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Abstract

Purpose: Women who have genital inflammation are at increased risk of sexual HIV infection. 

The purpose of this review is to evaluate the mechanisms for this relationship, causes of genital 

inflammation and strategies to manage this condition.

Recent Findings: We have recently shown in a cohort of South African women that HIV 

seroconversion was associated with persistently raised genital inflammatory cytokines (including 

MIP-1α, MIP-1β and IP-10). Elevated inflammatory cytokine concentrations may facilitate HIV 

infection by recruiting and activating HIV target cells and disrupting the mucosal epithelial barrier. 

BV and STIs, which are predominantly asymptomatic in women, cause lower genital tract 

inflammation and increased HIV acquisition risk. In Africa, where syndromic management of 

STIs and BV is standard-of-care, the substantial burden of asymptomatic infections has likely 

contributed to high HIV incidence rates.

Summary: A genital inflammatory profile contributes to the high risk of HIV acquisition in 

African women. STIs and BV are poorly managed in Africa and other developing nations and as 

such remain major drivers of persistent genital inflammation and HIV acquisition among these 

women.
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Introduction

Young women in sub-Saharan Africa are disproportionately affected by HIV, with 

prevalences of up to 8-fold higher than in males of the same age [1]. Despite new HIV 

infections dropping from 3.4 million in 2001 to 2.0 million globally in 2014 [2], continued 

transmission in young women is one of the greatest challenges preventing an AIDS-free 

generation [3]. Susceptibility to HIV infection varies considerably from person-to-person, 

with some women remaining uninfected despite repeated exposure [4]. Bacterial vaginosis 

(BV) and sexually transmitted infections (STIs) [5–8], as well as other biological factors, 

have been shown to impact the risk of young women acquiring HIV. Genital inflammation 

underlies many of these risk factors, providing a unifying mechanism driving risk [8–10].

HIV risk and genital inflammation

Inflammation in the female genital tract, regardless of the cause, creates an environment that 

favours HIV replication and establishment of a productive infection. Women with elevated 

concentrations of pro-inflammatory cytokines, including MIP-1α, MIP-1β and IP-10, in 

their genital tracts were found to be at increased risk of HIV acquisition [9]. IP-10, MIP-1α, 

and MIP-1β are chemotactic for HIV target cells, including T cells, macrophages and 

dendritic cells [11–14]. MIP-1α and MIP-1β are also ligands for the HIV co-receptor CCR5 

and specifically recruit CCR5+ target cells into tissues [15]. Pro-inflammatory cytokine 

signatures in the lower reproductive tract has been associated with increased frequencies of 

neutrophils, T and B cells, as well as higher levels of cellular activation [16,17]. Pro-

inflammatory cytokines and chemokines that are involved in activation, differentiation and 

recruitment of immune cells to the genital tract, which may increase HIV transmission as 

HIV replication depends on the presence of immune cell targets, the level of immune cell 

activation and monocyte differentiation to macrophages or dendritic cells [13,16]. In rhesus 

macaques, pro-inflammatory cytokine production following vaginal SIV exposure resulted 

in recruitment of CD4+ T cells needed for establishment of SIV infection [11,18]. The 

essential role of inflammation in SIV infection was clearly demonstrated when topical 

application of an anti-inflammatory, glycerol-monolaurate, down-regulated chemokine 

concentrations, inhibited inflammatory cell influx to the genital tract, and prevented SIV 

infection in macaques [11].

Studies in exposed seronegative women (ESN), who remained HIV-uninfected despite high-

risk sexual activity, have improved our understanding of risk factors for HIV acquisition. In 

ESN women, concentrations of the CCR5-binding chemokine RANTES were found to be 

elevated compared to low-risk controls, while MIP-1α and MIP-1β have been shown to 

competitively inhibit HIV binding to CCR5 in vitro, suggesting that these chemokines may 

protect against HIV infection [19,20]. However, ESN women may have higher genital 

chemokine concentrations compared to low-risk controls because they are more likely to 

have STIs [4], and in vitro models do not account for up-regulation of other inflammatory 

factors or recruitment of HIV target cells by these chemokines that may facilitate HIV 

replication in vivo. More recent ESN studies have shown that an immune quiescent 

phenotype in the female genital tract may account for reduced susceptibility to HIV 

infection in these women [21,22]. Although ESN women were found to have higher CD4+ T 
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cell numbers at the cervix, fewer of these cells expressed CCR5 compared to low risk 

women [22].

In addition to recruiting more target cells for HIV replication, pro-inflammatory cytokines 

induce expression of the transcription factor, nuclear factor (NF)-ΚB, which binds to HIV-

long terminal repeat (LTR) and directly up-regulates HIV replication [23]. Pro-inflammatory 

cytokines may also facilitate HIV infection by disrupting tight junctions between epithelial 

cells, reducing the integrity of this barrier [24]. In support of this, proteomic studies have 

shown that women with elevated genital pro-inflammatory cytokine concentrations have 

unique protein signatures of reduced epithelial barrier function [17]. Several proteins that 

regulate actin cytoskeleton organization and extracellular matrix components were found to 

be associated with genital inflammation, suggesting that tissue remodeling occurs in women 

with inflammation at the expense of effective barrier function [17].

Systemic markers of inflammation, chemokine gradients and HIV risk

Blood biomarkers have also been associated with increased risk of HIV infection [25,26]. 

Others from our group reported that women who later became HIV-infected had higher 

plasma concentrations of TNF-α, IL-2, IL-7, and IL-12p70 than women who remained 

uninfected [25]. We found that these and other cytokines do not correlate between blood and 

the genital tract, suggesting that cytokine risk factors identified in blood do not predict those 

in the genital tract and vice versa [9,27]. Kahle et al. found that elevated plasma IP-10 and 

IL-10 concentrations predicted HIV seroconversion in individuals in HIV discordant 

relationships [26].

ESN women had lower concentrations of HIV-target cell recruiting chemokines, including 

IP-10, MIP-1α and MIP-1β, in the genital tract than blood, which may result in reduced 

target cell influx in the absence of a chemokine gradient to the genital tract, and thereby 

confer a certain degree of protection against HIV infection [21,22]. This suggests that a 

chemokine gradient from blood to the genital mucosa may contribute to risk for HIV 

infection.

The level of T cell activation in blood appear to be important in HIV risk. CD4+ T cell 

immune quiescence has shown to be protective against HIV infection in vivo [28]. Studies in 

european adult ESNs showed relatively lower CD38 and HLA-DR-expressing CD4+ T cells 

in blood than persons who go on to become HIV-infected [28]. SIV-exposed sooty 

mangabey infants, with few peripheral and mucosal CD4+CCR5+ cells, are less likely to 

acquire SIV via low dose oral challenge than their rhesus macaque counterparts [29]. We 

found a strong correlation between peripheral and cervical T cell activation in HIV-

uninfected women [30]. Global T cell activation may be an important contributing factor 

determining HIV risk.

STIs cause genital inflammation

STIs are major causes of inflammatory cytokine upregulation and immune cell recruitment 

to the genital mucosa [27,31–34]. Although inflammation can be important in STI clearance, 

it may also cause destruction of infected epithelial layers, allowing STI-associated microbes 
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to access deeper tissues [35,36]. Relatively few women are able to clear an infection in the 

absence of treatment, with STIs often being recurrent or persistent [37,38]. In addition to 

reproductive complications, non-ulcerative STIs have been found to influence susceptibility 

to HIV infection [5,8]. We have shown that Chlamydia trachomatis, Neisseria gonorrhoeae 
and Mycoplasma genitalium infections were associated with increased risk of HIV 

acquisition [8]. Highly prevalent STIs, such as human papillomavirus (HPV) infections, 

have also been shown to increase risk of HIV infection [39]. Of the common STIs, we found 

chlamydia that was associated with the highest genital cytokine levels, followed by 

gonorrhoea, HSV-2, trichomoniasis, and BV [27].

In a cohort of African women, Masese et al. (2015) reported that the overall population risk 

for HIV infection was largely attributable to HSV-2, even in the absence of ulcers, with 

prevalent HSV-2 accounting for 48.3% and incident HSV-2 infections accounting for 4.5% 

of risk [40]. Although HSV-2 ulcerative lesions disrupt the mucosal barrier, higher numbers 

of DC-SIGN+ DCs and CCR5+ CD4+ T cells are observed in the genital tracts of women 

who have HSV-2, even in the absence of HSV-2 shedding or genital ulceration, and sub-

clinical inflammatory responses in the mucosa are evident for months after a reactivation 

event [34,41]. Other infections, including yeast (6.4%), Trichomonas vaginalis (1.1%), N. 
gonorrhoeae (0.9%), and nonspecific cervicitis (0.7%), accounted collectively for 9% of the 

population attributable risk for HIV in an African cohort [40]. Masese et al. showed that 

prevalent HSV-2 infections continued to be the most dominant population attributable risk 

(40.4% to 61.8% between 1998 and 2012) over time [40]. In South Africa, over 50% of new 

HIV infections in women could be attributed to STIs, BV and candidiasis in 2010, with 

HSV-2 being the most influential infection [42].

BV and the vaginal microbiome influence genital inflammation

BV is a syndrome characterized by a displacement of healthy vaginal commensal microbiota 

by other Gram-positive and Gram-negative bacteria [43,44]. A recent meta-analysis found 

that BV was associated with 1.7-fold increased risk of HIV acquisition [7]. Masese et al. 

[40] reported that BV contributed substantially to HIV acquisition risk, with 15.1% of the 

overall population risk attributable to this condition and 7.5% attributable to intermediate 

microbiota [40]. Given the high prevalence and recurrence of BV, this strong association 

with HIV risk has important public health implications.

Several studies from North America have defined a healthy female genital tract as one 

harboring predominantly Lactobacillus species (particulalry L. crispatus and L. jensenii), 
having a pH between 3.5–4.5, having no BV, candida or other STIs [45–47], although this 

may not be perfectly applicable to women in Africa [47]. Recent studies from South Africa 

found that less than 40% of women had a vaginal microbiota dominated by Lactobacillus 
spp., with more than half of the women not having an easily definable predominant bacterial 

taxon [10].

Commensal microorganisms are recognized as an important component of vaginal mucosal 

defense against STIs [48], including HIV [49–52], but the mechanisms of this protection are 

not well elucidated and are likely multifactorial. There are several ways by which 
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commensal bacteria could potentially affect vaginal inflammation and HIV susceptibility. 

These include (i) lowering vaginal pH as a result of their lactic acid and H202 metabolites; 

(ii) competitive antagonism of pathogens; (iii) anti-microbial factor production [53], (iv) 

modulation of epithelial barrier integrity, epithelial or immune cell function [17,54]; (v) 

generation of tolerizing cells such as Tregs [55, 56]. No single bacterial strain drives all of 

these effects, and it is likely that more than one of these mechanisms may be at play, and 

may not be mutually exclusive.

In vitro experiments have demonstrated that Lactobacillus species generally induce low or 

no proinflammatory cytokine production by vaginal epithelial cell lines, compared to 

common BV-associated organisms, such as Atopobium vaginae or Gardnerella vaginalis 
[57,58]. Anahtar et al. (2015) found that the presence specific combinations of non-

commensal organisms (cervicotype IV defined by a high diversity of organisms, dominated 

by Gardnerella and Prevotella species, but also featuring Shuttleworthia, Sneathia, 
Megasphaera, Mobiluncus, and Atopobium) was associated with higher levels of 

inflammation (measured by IL-1α, IL-1β, and TNF-α concentrations) in the genital tracts of 

young African women [10]. Only half of the young women in this category had Nugent 

scores >7. Some of these non-commensal bacteria individually (Sneathia amnii, 
Streptococcus sanguinegens and Mobiluncus mulieris) induced inflammatory responses by 

vaginal epithelial cell lines [10]. These women were followed longitudinally, and changes in 

prevalent cervicotypes were associated with significant increases in IL-1α, IL-1β and TNF-

α, implying a causal relationship [10]. Other studies have found that BV is associated with 

genital pro-inflammatory cytokine upregulation, but also downregulation of some cytokines 

[27,59,60]. This is likely due to the fact that BV is complex, and is not the same syndrome in 

every case.

Proteomic analysis of women with increasing levels of vaginal dysbiosis was able to identify 

several cytokines and cytokine receptors that increased with BV, but also found alterations in 

proteins associated with mucosal barrier breakdown, including mucus and cytoskeletal 

alterations (decreased keratins and cornified envelope proteins) [54]. Interestingly, Arnold et 

al. (2015) reported similar changes in women with increased genital inflammation, implying 

that BV may act through these same pathways to increase susceptibility to HIV [17].

Hormonal contraceptives (HCs) and genital inflammation

Over 50 studies have examined the association between HC use and HIV. Some studies have 

found no association [61], whereas others have found up to two-fold higher risk of HIV 

acquisition in seronegative women using any HC [62]. In macaques, progesterone implants 

increase susceptibility to vaginal inoculation with SIV [63]. This is thought to be due to 

epithelial thinning, which can be reversed by pretreatment with estrogen [64,65]. Studies of 

the effect of HC among humans on genital epithelium did not observe the thinning seen in 

non-human primate studies [66]. Cervical ectopy, or extension of the endocervical columnar 

epithelium onto the ectocervix, has been associated with HC use [67,68]. DMPA may 

decrease vaginal colonization by H2O2–producing Lactobacillus species [69]. On the other 

hand, DMPA has been shown in cohort studies to decrease the risk of BV, but to increase the 

risk of other STIs, including C. trachomatis and HSV-2 [70,71]. On a cellular level, HCs 
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have been associated with cervical and vaginal inflammation [72–74], increased genital tract 

cellular CCR5 expression [73–77], and T cell and macrophage mucosal trafficking [78]. 

Conversely, DMPA may also have anti-inflammatory effects [75,79].

Other possible causes of genital inflammation that may influence HIV risk include vaginal 

hygiene practices [80], exposure to seminal proteins [81], lubricants [82], hormone cycling 

[59], and genital schistosomiasis [83], as well as host genetics [84].

Management of STIs and BV to reduce HIV incidence

In resource-limited settings, STIs and BV are managed syndromically, according to the 

presence of clinical signs and symptoms [85]. However, large proportions of women who 

have STIs or BV are asymptomatic and are thus left untreated [8,86]. In South Africa, the 

implementation of syndromic management in the mid-1990s, as well as increased condom 

use, resulted in a decline in gonorrhoea, chancroid and syphilis, although there has been 

little or no evidence of declining prevalence of other STIs and BV [42]. After the 

introduction in South Africa, the proportion of new HIV infections attributable to curable 

STIs decreased from 39% to 14% between 1990 and 2010, however the proportion of HIV 

infections attributable to HSV-2 increased and the contribution of BV remained unchanged 

[42].

The results of population-wide STI treatment interventions for HIV prevention have been 

largely dissappointing [87–91]. Two of three STI syndromic management interventions in 

Africa resulted in no change in HIV acquisition [92–95], suggesting that asymptomatic 

infections may play a significant role. We have demonstrated in South African women that 

asymptomatic STIs were just as inflammatory as symptomatic infections, but only 12% of 

women with laboratory confirmed STIs had clinical signs [8]. This suggests that women 

with asymptomatic infections are also at high risk of acquiring HIV. Treatment of HSV-2 has 

also been found to be ineffective at reducing HIV infection rates [87,96]. Although HSV-2 

suppressive therapy may reduce genital ulceration, HSV-2 may induce a persistent state of 

susceptibility to HIV infection because of the ongoing inflammation it causes [34]. BV may 

also have been a significant factor contributing to the failure of these interventions, as BV 

has proven difficult to treat, with a recurrence rate of 50% within 6 months of antibiotic 

treatment [97].

Conclusion

Although we do not fully understand the causes of genital inflammation that is associated 

with high HIV acquisition risk in women, prevalent STIs and BV clearly play a major role. 

Syndromic diagnosis of these conditions are inadequate, with the vast majority of women 

asymptomatic. Current treatment strategies for HSV-2 and BV are ineffective, with HSV-2 

suppressive therapy associated with ongoing genital inflammation and antibiotic treatment 

of BV having high recurrence rates. There is thus an urgent need for better strategies to 

manage STIs and BV in order to reduce genital inflammation in women at high risk for HIV 

infection.
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Key points:

• Genital inflammation places women at increased risk of HIV acquisition

• Higher levels of cytokines in the lower genital tract result in chemotaxis of 

highly activated HIV target cells to the mucosa

• STIs and BV are major drivers of genital inflammation
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