved among the plethora of uncharacterized LRS in other organisms. Based

upon these data, we further describe how these sensory systems are likely to function in

diverse species and illustrate how to identify and investigate the function of novel LRS.

Introduction

The capacity of bacteria to sense and respond to stimuli triggered by the extracellular environ-

ment is fundamental for survival, particularly in highly dynamic and/or competitive niches.

Prokaryotes currently have several recognized classes of sensory signal transduction systems

that are used specifically for this purpose. The most diverse class consists of the one-compo-

nent systems, which contain single protein fusions of a signal-sensing input domain and a

transcription regulatory output domain [1]. The vast majority of one-component systems are

soluble proteins that utilize a diverse array of small molecules to modulate their transcription

factor activity [1]. Among the best characterized classes of prokaryotic sensory systems are the

phosphosignaling systems, exemplified by two-component signal transduction systems

(TCSTS) and eukaryotic-like serine-threonine kinases/phosphatases (eSTK/P). Phosphosignal-

ing systems respond to environmental stimuli using sensor proteins containing integrated

kinase/phosphatase domains, which alter the phosphorylation status of downstream proteins

involved in the signaling pathway. For TCSTS, phosphorylation typically controls the

sequence-specific DNA binding affinity of one or more cognate transcription regulators [2–5],

whereas eSTK/P usually regulate the phosphorylation status of a broad assortment of proteins

[6–8]. The next major class of prokaryotic sensory systems is the extracytoplasmic function

(ECF) sigma (σ) factors. Unlike TCSTS and eSTK/P, ECF systems do not typically encode

enzymatic domains within sensor proteins; rather, gene expression is regulated through the

production of alternative σ factors that dictate the promoter affinity of RNA polymerase [9,

10]. ECF σ factors are normally maintained in an inactive state through direct interactions

with cotranscribed cognate anti-σ factors that are typically embedded within the cell mem-

brane [11, 12]. ECF systems can be classified into 50 distinct subgroups [13, 14] and are acti-

vated when the anti-σ factor is inhibited via regulated proteolysis, protein-protein interactions,

or through a signal-induced conformational change, thus liberating the σ factor to assemble

within the RNA polymerase holoenzyme [15]. Finally, bacteria (and many other organisms)

also utilize a variety of purine-derived second messenger systems to transduce sensory infor-

mation via molecules such as cAMP, (p)ppGpp, cyclic di-GMP (c-di-GMP), cyclic di-AMP (c-

di-AMP), and cyclic GMP-AMP (c-GAMP) [16]. With the exception of (p)ppGpp, these sec-

ond messenger systems are generally regulated through the action of two classes of proteins:

cyclases that create the second messengers and the phosphodiesterases that degrade them [16–

21]. For (p)ppGpp, its synthesis is catalyzed by RelA-SpoT family enzymes [22]. Once created,

these second messengers can bind directly to their target proteins or RNAs to modulate their

functions [20, 23, 24].
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Recently, we have been examining the regulatory function of two related signal transduc-

tion systems in Streptococcus mutans, which we previously named HdrRM and BrsRM. Both

systems share a variety of features and appear to be distinct from the aforementioned signal

transduction system paradigms. Homologs of these two S.mutans systems, which we broadly

refer to as LytTR Regulatory Systems (LRS), can be found in various bacteria, particularly

within the Firmicutes phylum [25]. Despite their widespread distribution, all putative LRS in

other organisms remain uncharacterized. Thus, our current knowledge of LRS is presently

limited to our previous studies of the HdrRM and BrsRM LRS [25–29]. These two LRS are

both arranged within 2-gene operons with the first gene encoding a transcription regulator

from the LytTR Family [30] and the adjacent downstream gene encoding a transmembrane

protein inhibitor of the LRS regulator [25]. Under normal laboratory growth conditions, the

HdrRM and BrsRM LRS are both maintained in a basal inactive state, due to the function of

their cognate membrane inhibitor proteins [26, 27, 29]. Thus, the membrane proteins presum-

ably serve as the proximal switches responsible for LRS activation, much like the analogous

role of two-component system sensor kinases or ECF system anti-σ proteins. By mutating

either of the membrane inhibitors HdrM or BrsM, it is possible to forcibly activate both LRS

and examine their effect upon downstream gene expression. Surprisingly, the HdrRM and

BrsRM LRS both contain largely overlapping regulons, which includes natural competence

and bacteriocin genes in addition to both LRS operons [26–29]. Thus, these two LRS appear to

be both autoregulatory and coregulatory. Furthermore, activation of bacteriocin gene expres-

sion by the LRS regulators HdrR and BrsR is critically dependent upon their interaction with

direct repeat sequences found upstream of the bacteriocin gene promoters [27, 29]. These

direct repeat sequences conform to a broadly defined consensus recognized by members of the

LytTR Family [29, 30]. While the actual signals responsible for HdrRM and BrsRM activation

are currently unknown, both LRS operons are induced by a rapid switch to high cell density

growth conditions [26]. Intriguingly, HdrRM and BrsRM also jointly control a potent suicide-

like cell death pathway, which underscores their potential ecological significance for S.mutans
and perhaps other species [29]. Overall, it is clear that the HdrRM and BrsRM LRS are not

cryptic regulators, rather they control distinct regulons that are integrated into a variety of

genetic networks. In the current study, we sought to define the key characteristics and global

distribution of LRS. We provide evidence that HdrRM, BrsRM, and several other previously

unrecognized S. mutans LRS are actually members of a large family of analogous regulatory

systems found amongst both bacteria and archaea. The conserved features of these systems

indicate that LRS may comprise a previously unrecognized class of prokaryotic signal trans-

duction system.

Results

Novel S. mutans LRS share key characteristics and are part of the core S.

mutans genome

Our previous investigations of S.mutans LRS have focused upon the HdrRM and BrsRM LRS.

However, it was unclear whether additional uncharacterized LRS might also exist in this spe-

cies. Therefore, we began by searching the S.mutans genome for all of the transcription regula-

tors containing putative LytTR Family DNA binding domains, which identified a total of

seven genes. Two of these are obvious TCSTS response regulators (ComE and LytR), two are

known LRS regulators (HdrR and BrsR), and the remaining three are uncharacterized hypo-

thetical genes (SMU_294, SMU_433, and SMU_1070c). Inspection of the three uncharacter-

ized genes revealed that all are arranged in apparent polycistronic operons and are upstream

of open reading frames (ORFs) encoding putative transmembrane proteins (Fig 1A). This is
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Fig 1. S. mutans encodes at least five sets of autoregulatory LRS. A) Schematic representation of the putative LRS

encoded by S.mutans. Open reading frames are drawn to scale and color-coded as follows: LytTR Family regulator

(brown), LRS membrane protein (blue), ABC transporter (yellow), other ORFs (grey). ORFs are numbered according

to the terminal portions of their respective NCBI Gene Locus Tags (SMU_xxxx). B) Luciferase ORFs were inserted
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highly reminiscent of the hdrRM and brsRM LRS operons, except that each of the uncharacter-

ized operons also includes additional ORFs that are likely cotranscribed, whereas the hdrRM
and brsRM operons are simply 2-gene operons. The SMU_294/295 genes are located between

a conserved hypothetical gene (SMU_293) and an ORF encoding a putative ketopantoate

reductase (SMU_296), while the SMU_433/434 and SMU_1070c/1069c genes are both likely

cotranscribed with ABC transporter genes (Fig 1A). A key feature of the HdrRM and BrsRM

LRS is their autoregulatory ability, which can be activated by mutagenesis of their respective

membrane inhibitor proteins [26, 28, 29]. As shown in Fig 1B, each of the putative membrane

proteins from all five operons was required to repress transcription of their respective operons

indicating that the membrane proteins all similarly serve as inhibitors of an endogenous auto-

regulatory ability. The levels of induction triggered by the membrane protein deletions did

vary widely however, with the SMU_294/295, SMU_433/434, and hdrRM operons all exhibit-

ing ~50 to 60-fold maximum induction, while the SMU_1070c/1069c and brsRM operons

exhibited <20-fold and>500-fold induction, respectively (Fig 1B). Overall, the expression

characteristics of the operons were quite similar, except for the brsRM LRS, which has only a

slightly lower maximum expression but a substantially lower basal expression. Thus, the

dynamic range of inducibility for each of these operons seems primarily dependent upon the

stringency of operon repression, rather than its maximum expression. In our previous studies,

we also observed cross-regulation between the HdrRM and BrsRM LRS [28, 29]. Thus, we

were interested to determine whether this is a unique feature of the HdrRM and BrsRM LRS

or if other LRS might also exhibit cross-regulation of other LRS operons. To test this, we

mutated each LRS membrane inhibitor protein and examined its resulting impact upon the

other four non-cognate LRS luciferase reporter strains. To simplify the analysis, we deleted all

but the two LRS of interest for each reporter to test every pairwise combination of LRS. With

the exception of the SMU_433/434 LRS, all other LRS were found to trigger�2-fold change in

reporter activity for one or more non-cognate LRS operons (Fig 1C). Several cross-regulatory

interactions were quite strong, such as the opposing roles of the SMU_1070c/1069c LRS as

both a potent activator of SMU_294/295 LRS operon expression and as an inhibitor of

SMU_433/434 LRS expression (Fig 1C and 1D). The SMU_1070c/1069c LRS was also found to

be particularly promiscuous, as it is the lone LRS capable of regulating all other LRS operons

(Fig 1D). From these results, we can conclude that the activation of one LRS can influence the

production of another, possibly as part of a regulatory network to modulate the kinetics associ-

ated with non-cognate LRS activation and/or the control of non-cognate LRS regulons.

As mentioned previously, the regulatory function of the HdrRM and BrsRM LRS in S.

mutans is strongly indicative that they are not simply cryptic regulators. In further support of

this notion, we examined whether the five S. mutans LRS operons are likely to be components

immediately downstream of each putative LRS to create transcription fusion reporters. Luciferase activity was

normalized using optical density (OD600) and then compared between the wild-type (WT) and LRS membrane protein

mutant reporter strains (ΔM). Data for each of the LRS reporter strains are color-coded as follows: SMU_294/295

(purple), SMU_433/434 (blue), SMU_1070c/1069c (green), HdrRM (orange), and BrsRM (red). C) Each of the

putative LRS was tested pairwise for potential cross-regulation of other LRS operons. Luciferase activity of the mutant

reporter strains was normalized to optical density (OD600) and then expressed relative to the parental reporter strain

values, which were arbitrarily assigned values of 1. LRS reporter strains are color-coded as follows: SMU_294/295

(purple), SMU_433/434 (blue), SMU_1070c/1069c (green), HdrRM (orange), and BrsRM (red). Genes mutated in

each of these reporter backgrounds are listed beneath each corresponding column. Unnamed genes are listed by the

terminal portions of their respective NCBI Gene Locus Tags (SMU_xxxx). Statistical significance was assessed for each

of the reporter strains exhibiting�2-fold difference in reporter activity relative to its parental reporter. D) Summary of

cross-regulatory interactions between all five LRS. All luciferase data are expressed as means ± s.d. (indicated by error

bars) derived from three or four biological replicates. ���P<0.001, ��P<0.01, �P<0.05 Unpaired two-tailed Student’s t-
test with Welch’s correction.

https://doi.org/10.1371/journal.pgen.1007709.g001
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of its core genome. 25 randomly selected S. mutans genomes were examined for the presence

of all five operons and indeed all were present in every strain examined (Table 1). It should be

noted that there were four strains in which brsM was either not annotated or annotated as a

pseudogene due to the presence of apparent frameshift mutations within a poly-A region near

the 3’ of the brsMORF (Table 1). If such a mutation were truly present in brsM, it should con-

stitutively activate BrsR in these strains. There was also a single instance in which hdrR was

simply not annotated, even though the complete ORF is present (Table 1).

LRS are autoregulatory due to a positive feedback loop encoded within

their operon promoters

Our previous transcriptomic analyses of the HdrRM and BrsRM LRS indicated that both sys-

tems are autoregulatory and coregulatory, as we observed potent induction of both LRS oper-

ons due to deletions of either of the LRS inhibitor proteins HdrM or BrsM [28, 29]. The same

results could also be recapitulated via ectopic overexpression of either of the LRS regulator

genes hdrR or brsR [28, 29]. As members of the LytTR Family of transcription regulators, both

HdrR and BrsR would be predicted to recognize direct repeat sequences conforming to a

broadly defined consensus [30]. Accordingly, LytTR Family consensus direct repeats are essen-

tial for HdrR and BrsR activation of bacteriocin gene expression [27, 29, 31–33]. However, a

previous in silico analysis of the S. mutans genome failed to detect LytTR Family direct repeats

in any of the LRS operon promoter regions [31]. Thus, we were curious whether the autoregu-

latory activity of LRS is mediated directly by the LRS regulators or via an indirect mechanism.

As a test case, we first scanned the intergenic region upstream of the hdrRM operon to identify

potential promoters. A strong candidate containing a putative extended -10 sequence was

identified in this region in addition to a pair of direct repeats located 8 nucleotides upstream

of the putative -35 sequence (Fig 2A). The spacing and length of the direct repeats are identical

to those found in the multiple bacteriocin promoters regulated by HdrR and BrsR, but the

operon direct repeat sequence diverges from the reported LytTR Family consensus [30–33].

This likely explains why it had not been previously detected. To further examine the identified

operon promoter and direct repeats, we created two separate transcription fusion reporter

strains, one in which a luciferase ORF replaced the hdrRMORFs (i.e. ΔhdrRM) and another in

which the luciferase ORF was inserted immediately downstream of the hdrRMORFs (i.e. wild-

type hdrRM). Using the ΔhdrRM reporter strain, we mutagenized the putative extended -10

sequence in the operon promoter, which resulted in substantially lower reporter activity com-

pared to the parent strain (Fig 2B). In addition, the -10 deletion created a dominant phenotype

that could not be suppressed even via ectopic hdrR overexpression, strongly supporting the

role of this sequence as part of the operon promoter. To determine whether the upstream

direct repeats might comprise an HdrR binding site, we performed electrophoretic mobility

shift assays (EMSAs) using full-length recombinant HdrR and a small DNA fragment encom-

passing the hdrRM direct repeat region upstream of the -35. Sequence-specific mobility shifts

were both detectable and critically dependent upon the identified direct repeats (Fig 2C). Next,

we further assayed the same direct repeat mutations shown in Fig 2C using an hdrRM reporter

strain containing a luciferase ORF inserted immediately downstream of the operon ORFs. A

double mutation of hdrM and the direct repeats in this reporter confirmed that the direct

repeat mutations are similarly dominant, as they resulted in reporter activity below that of the

parent strain (Fig 2D). This indicated that the operon direct repeats further increase the basal

expression of the operon via HdrR. It is worth noting that the basal luciferase activity of the

ΔhdrRM reporter strain in Fig 2B is lower than that of the wild-type hdrRM reporter in Fig 2D

(S1 Fig). We attributed this difference to modest levels of HdrR autoactivation upon the
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Fig 2. HdrRM operon regulatory elements mediate an autoregulatory positive feedback loop. A) Partial sequence of the

intergenic region upstream of the hdrRMORFs. The operon promoter is shown in blue font, the direct repeats are shown in red

font, and the hdrR operon transcription start site (+1) is shown in green font. ORFs are shaded in solid colors, whereas intergenic

regions are striped. B) An hdrRM luciferase reporter was created by replacing the hdrRMORFs with that of luciferase. The

luciferase activity of this parent reporter strain (RM-) was then compared after ectopic hdrR overexpression (ROE), mutation of the

Defining LytTR Regulatory Systems

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007709 October 8, 2018 8 / 28

https://doi.org/10.1371/journal.pgen.1007709


hdrRM operon promoter in the wild-type reporter strain and the lack of such regulation in the

ΔhdrRM reporter. As further support for this notion, we created an ectopic hdrRM overexpres-

sion strain and observed an identical dependence upon the operon direct repeats to maintain

the parental level of basal expression (Fig 2E). Thus, in addition to its role in bacteriocin pro-

duction and natural competence development [27, 28], we can conclude that HdrR also directly

serves as an autoregulatory transcription activator, triggering positive feedback autoregulation

upon its own operon via two 9 bp direct repeat sequences located just upstream of the operon pro-

moter. Next, we scanned the brsRM operon as well as the three other putative S.mutans LRS oper-

ons for similar promoter elements as those found in hdrRM. Like the hdrRM operon, we found

that each of the other four operons indeed contain similar direct repeats located 4–11 bp upstream

of their operon -35 sequences (Table 2). With the exception of the SMU_1070c/1069c LRS, each

set of direct repeats is separated by 12 bp of intervening sequence. For the SMU_1070c/1069c LRS,

the repeats are separated by 11 bp. For all five LRS, the locations of the direct repeats immediately

upstream of the -35 sequences indicate they share similar regulatory mechanisms utilizing positive

feedback autoactivation of their respective operons.

LRS are distinct from both TCSTS and ECF σ factor systems

LRS share some analogous features that are highly reminiscent of TCSTS and ECF σ factor sys-

tems. In fact, while searching for novel LRS operons in S.mutans and other species, we noticed

operon promoter -10 site (-10), and after combining hdrR ectopic overexpression with a mutant operon promoter -10 site (ROE/-

10). Data are presented relative to the parent reporter strain, which was arbitrarily assigned a value of 1. C) Electrophoretic mobility

shift assays (EMSAs) were performed with recombinant HdrR and 1 ng of a labeled DNA probe (hdrRMP) encompassing the direct

repeat region upstream of the hdrRM operon promoter. To confirm the specificity of HdrR binding to the direct repeats, an

unlabeled wild-type DNA probe (hdrRMP) and an unlabeled direct repeat mutant DNA probe (Mutant) were added to the EMSA

reactions as competitors. The sequences of both competitor probes are presented under the EMSA image with the direct repeats

shown in red. HdrR abundance per reaction: Lane 1 (0 μg), Lane 2 (10 μg), Lane 3 (20 μg), and Lanes 4–8 (30 μg). Wild-type

competitor DNA (hdrRMP) abundance per reaction: Lane 5 (50 ng) and Lane 6 (200 ng). Mutant competitor DNA (Mutant)

abundance per reaction: Lane 7 (50 ng) and Lane 8 (200 ng). D) An hdrRM luciferase reporter was created by placing a luciferase

ORF immediately downstream of the hdrRMORFs. The luciferase activity of this parent reporter strain (WT) was then compared

after mutating hdrM (M-) and after doubly mutating hdrM and the operon direct repeats (M-/DR-). Data are presented relative to

the parent reporter strain, which was arbitrarily assigned a value of 1. E) An hdrRM luciferase reporter was created by replacing the

hdrRMORFs with that of luciferase and then ectopically overexpressing hdrR in a single copy on the chromosome, while hdrM was

ectopically expressed from a multicopy plasmid (i.e. uncoupled hdrRM expression). The luciferase activity of this reporter strain

(RMOE) was then compared to an hdrR ectopic overexpression reporter strain (ROE) and an hdrR ectopic overexpression reporter

strain with mutated operon direct repeats (ROE/DR-). Data are presented relative to the reporter strain RMOE, which was arbitrarily

assigned a value of 1. All luciferase data are expressed as means ± s.d. (indicated by error bars) derived from four biological

replicates. ���P<0.001, ��P<0.01, and �P<0.05, Unpaired two-tailed Student’s t-test with Welch’s correction, significance

compared to RM- (B), WT (D), and RMOE (E).

https://doi.org/10.1371/journal.pgen.1007709.g002

Table 2. S. mutans LRS all encode direct repeat-mediated autoregulation.

LytTR

Regulator

Membrane

Protein

Operon Direct Repeat Spacer Promoter

HdrR HdrM ACCTCTTAG-12 bp-

ACCACTTAA

8 bp TGGTCA-15 bp-

TGCTATAGT

BrsR BrsM ACCACTTAT-12 bp-

ACCGCTTAT

8 bp TGGTTA-17 bp-TATACT

SMU_294 SMU_295 TCCTAGTAA-12 bp-

TCCTTGTGT

4 bp GCGACA-17 bp-TTTTAT

SMU_433 SMU_434 ACATCTTAT-12 bp-

ACCTCTTAT

10 bp GAGATT-14 bp-

TGATAGACT

SMU_1070c SMU_1069c GCAACTTAG-11 bp-

GCAACTTGA

11 bp TTGTCA-13 bp-

TGATATACT

https://doi.org/10.1371/journal.pgen.1007709.t002
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a number of instances in which uncharacterized LRS regulators are erroneously annotated as

LytTR Family response regulators. This would imply that such genes encode members of

TCSTS, perhaps as orphan response regulators. While the LytTR Family does include numer-

ous TCSTS response regulators, most members of this family are not [5, 30]. We compared the

domain architectures of the two S. mutans response regulators containing LytTR Family DNA

binding domains (ComE and LytR) with each of the five S.mutans LRS regulators. While the

sizes of all of the LytTR Family DNA binding domains are comparable, the response regulators

ComE and LytR are larger proteins overall due to the additional presence of signal receiver

domains (Fig 3A), which are key features found in canonical response regulators [5] and are

notably absent from the LRS regulators. Likewise, response regulators encode strictly con-

served aspartate residues that are essential for phosphosignaling (S2A Fig), yet these are also

absent from LRS regulators (S2B Fig). Obvious differences are similarly apparent when com-

paring TCSTS sensor kinases with LRS membrane inhibitors. The cognate sensor kinases for

ComE and LytR (ComD and LytS, respectively) are considerably larger proteins due to the

presence of various sensory domains and/or ATPase domains (Fig 3B), which are key features

essential for sensor kinase function [34]. No predicted kinase domains or any other putative

enzymatic functions are detectable in the five LRS membrane proteins, although four of these

Fig 3. LRS are distinct from TCSTS and ECF systems. A) Comparison of the domain architectures of TCSTS response regulators, ECF σ factors, and

LRS regulators. The illustrated proteins are from S.mutans with the exception of σW (B. subtilis) and σE (E. coli) and are all drawn to scale. Individual

protein domains are labeled accordingly. B) Comparison of the domain architectures of TCSTS sensor kinases, ECF anti-σ factors, and LRS membrane

proteins. The illustrated proteins are from S.mutans with the exception of RsiW (B. subtilis) and RseA (E. coli) and are all drawn to scale. Individual

protein domains are labeled accordingly. Blue rectangles indicate transmembrane segments that are not located within identified conserved protein

domains. All proteins were illustrated and annotated using the SMART webserver (http://smart.embl-heidelberg.de) [63].

https://doi.org/10.1371/journal.pgen.1007709.g003
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proteins do encode either of two Domains of Unknown Function (DUF3021 or DUF2154)

(Fig 3B).

Like TCSTS, ECF σ factor systems are a major class of prokaryotic multi-protein sensory

signal transduction system that share some analogous characteristics of LRS. One of the defin-

ing features of ECF systems is their utilization of ECF σ factors, which are distinct from those

in the σ70 family, due to their lack of the conserved sigma 3 region (Fig 3A) [9, 35]. Both con-

served domain analyses (Fig 3A) and DNA binding characteristics (Fig 2A–2E) clearly indicate

that LRS regulators are bona fide transcription factors rather than σ factors, thus precluding

them from being part of true ECF systems. Regardless, LRS membrane proteins do share some

basic characteristics with most ECF anti-σ factors, as they are similarly sized membrane pro-

teins, lack obvious enzymatic domains, and serve as inhibitors (Figs 1B and 3B) [11, 12]. Inter-

estingly, after screening the genome sequence data of a phylogenetically diverse group of ECF

system-encoding bacteria, we identified at least 10 separate Domains of Unknown Function

encoded by ECF anti-σ factors, but we were unable to identify a single instance of anti-σ fac-

tors encoding either DUF3021 or DUF2154. Thus, this could be one major distinction between

anti-σ factors and LRS membrane proteins.

Key features of LRS are widely conserved among prokaryotes

Given the highly conserved features of S.mutans LRS operons, we expanded our search for

putative LRS in other species and were surprised to discover that LRS are encoded by a far

broader diversity of organisms than previously recognized (Fig 4 and S3 Table). Using a multi-

tiered search strategy modeled on the five S.mutans LRS, we were able to identify >4600 puta-

tive LRS operons spread amongst the genomes of numerous Gram positive and Gram negative

bacteria as well as some archaea (S3 Table). Overall, the majority of identified LRS are encoded

within the Firmicutes phylum, which agrees with previous observations [25]. Of the five S.

mutans LRS, the BrsRM-type LRS exhibits the most diverse distribution and is the most com-

monly encoded (Fig 4). In all cases, the identified LRS operons are arranged similarly as in S.

mutans with the LRS regulator encoded upstream of the membrane inhibitor (S3 Table). We

also observed a conservation of ABC transporter genes linked to the SMU_433/434-like and

SMU_1070c/1069c-like LRS of other species (Fig 5). The conserved co-occurrence of LRS and

ABC transporter genes suggests that the respective encoded proteins all function together in

related genetic pathways. However, this was not the case for the genes surrounding the

SMU_294/295-type LRS, as only the very closely related species Streptococcus troglodytae con-

tained a similar 4-gene operon (Fig 5). Therefore, the 4-gene operon structure of the S.mutans
SMU_294/295 LRS (Fig 1A) is presumably either incidental or a niche-specific adaptation.

Intriguingly, the LRS operons of other organisms all share highly analogous promoter regions

to those of S.mutans LRS indicating that they similarly function via positive feedback autore-

gulation. Table 3 illustrates some of the diversity of LRS operon promoter elements that can be

identified in both bacteria and archaea. Similar to S.mutans, most LRS operon direct repeat

sequences are separated by 12 bp, but a minority is separated by either 11 bp or 13 bp. It is also

evident there is a particularly strong bias for the direct repeats to be oriented 10 bp upstream

of -35 sequences. The S.mutans LRS operons are somewhat unusual in this regard, as only the

SMU_433/434 LRS operon contains direct repeats located exactly 10 bp upstream of the

operon promoter. We also used Protter [36, 37] to illustrate the predicted topologies of S.

mutans LRS membrane proteins to their corresponding weakest homology examples shown in

Fig 5 and all yielded highly similar structures despite their limited sequence similarities (S3A–

S3E Fig). Overall, the data indicate that most of the identified LRS in S3 Table are highly likely

to be orthologs of the S. mutans proteins. While searching for putative LRS in other species, we
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also encountered a number of potentially novel LRS-types that are not found in S.mutans. The

LRS listed in Table 3 for Staphylococcus aureus, Listeria monocytogenes, and Treponema bryan-
tii have characteristics that are all nearly identical to the LRS found in S. mutans, except that

their LRS membrane proteins exhibit no obvious homology to those of S.mutans. For the S.

aureusmembrane protein SACOL_RS12400, its predicted topology is also obviously distinct

from the five S.mutans LRS membrane proteins (S3F Fig). Furthermore, members of the Bac-
teroides fragilis group, such as B. thetaiotaomicron and B. ovatus, encode “LRS-like” operons

Fig 4. Global distribution of putative LRS among prokaryotes. The membrane proteins from the five S.mutans LRS were used as queries to identify

potential LRS within the genome data of the NCBI non-redundant nucleotide collection (nr/nt) and whole genome shotgun (wgs) databases. The sizes

of the filled circles are proportional to the number of identified genera encoding putative LRS matching to each of the corresponding S.mutans-type

LRS.

https://doi.org/10.1371/journal.pgen.1007709.g004
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(Btheta7330_RS19920/RS19915 and Bovatus_RS21370/RS21375) that exhibit a number of dis-

tinctions from S. mutans LRS. These Bacteroides operons encode the membrane proteins

upstream of the LytTR Family regulators. Unlike S.mutans LRS, the encoded membrane pro-

teins contain two conserved domains, an NfeD-like domain in addition to DUF2154, which is

the same domain found in the S. mutans LRS membrane protein HdrM (Figs 3B and S3G).

The LytTR Family regulators encoded in the Bacteroides operons are also unusual, as they con-

tain multiple transmembrane segments before the DNA binding domains, whereas all of the S.

mutans-type LRS encode soluble transcription regulators (Fig 3A). The intergenic regions of

the Bacteroides LRS-like operons also contain 11 bp direct repeats separated by 11 bp of inter-

vening sequence with the repeats located 11 bp upstream of the operon promoters [38, 39]

(Table 3). Presumably, these repeats similarly function in autoregulatory transcription activa-

tion of the operons. The presence of these distinct LRS-like operons indicates that additional

uncharacterized varieties of LRS are likely to exist.

Fig 5. Comparison of LRS operons among diverse prokaryotes. A set of three representative operons matching to each of the five S.

mutans LRS was randomly selected from the master table of putative LRS (S3 Table) and illustrated for comparison. In each set of

three operons, their descending order in the figure is indicative of their relative homologies to the corresponding S.mutans LRS

(Top = high homology, middle = medium homology, and bottom = low homology). Open reading frames are drawn to scale and

color-coded as follows: LytTR Family regulator (brown), LRS membrane protein (blue), ABC transporter (yellow), and other ORFs

(grey). ORFs are numbered according to the terminal portions of their respective NCBI Gene Locus Tags. Species and Gene Locus

Tags are listed from top to bottom as: St (Streptococcus troglodytae; SRT_xxxxx), Ra (Rothia aeria; RA11412_0xxx), Pr

(Pseudobutyrivibrio ruminis; CSX00_RSxxxxx), Sa (Streptococcus anginosus; SAIN_RS0xxxx), Lp (Lactobacillus plantarum;

LPST_RS0xxxx), Oo (Oenococcus oeni; OEOE_0xxx), Sp (Streptococcus pantholopis; A0O21_RS00xxx), Bf (Butyrivibrio fibrisolvens;
G624_RS01100xx), Am (Anaerosporobacter mobilis; BUB90_RSxxxxx), Sc (Streptococcus caviae; BMI76_0xxxx), Cs (Clostridium
sciendens; CLOSCI_RS0xxxx), Ct (Chlamydia trachomatis; ERS095036_xxxxx), Sr (Streptococcus ratti; SRA_0xxxx), Sc

(Staphylococcus carnosus; VV61_0xxxx), and Ta (Thermoplasmatales archaeon; TALC_RS0xxxx).

https://doi.org/10.1371/journal.pgen.1007709.g005
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Activation of the BrsRM LRS is intimately connected with purine

metabolism

As mentioned previously, little is known about the environmental and/or cellular signals that

naturally activate LRS from their basal inactive states. Given the broad distribution and conser-

vation of LRS, it was of interest to gain further insight into LRS activation, as similar mecha-

nisms may exist in other organisms. We created amariner transposon library of>10,000

mutants to screen for mutations that could trigger activity from a transcription fusion brsRM-
gusA β-glucuronidase reporter strain. We selected the brsRM LRS for several reasons: 1) we

Table 3. Autoregulatory LRS are encoded by diverse bacteria and archaea.

Species LytTR Regulator Membrane Protein Operon Direct Repeat Spacer Promoter Class

S. mutans-type LRS

Streptococcus pneumoniae spr1731 spr1730 ACCACTTAC-12 bp-

ACCACTTGC

10 bp TTGTAT-14 bp-

TGATATAGT

Bacilli

Streptococcus anginosus SANR_RS01820 SANR_RS01825 ACCACTTAC-12 bp-

ACCACTTAC

10 bp TTGAAT-13 bp-

TGTTATAAT

Bacilli

Bacillus cereus BCERE0022_RS11195 BCERE0022_11190 ACCAGTTAT-12 bp-

ACCGACTAT

10 bp TTTACA-17 bp-

TATATT

Bacilli

Staphylococcus carnosus VV61_04670 VV61_04675 ACCGCTTGT-12bp-

ACCGCTTAT

10 bp TTCTTA-14 bp-

TGGTTTAAT

Bacilli

Clostridium botulinum CLL_RS22995 CLL_RS23000 ACCACTTAC-12 bp-

ACCACTTAT

10 bp TTTACA-17 bp-

TATAAT

Clostridia

Peptostreptococcus
anaerobius

HMPREF0631_RS05510 HMPREF0631_RS05505 ACCTCTTAT-12 bp-

ACCTTTTGT

11 bp TGCAGA-16 bp-

TATAAT

Clostridia

Roseburia intestinalis ARA28_RS17855 ARA28_RS17860 ACCACTTAC-13 bp-

ACCACTTG

11 bp TTTACA-17 bp-

TATAAT

Clostridia

Anaerococcus prevotii APRE_RS08445 APRE_RS08450 TCCACTTAT-12 bp-

ACCTTTTAT

10 bp GTGAAT-17 bp-

TATAAT

Tissierellia

Propionimicrobium
lymphophilum

G556_RS11075 G556_RS0106150 GCCAGCTTG-13 bp-

ACCGCTTAG

10 bp TTGTAC-16 bp-

TTTAAC

Actinobacteria

Varibaculum cambriense HMPREF1862_RS06695 HMPREF1862_RS06700 CCCGCTTGG-12 bp-

GCCGCTTAG

10 bp TTGTAC-16 bp-

TTTAAC

Actinobacteria

Actinomyces turicensis HMPREF9241_RS01025 HMPREF9241_RS01030 CCCGCTTGG-12 bp-

ACCGCTTAG

10 bp TTGTAC-16 bp-

TTTAAC

Actinobacteria

Corynebacerium uterequi CUTER_RS00040 CUTER_RS00035 ACCACTTAG-12 bp-

ACCGCATAG

10 bp TTGCTC-17 bp-

TGTACT

Actinobacteria

Chlamydia trachomatis ERS095036_10319 ERS095036_10318 ACCACTTAC-12 bp-

ACCACTTAC

10 bp TTGAAT-13 bp-

TGTTATAAT

Chlamydiae

Chlamydia trachomatis ERS133248_00994 ERS133248_00993 ACCGCTTAT-12 bp-

ACCAGATAG

10 bp TTGAGT-16 bp-

TTTTAC

Chlamydiae

Thermoplasmatales
BRNA1

TALC_RS05580 TALC_RS05575 TCCGTCGGT-11 bp-

TACGAGGGA

11 bp TTGTCC-16 bp-

TATATG

Thermoplasmata

Putative Novel LRS

Staphylococcus aureus SACOL_RS11195 SACOL_RS12400 GCCACTTAA-12 bp-

ACCATTCAA

9 bp AATATA-14 bp-

TGGTTTAAT

Bacilli

Listeria monocytogenes lmo0984 lmo0985 GCATCTTAG-12 bp-

GCATGTTAC

10 bp TTGTAG-16 bp-

TATAAT

Bacilli

Treponema bryantii SAMN04487977_102124 SAMN04487977_102123 ACCACTTAT-11 bp-

GCCACTTAT

10 bp CACACA-17 bp-

TATACT

Spirochaetes

Bacteroides
thetaiotaomicron

Btheta7330_RS19915 Btheta7330_RS19920 TCCGGTATTCA-11bp-

ACCGGAAATCA

11 bp TGTA-19 bp-

TATCTTTG

Bacteroidia

Bacteroides ovatus Bovatus_RS21375 Bovatus_RS21370 TCCGGCATTCA-11 bp-

ACCGTAAATCA

11 bp TGTG-19 bp-

TATCTTTG

Bacteroidia

https://doi.org/10.1371/journal.pgen.1007709.t003
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have previously studied the BrsRM LRS [29], 2) BrsRM is the most stringently regulated LRS

(Fig 1B), and 3) BrsRM is the most broadly distributed LRS (Fig 4). Prior to transposon muta-

genesis, we deleted all other LRS from the brsRM-gusA reporter strain to eliminate any poten-

tial impact of cross-regulation between LRS (Fig 1C and 1D). After screening the library, we

initially identified 49 transposon mutants that exhibited various levels of β-glucuronidase

activity. We retransformed these mutations into the parent brsRM-gusA reporter to assess

reproducibility and then identified the insertion sites of clones exhibiting β-glucuronidase

reporter activity (S4 Fig). The final list of 11 distinct brsRM-inducing mutations is shown in

Table 4. We next introduced these same mutations into a brsRM-gusA transcription fusion

reporter strain in which the brsRMORFs were replaced by gusA (i.e. ΔbrsRM). In the ΔbrsRM
background, only the rgpD and SMU_2060–2061 intergenic region (IGR) mutants still exhib-

ited obvious reporter activity (Table 4), suggesting these two mutations increase brsRM operon

expression independent of BrsR autoregulation (i.e. the BrsRM LRS is not required). The

remaining 9 mutations in Table 4 do require BrsRM to induce reporter activity and are there-

fore likely to function via the activation of the BrsRM LRS. Of these, we were next interested to

determine whether there is any common theme or pathway among them that might yield clues

as to the source of their BrsRM activation phenotypes. After testing various hypotheses, ulti-

mately, it was purine metabolism that proved to be a key aspect of BrsRM activation. Since sev-

eral of the genes listed in Table 4 have either verified or predicted roles in purine metabolic

processes (tilS,mnmE, and SMU_1297), purines were among the numerous reagents tested for

brsRM-gusA reporter activity using chemically defined medium agar plates. As shown in Fig

6A, in adenine/guanine drop-out medium, the reporter strain exhibited no obvious response

after four days of incubation. In contrast, low concentrations of adenine and guanine both

served as potent activators of the reporter. Interestingly, reporter activity increased concomi-

tantly with adenine concentration, whereas the opposite was observed with guanine (Fig 6A).

We repeated the purine experiment using the mutant strains listed in Table 4 and all but the

SMU_1297 mutant exhibited obvious reporter activity after incubating for only two days in

the presence of adenine, and to a lesser extent, guanine as well (Fig 6B–6E). Despite the lack of

Table 4. brsRM-inducing transposon mutations.

Strain Function Tn Insertion �brsRM+ �ΔbrsRM
Parent brsRM-gusA (all other LRS deleted) – – –

tilS (SMU_13) tRNA(Ile)-lysidine synthase 2 ++++ –

rpoB (SMU_1990) RNA Polymerase beta subunit 1 +++ –

SMU_2060–2061 IGR between SMU_2060–2061 ORFs 1 +++ +++

rgpD (SMU_828) Polysaccharide ABC transporter subunit 1 ++ ++

ssuE (SMU_1089) NADPH-dependent FMN reductase 1 ++ –

SMU_1406c NADPH-dependent FMN reductase 3 ++ –

prfC (SMU_608) Peptide chain release factor 3 4 + –

SMU_1193 GntR Family transcription regulator 1 + –

mnmE (SMU_1235) tRNA modification GTPase 3 + –

SMU_1297 DHH Family phosphoesterase 2 + –

comE (SMU_1917) Sensor kinase 1 + –

�++++ indicates strongest GusA reporter activity on complex medium agar plates

�+++ indicates strong GusA reporter activity on complex medium agar plates

�++ indicates medium GusA reporter activity on complex medium agar plates

�+ indicates weak GusA reporter activity on complex medium agar plates

https://doi.org/10.1371/journal.pgen.1007709.t004
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reporter activity from the SMU_1297 mutant, this strain still exhibited an intriguing response

to adenine, as it was the only mutant likely exhibiting adenine auxotrophy (Fig 6D and 6E).

Thus, SMU_1297 is presumably an unrecognized key component of purine metabolism. Simi-

larly, both the rpoB and rgpDmutants grew poorly on defined medium in the absence of

purine supplementation, whereas both grew normally on complex medium. It is worth noting

that the rpoBmutant likely encodes a partially functional RpoB protein, as the transposon

insertion occurred near to the 3’ of the rpoBORF (S4 Fig). This reduced functionality is appar-

ently problematic for growth on chemically defined medium, as only a fraction of the rpoB
mutant cells was able to grow in this condition (Fig 6B–6E). Despite this, the rpoBmutant as

well as the tilS mutant were the only ones to exhibit obvious brsRM expression in the absence

of purines, although purine supplementation could still further augment their reporter activity

like most of the other mutants (Fig 6B–6E). Overall, these results support a major role for

purines (especially adenine) as mediators of BrsRM activation.

Discussion

The current study provides the first insights into a widely conserved, but almost entirely

uncharacterized group of prokaryotic sensory systems. In S.mutans, these systems, termed

LytTR Regulatory Systems, are included within its core genome (Table 1) and control diverse

regulons as well as a cell death pathway [28, 29]. The key features of LRS are distinct from the

other 2-protein sensory systems (TCSTS and ECF σ factor systems) (Fig 3A and 3B) suggesting

LRS possibly represent a novel class. Despite the large number of putative LRS operons we

identified amongst both bacteria and archaea, the true breadth and diversity of LRS is likely to

be underestimated, as our analyses were performed using S. mutans LRS as model systems,

due to the current lack of relevant studies in other species. For example, in the MRSA strain S.

aureus COL, the two-gene operon SACOL_RS12395/RS12400 encodes a putative LytTR Fam-

ily regulator upstream of a DUF3021-containing membrane protein and the operon contains

typical LRS repeats located 9 bp upstream of the operon -35 sequence (Table 3). However, the

LRS membrane protein SACOL_RS12400 lacks significant sequence similarity to those of S.

mutans LRS and it exhibits a distinct predicted topology as well (S3F Fig). Despite this, the

putative SACOL_RS12395/RS12400 LRS is widely encoded among the staphylococci and

many other Gram positive species. A similar result can be observed from the lmo0984 –

lmo0987 operon of L. monocytogenes, except this operon also includes an ABC transporter

much like those associated with the SMU_433/434 and SMU_1070c/1069c LRS of S. mutans
(Fig 5). Whether these LRS are weak homology orthologs of S.mutans LRS or represent

entirely distinct varieties of LRS remains to be determined. However, protein topology predic-

tions suggest the latter scenario is more likely to be the case (S3A–S3F Fig). Furthermore, we

have also encountered a number of “LRS-like” operons that are analogous, but clearly distinct

from those of S.mutans or the aforementioned unclassified LRS from S. aureus and L. monocy-
togenes. Such operons can be found among members of the Bacteroides fragilis group, such as

B. thetaiotaomicron and B. ovatus, and exhibit a unique operon arrangement encoding tran-

scription regulators and membrane proteins unlike those of S.mutans LRS (Table 3 and S3G

Fig). Despite the unique qualities of these operons, the obvious parallels to S. mutans LRS sug-

gest that LRS likely exist in a greater variety than is currently recognized.

One of the key features defining LRS control in S. mutans is the autoregulatory positive

feedback regulation encoded within the operons. For the HdrRM LRS, this is mediated directly

by HdrR and is critically dependent upon its recognition of the direct repeats located upstream

of the hdrRM operon promoter (Fig 2A–2E). It is now evident that these direct repeats are not

only key to LRS function in S.mutans, but they appear to be a defining feature of most, if not
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all, LRS encoded by a wide diversity of prokaryotes (Table 3). Among the putative orthologous

LRS found in other species, there is low overall sequence conservation of the individual direct

repeats, whereas the direct repeat lengths, their spacing, and their locations immediately

upstream of LRS operon promoters are all highly conserved (Table 3). Another conserved

characteristic of S.mutans LRS is the inhibitory function of LRS membrane proteins, which

play key roles in dictating the basal expression levels of LRS operons (Fig 1B). Presumably, it is

the inhibitory equilibrium maintained between an LRS membrane protein and its cognate reg-

ulator, which is the principal determinant of LRS operon basal expression. The inhibitory

function of LRS membrane proteins can also yield misleading results when performing genetic

studies of unrecognized LRS, since single mutations of LRS regulators or double mutations of

cognate LRS regulators and membrane proteins are both likely to result in wild-type pheno-

types [26]. To observe LRS-related phenotypes, one must solely mutate the LRS membrane

protein to constitutively activate the system.

Based upon these conserved features of LRS, several inferences can be made regarding their

functionality. Firstly, LRS exist in a basal inactive state. A variable, but limited amount of auto-

regulation is permitted under normal growth conditions (Figs 1B, 2B, 2D and 2E), which

would ensure that the cell maintains a minimal abundance of LRS for the detection of relevant

Fig 6. Purines mediate activation of the BrsRM LRS. A) The brsRM-gusA reporter was spotted onto chemically defined

medium agar plates ± adenine (A) or guanine (G) and grown for four days. The concentrations of the purines

supplemented in the agar plates are listed above or below the respective images. In addition, each of the brsRM-inducing

transposon insertion mutations was introduced into the brsRM-gusA reporter strain and spotted onto chemically defined

medium agar plates containing either B) no purines (–AG), C) 0.132 mM guanine (+G), D) 0.15 mM adenine (+A), or E)

0.132 mM guanine + 0.15 mM adenine (+AG). Strains are listed from left to right as: WT (parent reporter strain), 1 (tilS
mutant), 2 (rpoBmutant), 3 (SMU_2060/2061 IGR insertion), 4 (rgpDmutant), 5 (ssuEmutant), 6 (SMU_1406c mutant), 7

(prfCmutant), 8 (SMU_1193 mutant), 9 (mnmEmutant), 10 (SMU_1297 mutant), and 11 (comEmutant). The strains were

incubated for two days before imaging.

https://doi.org/10.1371/journal.pgen.1007709.g006
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stimuli. Upon signal detection, LRS abundance should quickly increase due to positive

feedback autoregulation, thus amplifying both the signal detection apparatus as well as

the downstream transcriptional response. Secondly, LRS presumably respond to unusual

growth conditions and/or environmental stress. This is supported by several observations:

1) LRS exist in a basal inactive state, 2) the HdrRM LRS responds to a rapid switch to high

cell density growth conditions [26], 3) purines, which mediate activation of the BrsRM

LRS (Fig 6A–6E) are also central transducers of environmental stress signals [19, 21, 22],

and 4) DUF2154, which is found in HdrM, is encoded by proteins responding to cell enve-

lope damage [40–42]. These features are also highly reminiscent of ECF systems. Like

LRS, ECF systems are maintained in a basal inactive state, due to the inhibitory function

of cognate anti-σ factors. Furthermore, ECF systems are similarly dispensable under nor-

mal growth conditions [43, 44] and their activation is typically dependent upon positive

feedback autoregulation, ultimately triggered by environmental stress [11, 12, 15, 45]. The

lack of shared domains between ECF anti-σ proteins and LRS membrane proteins (Fig

3B) as well as the obvious distinctions between σ factors and transcription regulators sug-

gest that ECF systems and LRS evolved independently, although it is conceivable that both

systems could be products of convergent evolution.

When examining the distribution of LRS, it is evident that these systems are encoded

by a phylogenetically diverse group of Gram positive and Gram negative bacteria and

even some archaea (Fig 4). However, their distribution appears highly biased as well with

a subset of Firmicutes encoding the majority of LRS, especially the Lactic Acid Bacteria

(Fig 4 and S3 Table). It is currently unclear why such a bias exists. This could be partly

due to the utility of some LRS for the regulation of bacteriocin genes. Lactic Acid Bacteria

are particularly rich sources of diverse bacteriocins that are regulated by LytTR Family-

like repeats upstream of the bacteriocin gene -35 sequences [25, 29, 31, 46–51]. Another

possibility that is not mutually exclusive with the former could be that LRS are a fairly

recent evolutionary innovation originating within the Firmicutes phylum. In which case,

a biased overrepresentation in these species would be expected [52]. Certainly, it is also

possible, if not likely, that our current view of LRS distribution is reflective of only a sub-

set of LRS as a consequence of our comparisons to S. mutans. In this case, an apparent

skewed overrepresentation among the Lactic Acid Bacteria might be simply due to their

close phylogenetic relatedness to S. mutans. As mentioned previously, the presence of

LRS-like operons in other distantly related organisms hints at the possibility of a greater

diversity of LRS than is currently recognized. Further clarity should arise once additional

functional data are available from other LRS-encoding species.

Materials and methods

Bacterial species and culture conditions

All bacterial strains used in this study are listed in S1 Table and were either grown in an anaer-

obic chamber containing 85% N2, 10% CO2, and 5% H2 at 37˚C, a 5% CO2 incubator at 37˚C,

or cultured with aeration at 37˚C. The S.mutans strain UA140 [53] was used as the parent

wild-type for all experiments. S.mutans strains were cultured using Todd Hewitt medium sup-

plemented with 0.3% wt vol-1 yeast extract (THYE, Difco) or in chemically defined medium

[54], while E. coli strains were cultured with Lennox LB (LB, Difco) medium. For antibiotic

selection, cultures were supplemented with the following antibiotics: S. mutans–(10 μg ml-1

erythromycin, 1 mg ml-1 spectinomycin, 0.02 M p-chlorophenylalanine [4-CP], and 800 μg

ml-1 kanamycin) and E. coli–(100 μg ml-1 ampicillin, 50 μg ml-1 chloramphenicol, 250 μg ml-1

erythromycin, and 100 μg ml-1 spectinomycin).
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DNA manipulation and strain construction

All primers used for strain construction are listed in S2 Table. All PCR reactions employed

Phusion DNA Polymerase (NEB). PCR amplicons were purified using the Zymo Research

DNA Clean & Concentrator-25. All constructs were assembled using an overlap extension

PCR (OE-PCR) strategy.

Construction of wild-type and membrane protein deletion LRS reporter

strains

The S. mutans luciferase reporter strains used in Fig 1B were created by inserting the green

renilla luciferase ORF immediately downstream of the LRS operons. Briefly, the luciferase

open reading frame (ORF) containing the S. mutans ldh (lactate dehydrogenase) ribosome

binding site was amplified from the strain ldhRenGSm [55] using the primer pair RenG-F/

RenG-R. The ermAM erythromycin resistance cassette was PCR amplified from the plasmid

pJY4164 [56] using the primer pair (RenG) erm-F/erm-R. Primers used to amplify the respec-

tive upstream and downstream homologous fragments for each reporter construct are as fol-

lows: wild-type SMU_294/295 LRS [SMU294-LF/SMU295(RenG)-R and (erm)SMU295-RF/

SMU295-RR], SMU_294/Δ295 LRS [SMU294-LF/SMU294(RenG)-R and (erm)SMU294-RF/

SMU295-RR], wild-type SMU_1070c/1069c LRS [SMU1070c-LF/SMU1069c(RenG)-R and

(erm)SMU1069c-RF/ SMU1070c-RR], SMU_1070c/Δ1069c LRS [SMU1070c-LF/SMU1070c

(RenG)-R and (erm)SMU1070c-RF/SMU1070c-RR], wild-type SMU_1854/1855 (hdrRM)

LRS [hdrRM159-LF/hdrM(RenG)-R and (erm)hdrM-RF/hdrRM159-RR-2], SMU_1854/

Δ1855 (hdrRΔM) LRS [hdrRM159-LF/hdrR(RenG)-R and (erm)hdrR-RF/hdrRM159-RR-2],

SMU_2080/2081 (brsRM) LRS [brsM-LF/brsM(RenG)-R and (erm)brsM-RF/brsM-RR],

SMU_2080/Δ2081 (brsRΔM) LRS [brsM-LF/brsR(RenG)-R and (erm)brsR-RF/brsM-RR]. All

PCR amplicons were purified and mixed in equal molar concentrations and then subjected to

a 4-fragment OE-PCR reaction using the respective upstream forward/downstream reverse

primer pairs. The assembled PCR amplicons were transformed into S. mutans strain UA140

and selected on agar plates supplemented with erythromycin to obtain the following strains:

294-295-RenG, 294-RenG, 1070c-1069c-RenG, 1070c-RenG, hdrRM-RenG, hdrR-RenG,

brsRM-RenG, and brsR-RenG. The wild-type SMU_433/434 and SMU_433/Δ434 LRS lucifer-

ase reporter constructs were PCR amplified from strains 01-luc and 01-luc-434. The resulting

PCR amplicons were then transformed into S. mutans strain UA140 and selected on agar

plates supplemented with spectinomycin to obtain the strains 433-434-RenG and 433-RenG.

Construction of LRS deletion strains

To create markerless in-frame deletions of all 5 LRS in S.mutans UA140, we first deleted

SMU_433/434 using our previously described markerless mutagenesis protocol [57]. Two

fragments corresponding to the upstream and downstream regions of the SMU_433/434

operon were amplified with the primer pairs SMU433-LF/(IFDC2)smu433-LR and (IFDC2)

smu434-RF/SMU434-RR, respectively. The IFDC2 cassette was amplified from the plasmid

pIFDC2 [57] using the primer pair ldhF/ermR. The three fragments were mixed and used as

templates for OE-PCR with the primer pair SMU433-LF/SMU434-RR. The resulting OE-PCR

product was transformed into UA140 and selected on medium containing erythromycin to

isolate transformants containing the IFDC2 cassette. Next, DNA fragments containing the

SMU_433 upstream region and SMU_434 downstream region were amplified with the primer

pairs SMU433-LF/smu433-LR2 and smu434-RF2/SMU434-RR. The two fragments were

mixed and assembled with OE-PCR using the primer pair SMU433-LF/SMU434-RR. The
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OE-PCR amplicon was then transformed into the IFDC2-containing strain and selected on

the medium containing p-chlorophenylalanine (4-CP) to remove the IFDC2 cassette and

obtain the markerless deletion mutant. This strain was then used as a recipient for the sequen-

tial deletion of SMU_1070c/1069c, SMU_294/295, hdrRM, and brsRM using the same

approach to obtain the final 5 LRS deletion strain ifdLRS.

Construction of single LRS luciferase reporter strains

Genomic DNA from strains 294-295-RenG, 1070c-1069c-RenG, hdrRM-RenG, brsRM-RenG,

and 433-434-RenG were transformed into strain ifdLRS and selected on THYE plates contains

erythromycin or spectinomycin to obtain the single LRS luciferase reporter strains ifdLRS/

294-295-RenG, ifdLRS/1070c-69c-RenG, ifdLRS/hdrRM-RenG, ifdLRS/brsRM-RenG, and

ifdLRS/433-434-RenG.

To examine potential cross-regulation between different LRS, ORFs encoding LRS mem-

brane proteins were replaced by a kanamycin resistance cassette using the single LRS luciferase

reporter strains as recipients. Briefly, upstream and downstream homologous fragments of

SMU_295 were amplified using the primer pairs SMU294-LF/(kan)smu295-LR and (kan)

smu295-RF/SMU295-RR as well as UA140 genomic DNA as a template. The kanamycin resis-

tance gene was amplified using the primer pair kan-F/kan-R and plasmid pWVTKs [58] as the

template. Three fragments were mixed and assembled with OE-PCR using the primer pair

SMU294-LF/SMU295-RR. The OE-PCR amplicon was transformed into the single luciferase

reporter strains ifdLRS/1070c-69c-RenG, ifdLRS/hdrRM-RenG, ifdLRS/brsRM-RenG and

ifdLRS/433-434-RenG to obtain d295/1070c-69c-RenG, d295/hdrRM-RenG, d295/

brsRM-RenG and d295/433-434-RenG. A similar approach was used to delete hdrM and brsM
in each of the single LRS reporter strains. The SMU_434 and SMU_1069c mutations were

PCR amplified from d-smu434/UA140 and d-smu1069/UA140 and then transformed into the

single LRS reporter strains.

Creation of hdrRM luciferase reporter strains for promoter analyses

The S. mutans firefly luciferase reporter strains used in Fig 2 were created using a markerless

mutagenesis approach. To create the markerless replacement of the hdrRM ORFs with that of

luciferase, we first created an allelic replacement of the hdrRMORFs with the counterselectable

IFDC2 cassette [57]. Using UA140 genomic DNA as a template, two fragments corresponding

to the upstream and downstream regions of the hdrRM operon were amplified with the primer

pairs hdrRupF/hdrRupR-ldh and hdrMdnF-erm/hdrMdnR, respectively. The IFDC2 cassette

was amplified using the primer pair ldhF/ermR. The three fragments were mixed and used as

template for OE-PCR with the primer pair hdrRupF/hdrMdnR. The resulting OE-PCR prod-

uct was transformed into UA140 and selected on medium containing erythromycin to obtain

strain RMIFDC2. Next, a DNA fragment containing the hdrR upstream region and firefly

luciferase ORF was amplified with the primer pair hdrRupF/lucR-1856 and strain LZ89-luc

[26] as a template. Using strain UA140 as a template, a fragment corresponding to the hdrM
downstream region was amplified with the primer pair 1856F-luc/hdrMDnR. The two frag-

ments were mixed and assembled with OE-PCR using the primer pair hdrRupF/hdrMdnR.

The OE-PCR amplicon was transformed into strain RMIFDC2 and selected on medium con-

taining p-chlorophenylalanine (4-CP) to obtain strain RpLuc. To create strains Rp+1luc and

Rp-10mluc, the upstream and downstream regions of the hdrRM operon were amplified from

strain UA140 with the primer pairs hdrRupF/(luc)hdrRp-R or hdrRupF/(luc)hdrRp-10-R and

(lucR)hdrMdn-F/hdrMDn-R, respectively. The luciferase ORF was amplified from strain

RpLuc with the primer pair lucF/lucR. The three fragments were mixed and used as template
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for OE-PCR with the primer pair hdrRupF/hdrMdnR. OE-PCR products were transformed

into RMIFDC2 and selected on medium containing 4-CP to obtain the strains Rp+1luc and

Rp-10mluc. Strains Rp+1luc and Rp-10mluc were both transformed with the plasmid

pHdrRoe [27] to create the strains Rp+1lucROE and Rp+1lucROE-10. Using the genomic

DNA from strain RpLuc as a template, two fragments were amplified with the primer pairs

hdrRupF/(repeat-m)hdrR-LR and (repeat-m)hdrR-RF/hdrMDnR. The two PCR amplicons

were mixed with hybridized EMSA-hdrRpm-F/R primers and assembled using OE-PCR with

the primer pair hdrRupF/hdrMdnR. The OE-PCR amplicon was transformed into strain

RMIFDC2 and selected on medium containing 4-CP to create the strain RpDRmluc. To create

the hdrR ectopic overexpression plasmid pJYROE, a fragment containing the hdrR ORF fused

to the ldh promoter was first amplified from pHdrRoe using the primer pair ldhF-bamHI/

hdrRR-hindIII. The resulting PCR amplicon was digested with BamHI and HindIII and then

ligated to pJY4164 to obtain the suicide vector pJYROE. To create the hdrM ectopic overex-

pression plasmid pMOE, an ldh promoter-hdrM transcription fusion was assembled by first

PCR amplifying the ldh promoter and hdrM ORF using the primer pairs ldhF-BamHI/

ldhR-SpeI and hdrMF-SpeI/hdrMR-EcoRI as well as UA140 gDNA as a template. The result-

ing amplicons were then digested with BamHI/SpeI and SpeI/EcoRI and subsequently ligated

to the BamHI/EcoRI restriction sites of the E. coli-Streptococcus shuttle vector pDL278 [59] to

create the plasmid pMOE. The suicide vector pJYROE was transformed into strain RpLuc or

RpDRmluc to create the strains ROE or ROE/DR-, while the shuttle vector pMOE was trans-

formed into strain ROE to obtain the strain RMOE.

To insert the luciferase ORF downstream of the hdrRM ORFs, a DNA fragment containing

the hdrR upstream region and IFDC2 were PCR amplified from strain RMIFDC2 with the

primer pair hdrRupF/ermR-lucf. Using the genomic DNA of RpLuc as a template, the lucifer-

ase ORF was amplified with the primer pair lucF-erm/lucmR. The two amplicons were assem-

bled using OE-PCR and the primer pair hdrRupF/lucmR. The resulting overlapping PCR

products were transformed into RpLuc strain and selected on medium containing erythromy-

cin to obtain the strain RMlucIFDC2. Next, two fragments encompassing the hdrRM locus

were amplified from strain UA140 with the primer pair hdrRupF/MterR-luc, while the lucifer-

ase ORF was amplified from strain RpLuc with the primer pair lucF-Mter/lucmR. The PCR

amplicons were mixed and assembled by OE-PCR using the primer pair hdrRupF/lucmR. The

resulting OE-PCR amplicon was transformed into strain RMlucIFDC2 and selected on plates

supplemented with 4-CP to obtain the strain hdrRMluc. To mutate hdrM in strain hdrRMluc,

three fragments were amplified from this strain using the primer pairs hdrRupF/(spec)

smu1853R, (spec)smu1853-hdrR-LF2/hdrM(TAA)R, and hdrM(TAA)F/lucmR. The spectino-

mycin resistance cassette aad9 was amplified from the E. coli-Streptococcus shuttle vector

pDL278 [59] using the primer pair specF/specR. The four amplicons were mixed and assem-

bled by OE-PCR using the primer pair hdrRupF/lucmR. The resulting OE-PCR amplicon was

transformed into strain hdrRMluc to obtain the strain dhdrMluc. To mutate the direct repeats

upstream of the hdrRM promoter in strain dhdrMluc, two fragments were amplified from this

strain using the primer pair hdrRupF/(repeat-m)hdrR-LR and (repeat-m)hdrR-RF/lucmR.

The two PCR amplicons were mixed with hybridized EMSA-hdrRpm F/R primers and assem-

bled using OE-PCR and the primers hdrRupF/lucmR. The resulting OE-PCR amplicon was

transformed into strain hdrRMluc to obtain the strain dhdrMdDRluc.

Construction of brsRM-gusA reporter strains

To create markerless gusA transcription fusions to the brsRM operon, a brsRM upstream

homologous fragment was amplified from strain UA140 or ifdLRS using the primer pair
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brsRM-LF/(gusA)brsRM-LR, while the brsRM downstream homologous fragment was ampli-

fied from strain UA140 using the primer pair (gusA)brsRM-RF/brsRM-RR. The gusA ORF

was amplified from plasmid pZX7 [60] using the primer pair GusA-F/GusA-R. The three

amplicons were assembled via OE-PCR with the primer pair brsRM-LF/brsRM-RR. The two

resulting OE-PCR amplicons were then transformed into the strain ifdLRS/brsRM(IFDC2)

and selected on the medium containing 4-CP to obtain the strains ifdLRS/brsRM-gusA and

ifdLRS/brsRMp-gusA respectively.

Generation of a transposon insertion library in the brsRM-gusA reporter

strain

The ifdLRS/brsRM-gusA reporter strain transposon library was generated by a previously

described transposon mutagenesis protocol [61]. Briefly, the primer pair MmeI-MGL-erm-F/

MmeI-MGL-erm-R was used to amplify the erythromycin resistance cassette from plasmid

pJY4164. Sequences at the 5’ ends of both primers add repeat sequences recognized by the

himar transposon onto both ends of the PCR amplicon. The resulting amplicon was then

ligated to the pGEM1-T vector (Promega) to obtain pT-MGL-erm. In vitro transposon muta-

genesis was performed by combining MarC9 transposase, genomic DNA from strain ifdLRS,

and plasmid pT-MGL-erm and then incubating at 30˚C for 1 h. Transposon junctions were

subsequently repaired and then the transposition reaction was transformed into strain ifdLRS/

brsRM-gusA. Transposon mutants were selected on THYE plates containing erythromycin

and 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid (X-gluc, 200 μg ml-1). After 5 days of

incubation, blue colonies were selected. Transposon insertion sites were mapped according to

the published protocol [61], except that PCR amplicons were ligated into the pGEM1-T vec-

tor, transformed into E.coli DH5α, and then the resulting plasmid inserts were sequenced.

PCR was used to confirm the expected locations of transposon insertions sites in each of the

mutant strains. Genomic DNA from confirmed transposon mutants was also transformed into

strain ifdLRS/brsRMp-gusA (ΔbrsRM) to compare its reporter activity with the corresponding

transposon mutants obtained in the ifdLRS/brsRM-gusA (brsRM+) background.

Creation of the hdrR recombinant expression vector

The hdrR ORF was amplified from strain UA140 using the primer pair hdrRF-NdeI/

HdrRR-Hind. The amplicon was then digested with NdeI/HindIII and ligated to the expres-

sion vector pET29b to create the plasmid pEcROE.

Recombinant protein expression and purification

Recombinant HdrR was purified using pET29b and the E. coli BL21(DE3) pLysS expression

system. Cultures were grown to OD600 0.6 at 37˚C with aeration before adding 0.1 mM IPTG

and culturing for an additional 12 hr. at 20˚C. Cells were harvested by centrifugation (6000 x

g, 5 min, 4˚C), washed twice with binding buffer (20 mM Tris, 300 mM NaCl, 5 mM imidaz-

ole, 10% glycerol, pH 7.9) and then resuspended in 20 ml of the same buffer. Next, the cells

were chilled on ice, lysed by sonication, centrifuged to recover supernatants (20,130 x g, 20

min, 4˚C), and then HdrR-His6 was purified using Ni-NTA agarose chromatography (Nova-

gen). Proteins were eluted with 4 ml elution buffer (20 mM Tris, 300 mM NaCl, 500 mM imid-

azole, 10% glycerol, pH 7.9) and concentrated by ultrafiltration (Millipore membrane, 3 kDa

cut-off size). Purified proteins were stored in 10% glycerol at -80˚C.
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Electrophoretic mobility shift assays (EMSA)

EMSAs were performed similarly as previously described [62]. Briefly, double-stranded probes

were obtained by annealing equal molar concentrations of two oligonucleotides (S2 Table) in

50 mM Tris-HCl (pH 8.0), 10 mM MgCl2, 50 mM NaCl and 1 mM EDTA, with the forward

primer 50-end labeled with digoxigenin-11-ddUTP (Roche). The oligonucleotide pair EMSA-

hdrRp-F/EMSA-hdrRp-R served as the wild-type probe, while the oligonucleotide pair EMSA-

hdrRpm-F/EMSA-hdrRpm-R served as the direct repeat mutant probe. 1 ng of DNA probe

was incubated individually with various concentrations of HdrR-His6 at 25˚C for 20 min in a

20 μl reaction volume. After incubation, the reaction mixtures were separated by electrophore-

sis and electro-transferred to nylon membranes. Images were detected using chemilumines-

cence and X-ray films. For competition experiments, 50- and 200-fold excess of unlabeled

probes (S2 Table) were added to the binding reactions before performing electrophoresis and

imaging as described above.

Luciferase assays

Assays of firefly and green renilla luciferase activity were performed using a previously

described methodology [55] with mid-log phase cultures. Reporter data were normalized by

dividing luciferase values by their corresponding optical density (OD600) values. Luciferase

activity was measured with a GloMax Discover 96-well luminometer (Promega).

Identification of putative LRS in other species

To identify homologs of LRS membrane proteins, we searched the NCBI non-redundant

nucleotide collection (nr/nt) and whole-genome shotgun (wgs) databases using tBLASTn (E-

value <10,>25% positives). These putative LRS membrane proteins (except for SMU_295

homologs) were then refined contingent on containing either DUF3021 or DUF2154 domains,

as determined by NCBI RPS-tBLASTn (E-value <1). Qualifying LRS membrane protein

results were further filtered based upon the presence of adjacent upstream LytTR Family tran-

scription regulator homologs identified using tBLASTn (E-value <0.1).

Assay for purine stimulation of brsRM-gusA expression

To assess the effect of purines on the BrsRM LRS, overnight cultures of ifdLRS/brsRM-gusA

and isogenic transposon mutants were harvested by centrifugation, washed thrice with an

equal volume of 0.9% NaCl, and spotted on adenine/guanine-replete or adenine/guanine

drop-out chemically defined medium (CDM) agar plates [54]. Different concentrations of ade-

nine (0 mM, 0.075 mM, 0.15 mM, 0.3 mM and 0.6 mM) or guanine (0 mM, 0.066 mM, 0.132

mM, 0.264 mM and 0.53 mM) were added to the CDM medium and plates were incubated at

37˚C with 5% CO2 for 4 days. To assay the impact of purines on the transposon mutants of

ifdLRS/brsRM-gusA, adenine and/or guanine was added to the CDM at a final concentration

of 0.15 mM and/or 0.132 mM, respectively. Plates were incubated at 37˚C with 5% CO2 for 2.5

days.

Statistical analysis

All statistical analyses were performed using GraphPad Prism software to calculate significance

via two-tailed Student’s t-tests with Welch’s correction. Statistical significance was assessed

using a cutoff value of P< 0.05.
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Supporting information

S1 Fig. Comparison of hdrRM luciferase reporter strains. The specific activities of the

reporter strains described in Fig 2 of the text are shown for a direct comparison of their expres-

sion characteristics. The dashed red line indicates the average background luminescence mea-

sured in the assay. The blue bars represent strains listed in Fig 2B. For these reporters, the

chromosomal copy of the hdrRM operon was replaced by a luciferase ORF, which was fused to

the operon transcriptional start site (+1). For strain ROE, hdrR was ectopically expressed from

a constitutive promoter on a multicopy plasmid. The orange bars correspond to the strains

listed in Fig 2D. The reporters all have a luciferase ORF transcriptionally fused immediately

downstream of the hdrRM ORFs. The green bars correspond to the strains listed in Fig 2E.

These reporters have the chromosomal copy of the hdrRMORFs replaced by that of luciferase.

For strain RMOE, the hdrR ORF was ectopically expressed in a single copy on the chromosome

using a constitutive promoter, while the hdrMORF was ectopically expressed from a constitu-

tive promoter on a multicopy plasmid. Luciferase data are expressed as means ± s.d. (indicated

by error bars) derived from four biological replicates.

(TIF)

S2 Fig. Comparison of conserved residues in S. mutans response regulators vs. LRS regula-

tors. A) Clustal Omega was used to align the S.mutans LytTR Family response regulators

ComE and LytR along with the well characterized response regulators VicR and CiaR. Resi-

dues marked with an asterisk indicate conserved residues. The residues shown in red font rep-

resent the conserved aspartate residues that are the sites of phosphorylation from cognate

sensor kinases. B) Clustal Omega was used to align the five S. mutans LRS regulators. Residues

marked with an asterisk indicate conserved residues.

(TIF)

S3 Fig. Comparison of LRS membrane protein topologies. Protter [36, 37] was used to illus-

trate the protein topologies of each S.mutans LRS membrane protein as well as putative LRS

membrane proteins from other species. For A-E, the predicted protein topology of each S.

mutans LRS membrane protein was compared to its corresponding weakest similarity protein

shown in Fig 5 of the text. Genes are listed by their NCBI Gene Locus Tags, while the BLASTP

E-values of the two proteins are shown in parentheses. A) Comparison of SMU_295 with

CSX00_RS10965 from Pseudobutyrivibrio ruminis (E-value e = 1.4 x 10−10). B) Comparison of

SMU_433 with OEOE_0725 from Oenococcus oeni (E-value e = 4.2 x 10−7). C) Comparison of

SMU_1069c with BUB90_RS22585 from Anaerosporobacter mobilis (E-value e = 2.2 x 10−6).

D) Comparison of SMU_1855 (HdrM) with ERS095036_10318 from Chlamydia trachomatis
(E-value e = 9 x 10−6). Residues shown in red represent a putative cleavable signal sequence. E)

Comparison of SMU_2081 (BrsM) with TALC_RS05575 from the Thermoplasmatales

archaeon BRNA1 (E-value e = 1 x 100). F) Predicted topology of SACOL_RS12400 from Staph-
ylococcus aureus. Residues shown in red represent a putative cleavable signal sequence. G) Pre-

dicted topology of Btheta7330_RS19920 from Bacteroides thetaiotaomicron.

(TIF)

S4 Fig. Insertion sites of brsRM-activating transposon mutations. Red arrows mark the

locations of transposon insertions resulting in activation of the brsRM-gusA reporter strain.

Open reading frames are drawn to scale. Note: two identical, but independent tilS transposon

insertion mutants were isolated.

(TIF)
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