Skip to main content
. 2018 Oct 12;9:1450. doi: 10.3389/fphys.2018.01450

Table 2.

Adaptation of skeletal muscle fiber type under conditions of pathological hypoxia.

Disease Species Gender Characteristics/model Age Muscles Main effect References
COPD Human M Stable COPD (predicted FEV1: 62%) 66 y QUA ↓% FI and ↑% FIIX vs. CT. After haemodilution, ↑% FI and ↓ % FIIX Hildebrand et al., 1991
M Stable COPD (predicted FEV1: <70%) 65 y VL ↑ % MHC2X vs. CT Satta et al., 1997
M, F Stable COPD (predicted FEV1: 33%) 59 y DIA ↑ % MHC1 and FI, ↓ % MHC2A, ↓ % MHC2X and FIIX vs. CT Levine et al., 1997
M, F Stable COPD (predicted FEV1: 37%) 65 y VL ↓ % FI and ↑ % FIIX vs. CT Whittom et al., 1998
M Stable COPD (predicted FEV1: 31%) 65 y VL ↓ % MHC1 and ↑ % MHC2A vs. CT Maltais et al., 1999
M Stable COPD (predicted FEV1: 55%) 63 y DEL X vs. CT Gea et al., 2001
M, F Stable COPD (predicted FEV1: 65%) 65 y DIA ↑ % FI and ↓ % FIIA vs. CT Doucet et al., 2004
VL X vs. CT
M, F Chronic Obstructive Lung Disease stage II-IV (predicted FEV1: ~40%) 58–67 y QUA ↑ % FIIX vs. CT Remels et al., 2007
M, F Stable COPD (predicted FEV1: 41%) 68 y VL ↓ % FI, ↑ % FIIA and ↑ % FIIX vs. CT Natanek et al., 2013
M Chronic Obstructive Lung Disease stage III-IV (predicted FEV1: 26–36%) 66 y VL ↓ % FI and ↑ % FII vs. CT Thériault et al., 2014
M, F Stable COPD (predicted FEV1: 57 % in nonsarcopenic COPD, 42% in sarcopenic COPD) Sarcopenic: 68 y; nonsarcopenic: 65 y VL ↓ % FI, ↑ % FII vs. CT. ↓ % FI in sarcopenic COPD vs. nonsarcopenic COPD van de Bool et al., 2016
M, F Stable COPD (predicted FEV1: 39 % in F, 40 % in M) F: 63 y; M: 66 y VL ↓ % FI and ↑ % FII vs. CT Ausin et al., 2017
M Stable COPD (predicted FEV1: 42 % in nonsarcopenic COPD, 29 % in sarcopenic COPD) Sarcopenic and nonsarcopenic: 65 y VL ↓ % FI vs. CT. ↑ % FIIA/IIX in sarcopenic COPD vs. CT Kapchinsky et al., 2018
CHF Human M Coronary artery disease or cardiomaopathy 57 y GAS ↑ % FIIX vs. CT Mancini et al., 1989
M Left ventricular systolic dysfunction 58 y VL ↓ % FI and ↑ % FIIX vs. CT Sullivan et al., 1990
M Coronary artery disease, idiopathic dilated cardiomyopathy 56 y VL ↓ % FI and ↑ % FII vs. CT Drexler et al., 1992
M, F Ischemic heart disease or dilated cardiomyopathy 58 y VL ↑ % FIIx vs. CT Schaufelberger et al., 1995
M, F Left ventricular systolic dysfunction 48 y VL ↓ % FI, ↑ % FIIX vs. CT Lindsay et al., 1996
DIA X vs. CT
PEC ↓ % FI vs. CT
STE X vs. CT
M Left ventricular systolic dysfunction 61 y VL ↓ % MHC1 and ↑ % MHC2X vs. CT Sullivan et al., 1997
M, F Dilated cardiomyopathy or coronary artery disease 50 y DIA ↑ % MHC1 and ↓ % MHC2X vs. CT Tikunov et al., 1997
M, F CHF with preserved ejection fraction 70 y VL ↓ % FI and ↑ % FII vs. CT Kitzman et al., 2014
Mouse Dilated cardiomyopathy model: deletion mutation K210 in cardiac troponin T gene 2 m QUA ↓ mRNA levels of Myh7 and Myh2, ↑ mRNA levels of Myh4 vs. CT Okada et al., 2015
SOL ↓ mRNA levels of Myh7, ↑ mRNA levels of Myh4 vs. CT
Rat F Ligation of the left main coronary artery Adult SOL X vs. CT Delp et al., 1997
PLA ↓ % FIIX and ↑ % FIIB vs. CT
F Dahl salt-sensitive rats with high-salt diet 35 w SOL X vs. CT Bowen et al., 2015
DIA ↑ % FI, ↓ % FIIA vs. CT
M Obese diabetic ZSF1 rats (preserved ejection fraction) 20 w DIA ↑ % FI, ↓ % FII vs. CT Bowen et al., 2017
Minipig M Pacing-induced supraventricular tachycardia 6 m DIA ↑ % FI, ↓ % FIIA vs. CT Howell et al., 1995
LD X vs. CT
OSAS Human Laryngeal carcinoma in situ with total laryngectomy 56 y MPCM ↓ % FI, ↑ % FIIA vs. CT Ferini-Strambi et al., 1998
VL X vs. CT
M, F Recently diagnosed 39 y TA Slight ↑ % FIIX and FIIA/IIX vs. CT Wåhlin Larsson et al., 2008
M severe OSAS 40 y PAL ↓ levels of MHC1 Chen et al., 2016
Rat 15 s 6–8% O2, 10–14% CO2 /15 s N, 8 h/ d, 5d/ w for 5 w GH ↓ % FI and ↑ % FIIB vs. CT McGuire et al., 2002
STER ↑ % FI, ↑ % FIIA, ↓ % FIIB vs. CT
M 15 s 0 % O2/15 s N, 8 h/ d, 5d/ w for 5 w SOL X vs. CT McGuire et al., 2003
EDL Slight ↑ % FIIA vs. CT
M 240 s 10.3 % O2 /240 s N, 7.5 h/ d, for 4 d Adult GH Single fibers: transition from MHC2A to MHC2B Pae et al., 2005
DIA X vs. CT
STE Single fibers: transition from MHC2A/2B to MHC2B
M 90 s 5% O2 /90 s N, 8 h/d, for 7 d Adult STE X vs. CT Shortt et al., 2013
DIA ↓ % FI, ↑ % FIIB vs. CT
SOL X vs. CT
EDL X vs. CT
M 4 min 10.3% O2/4 min N, 7.5 h/d, for 2 or 4 d 7 w SOL X vs. CT Nguyen et al., 2016
TA X vs. CT

COPD, chronic obstructive pulmonary disease; CHF, chronic heart failure; OSAS, obstructive sleep apnea syndrome; M, male; F, female; FEV1, forced expiratory volume in the first second; ZSF1, Zucker fatty/spontaneously hypertensive heart failure F1 hybrid; y, year; m, month; w, week; d, day; s, second; N, normoxia; QUA, quadriceps muscle; VL, vastus lateralis muscle; DIA, diaphragm muscle; DEL, deltoid muscle; GAS, gastrocnemius muscle; PEC, pectoralis muscle; STE, sternohyoid muscle; LD, latissimus dorsi muscle; PAL, palatopharyngeus muscle; SOL, soleus muscle; TA, tibialis anterior muscle; EDL, extensor digitorum longus muscle; GH geniohyoid muscle; MPCM, medium pharyngeal constrictor muscle; X, not significantly different; ↑, increase; ↓, decrease; CT, control group; FI, type-I fiber; FIIA, type-IIA fiber; FIIX, type-IIX fiber; FIIB, type-IIB fiber; FIIA/IIX, type-IIA/IIX fiber; MHC1, myosin heavy chain 1; MHC2A, myosin heavy chain 2A; MHC2X, myosin heavy chain 2X; MHC2B, myosin heavy chain 2B; MHC2A/2B, myosin heavy chain 2A/2B; Myh7, myosin heavy chain 7 (encoding MHCI); Myh2, myosin heavy chain 2 (encoding MHCIIA); Myh4, myosin heavy chain 4 (encoding MHCIIB).