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Abstract

The mathematical field of topology has become a framework to describe the low-energy electronic 

structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological 

crystal are conducting two-dimensional surface states. This constitutes the topological bulk-

boundary correspondence. Here, we establish that the electronic structure of bismuth, an element 

consistently described as bulk topologically trivial, is in fact topological and follows a generalized 

bulk-boundary correspondence of higher-order: not the surfaces of the crystal, but its hinges host 

topologically protected conducting modes. These hinge modes are protected against localization 

by time-reversal symmetry locally, and globally by the three-fold rotational symmetry and 

inversion symmetry of the bismuth crystal. We support our claim theoretically and experimentally. 

Our theoretical analysis is based on symmetry arguments, topological indices, first-principle 

calculations, and the recently introduced framework of topological quantum chemistry. We 

provide supporting evidence from two complementary experimental techniques. With scanning-
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tunneling spectroscopy, we probe the unique signatures of the rotational symmetry of the one-

dimensional states located at step edges of the crystal surface. With Josephson interferometry, we 

demonstrate their universal topological contribution to the electronic transport. Our work 

establishes bismuth as a higher-order topological insulator.

Electronic insulators are characterized by an energy gap between valence and conduction 

bands. Two insulators are classified as topologically equivalent, if they can be deformed into 

one another without closing this gap, while certain symmetries are respected. If time-

reversal symmetry (TRS) is respected in this deformation process, three-dimensional (3D) 

insulators have been shown to fall into two disconnected topological classes: trivial and 

nontrivial1–7. The latter are called topological insulators (TIs). What makes this 

mathematical classification highly relevant experimentally is the so-called bulk-boundary 

correspondence of TIs: the two-dimensional (2D) surface of a 3D TI hosts conducting states, 

with the dispersion of a non-degenerate Dirac cone, which cannot be gapped or localized 

without breaking TRS (or inducing interacting instabilities such as superconductivity or 

topological order). When, in addition, the spatial symmetries of the crystal are preserved 

during this deformation process, such as mirrors or rotations, one speaks of topological 

crystalline insulators8–13. The additional symmetries were argued to stabilize multiple 

Dirac cones on surfaces that are invariant under both TRS and the protecting spatial 

symmetry.

More recently, topological crystalline insulators were generalized to also include higher-
order topological insulators (HOTIs)14,15, in which gapless topological states protected by 

spatial symmetries appear at corners or hinges, while the edges and surfaces are gapped in 

2D and 3D systems, respectively. HOTIs thus generalize the topological bulk-boundary 

correspondence. While the topological protection of point-like corner modes requires some 

spectral symmetry, one-dimensional gapless hinge modes mediate a spectral flow15–18 

between valence and conduction band of the bulk insulator, akin to quantum Hall19–22 or 

quantum spin Hall edge modes23–30. Therefore, they can be expected to appear more 

generically in actual crystalline materials. Several works studied the classification of 

HOTIs16,18,31–36, for example in the presence of two-fold spatial symmetries16 or Ĉn 

rotational symmetries37.

Various topological aspects of the electronic structure of bismuth have been studied 

experimentally in the past. This revealed intriguing features such as one-dimensional 

topological modes localized along step edges on the surface of bismuth38, conducting hinge 

channels on bismuth nanowires39,40, quasi-one-dimensional metallic states on the bismuth 

(114) surface41, and a quantum spin Hall effect in 2D bismuth bilayers42,43 and 

bismuthene on silicon carbide44. Here, we show, based on band representations and the 

theory of topological quantum chemistry45–50, that bismuth is in fact a HOTI. This finding 

provides a unified theoretical origin for all these previous experimental observations. The 

crystal symmetries that protect the topology of bismuth, Ĉ3 rotation and inversion, establish 

a new class of HOTIs not discussed in previous works14–18,31–36,51. We support our 

theoretical analysis with experimental data using two complementary techniques: scanning 
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tunneling microscopy/spectroscopy (STM/STS) on surface step edges and Josephson 

interferometry on bismuth nanowires.

Another 3D material that hosts one-dimensional modes on its surface is the topological 

crystalline insulator tin telluride. For one, strained tin telluride is proposed to become a 

HOTI15. In addition, tin telluride has been experimentally shown to feature one-dimensional 

flatband modes localized at surface step edges52. The latter appear together with the Dirac 

cone topological surface states and are thus distinct from the hinge modes of a HOTI.

Note that while there are analog experimental realizations of 2D second-order topological 

insulators via electrical circuits53, as well as phononic54 and photonic55 systems, the 

present work provides the first instance of a realization of the concept in the electronic 

structure of a crystal. At the same time, it is the first experimental confirmation of a 3D 

HOTI, regardless of the platform.

Bulk topology

Fu and Kane5 gave a simple topological index for a 3D TI in the presence of inversion 

symmetry Î: One multiplies the inversion eigenvalues (which are ±1) of all Kramers pairs of 

occupied bands at all time-reversal symmetric momenta (TRIMs) in the Brillouin zone. If 

this product is −1 (+1), the insulator is topological (trivial). In the topological case, one says 

the material has a band inversion. Note that when we evaluate this index for bismuth, we 

obtain +1, in accordance with the well known result that the band structure of bismuth is 

topologically trivial from a first-order perspective56. A sample of bismuth thus does not 

have topologically protected gapless surface states. However, this is not due to bismuth not 

displaying a band inversion: in fact, we will show that there are two band inversions, the 

presence of which is not captured by the first-order index, which is only sensitive to the 

parity of band inversions. We first extend this index to HOTIs with TRS, Ĉ3 rotation, and 

inversion symmetry Î. Note that we consider a Ĉ3 rotational symmetry with axis that is given 

by the line connecting the TRIMs Γ and T [consult Fig. 1 a) for a representation of the 

Brillouin zone]. For spin-1/2 particles, Ĉ3 has eigenvalues −1 and exp(±iπ/3), where a 

subspace with −1 eigenvalue is closed under TRS, while TRS maps the exp(+iπ/3) subspace 

to the exp(−iπ/3) one and vice versa. We can thus define a band inversion separately in the 

occupied band subspaces of an insulator with Ĉ3 eigenvalues −1 and exp(±iπ/3). To do so, 

observe that of the eight TRIMs, two are invariant under Ĉ3 (Γ and T), while two groups of 

three TRIMS transform into each other under Ĉ3 (call them Xi and Li, i = 1, 2, 3). Denote by 

νY = ∏i ∈ occξi, Y the product over all inversion eigenvalues ξi,Y = ±1 of the occupied bands 

Kramers pairs at the TRIM Y ∈ {Γ, T, Xi, Li}. At Γ and T we further define νY
π  and νY

±π /3 , 

where the product is restricted to the Kramers pairs with Ĉ3 eigenvalues −1 and exp(±iπ/3), 

respectively, such that νY = νY
π νY

±π /3  for Y = Γ, T. By Ĉ3 symmetry νX1 = νX2 = νX3 and 

νL1 = νL2 = νL3, so that the Fu-Kane index is given by ν = νΓνTνX1νL1. Consider a 

Kramers pair of states at X1 together with its two degenerate Ĉ3 partners at X2 and X3. Out 

of a linear combination of these states, one can construct one Kramers pair with Ĉ3 

eigenvalue −1, and two Kramers pairs with eigenvalues exp(±iπ/3). This is shown explicitly 

in the Supplementary Information. When taking the Kramers pair at X1 together with its 
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degenerate partners at X2 and X3 to have negative inversion eigenvalue, these Ĉ3 symmetric 

linear combinations also have negative inversion eigenvalue. Thus, a band inversion at Xi as 

measured by the Fu-Kane formula induces a single band inversion in the −1 subspace, and 

two (which equals no) band inversions in the exp(±iπ/3) subspace. The same holds for the Li 

points. We conclude that the total band inversion in the occupied subspaces with Ĉ3 

eigenvalues −1 and exp(±iπ/3) are given by

ν(π) = νΓ
(π)νT

(π)νX1
νL1

, ν( ± π /3) = νΓ
( ± π /3)νT

( ± π /3), (1)

respectively. We then distinguish three cases: (i) ν(π) = ν(±π/3) = +1 for a trivial insulator, 

(ii) ν = ν(π)ν(±π/3) = −1 for a ℤ2 topological insulator, and (iii) ν(π) = ν(±π/3) = −1 for a 

HOTI.

Thus far, our considerations apply to all crystals with TRS, Ĉ3 and Î. We now evaluate the 

above topological index for elementary bismuth, crystallizing in space group R3m, No. 166, 

which possesses these symmetries [see Fig. 1 b)]. Even though bismuth is not an insulator, 

there exists a direct band gap separating valence bands from conduction bands [see Fig. 1 

e)]. This allows us to evaluate the indices ν(π) and ν(±π/3) for the valence bands. We do so 

with the group characters obtained from first principle calculations (see methods). The result 

is ν(π) = ν(±π/3) = −1, which derives from νT
π = νT

±/3 = − 1, i.e., there is a Ĉ3-graded 

double band inversion at the T point. Hence, bismuth is a HOTI according to the topological 

index defined above (if we neglect the fact that it has a small electron and hole pocket).

As a second approach, we employ the formalism of elementary band representations45–50 

(EBR) to demonstrate the nontrivial topology. Since there is always an energy separation 

between valence and conduction bands, we restrict our consideration to the three doubly-

degenerate valence bands shown in red in Fig. 1 e). In particular, we checked explicitly that 

the set of all bands at lower energy than these is topologically trivial. At TRIMs the 

eigenvalues of all symmetry operators have been computed (see methods). Referring to the 

character tables in the Bilbao Crystallographic Server (BCS)47, we assign to all the bands 

their corresponding irreducible representations. The results of the eigenvalue calculations are 

listed in the Supplementary Information, Sec. C. They show that the valence bands can not 

be decomposed into any linear combination of physical EBRs (pEBR, which are EBRs that 

respect TRS). It is the main result of Ref. 45, that if such a decomposition is not possible, 

the electronic band structure of bismuth has to be topological and without a description in 

terms of exponentially localized Wannier states, in contraposition to the conclusion drawn 

from Fu-Kane’s parity criterion5. To understand which symmetry protects this topological 

phase, we are repeating the symmetry eigenvalue calculation with an artificially lowered 

symmetry. The representative elements of point group 3m are Ĉ3 around the z axis (denoted 

3 in the space group names), Î (denoted by overbar), two-fold rotational symmetry about the 

y axis (denoted 2), and mirror symmetry with respect to the x-z-plane (denoted m). After 

lowering the space group R3m (166) to R3m (160) or R32 (155), a similar EBR analysis 

within the symmetry-reduced space groups shows that the valence bands can be decomposed 

into pEBRs in this case, indicating that they are topologically trivial. Therefore, neither two-

Schindler et al. Page 4

Nat Phys. Author manuscript; available in PMC 2019 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



fold rotation nor mirror symmetry protects the nontrivial topology of bismuth. In contrast, as 

long as Î is preserved, lowering it to space group R3 (148), the valence bands are still 

topological in the sense that they can not be decomposed into pEBRs in space group 148. 

We conclude that the nontrivial topology is protected by Î (in combination with the three-

fold rotation). Notice that the rhombohedral lattice always respects the three-fold rotational 

symmetry. Since we learned from topological quantum chemistry that the bulk bands have 

no Wannier description, we expect the presence of spectral flow in Bi, and hence protected 

gapless modes on its boundaries. Since we know the surfaces of bismuth to be non-

topological, these gapless boundaries must be hinges. This is compatible with previous 

works showing that Bi (111) bilayers (possibly on a substrate) host one-dimensional edge 

channels.42,43

Note that when changing the parameters of the tight binding-model of bismuth57 slightly, it 

undergoes a transition from a second-order to a first-order topological insulator58. However, 

we confirmed the higher-order character of bismuth that is suggested by the original tight-

binding model parameters57 independently by performing first-principle calculations, as 

well an analysis in the framework of topological quantum chemistry. In particular, we took 

into account all occupied bands of bismuth up to its momentum-dependent energy gap. This 

is important since it has been shown that bands far away from this gap still contribute 

significantly to measurable effects, such as the unusually large g-factor of holes59.

Bulk-boundary correspondence

We present a direct calculation which let us conclude that a TRS system with ν(π) = ν(±π/3) 

= −1 has to have hinge modes for terminations of the crystal that globally respect inversion 

symmetry or further symmetries. We consider a crystal of hexagonal shape [see Fig. 1 c)] 

which preserves Ĉ3 rotational and inversion symmetry. The steps outlined here in words are 

explicitly demonstrated using a Dirac model in the Supplementary Information, Sec. A. We 

think of the insulator with ν(π) = ν(±π/3) = −1 as a superposition of two topological 

insulators, one in each of the independent Ĉ3 subspaces. Consider adiabatically turning off 

any coupling between these two subspaces, while preserving the bulk gap. The resulting 

system has two Dirac cones (i.e., a Dirac theory represented by 4 × 4 matrices) on all 

surfaces of the crystal. Next, we seek to gap these surface Dirac cones by weakly coupling 

the two Ĉ3 subspaces. We want to do so while preserving the TRS, Ĉ3, and Î of the crystal. 

Of these, TRS is the only constraint that acts locally on a given surface. From the 

representation theory of the 2D Dirac equation, one finds that for a TRS that squares to −1, 

as required for spinful electrons, there exists a unique mass term m that gaps the two Dirac 

cones in a time-reversal symmetric way. It remains to study how this mass term transforms 

under Ĉ3 and Î to determine its relative sign between different surfaces of the crystal. 

Relative to the kinetic part of the surface Dirac theory, m → −m under inversion and m → 
+m under Ĉ3 (see Sec. A of the Supplementary Information for details). As a result, the sign 

of the mass term alternates between adjacent lateral surfaces of the hexagonal crystal [see 

Fig. 1 c)]. Each change of sign in the mass term is a domain wall in the Dirac theory and 

binds a Kramers pair of modes propagating along it. These are the one-dimensional hinge 

modes of the HOTI. The sign of the mass term on the top and bottom surface is not 

universally determined so that both patterns of hinge modes shown in Fig. 1 c) are 
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compatible with the bulk topology of ν(π) = ν(±π/3) = −1 (in a real system, the particular 

electronic structure determines which pattern has lower energy). Apart from this ambiguity, 

the argument presented here solely rests on the nontrivial bulk topology and is independent 

of the exact form of the surface electronic structure, as long as the surface is gapped while 

preserving the respective symmetries. This constitutes the generalized topological bulk-

boundary correspondence characteristic of a HOTI, where the existence of one-dimensional 

hinge modes directly follows from the 3D bulk topology. The HOTI’s bulk-boundary 

correspondence requires that these hinge modes are locally stable under time-reversal 

symmetric perturbations that preserve the bulk and surface gaps. From this requirement, we 

can understand the ℤ2 topological character of the phase: the minimal TRS surface 

manipulation is the addition of a 2D TI to one surface of the hexagonal nanowire. This 

would permit hybridizing and gapping out of the pair of hinge modes adjacent to the surface. 

However, to comply with Î and Ĉ3, the same 2D TI has to be added to every surface, thus 

leaving the Kramers pairs of modes intact at each hinge. We conclude that a single Kramers 

pair of modes at each hinge is stable under all symmetry-preserving surface perturbations. In 

fact, such a Kramers pair is locally stable under small perturbations even when the spatial 

symmetries are broken, e.g., by introducing disorder into the sample, as long a TRS is 

preserved. The only way to remove it is to annihilate it with another Kramers pair coming 

from another hinge, which cannot be achieved with just a small perturbation. The higher-

order hinge modes of a 3D HOTI are therefore just as stable as the edge modes of a first-

order TRS topological insulator in 2D. We further exemplify these results with a tight-

binding model, defined in Sec. B of the Supplementary Information, whose hinge states are 

shown in Fig. 1 d),f),g). Note that our tight-binding model is topologically equivalent to a 

realistic model57 of bismuth, however it is easier to interpret in the sense that it does not 

have metallic bulk and surface states that would obscure the hinge modes in the electronic 

structure plots we present here. It also has fewer orbitals per unit cell, which makes 3D 

simulations of large systems feasible.

We now turn to experimental data that support our higher-order bulk-boundary 

correspondence in bismuth. Even though bismuth is metallic in the bulk and on the surface, 

only its topological hinge states are protected against scattering by weak disorder as 

compared to trivial surface states, for example. We expect hinge states between (i) the top 

surface [which is denoted (111) in the primitive unit vectors] and three of the six lateral 

surfaces and (ii) between adjacent lateral surfaces. The geometry of the samples was more 

amenable to study the hinge states of type (i), as we outline below.

STM experiment

With a STM, we studied the electronic structure of step edges on the (111) surface of 

bismuth. Due to the buckled honeycomb structure of the bismuth bilayer along the [111] 

trigonal direction, STM topographic images of the (111) plane of bismuth show bilayer steps 

with two different types of bisectrix edges: type A and type B [marked as red and blue lines 

in Fig. 2 a)]. We highlight two structures of triangular and nearly hexagonal shape [Fig. 2 a) 

and c)]. In particular the step edge in Fig. 2 c) can be seen as (the negative of) a one bilayer 

tall version of the crystals shapes shown in Fig. 1 c). We thus expect hinge states at either the 

type A or the type B edges due to the higher-order topology. (All A type and all B type 
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edges are mutually equivalent due to the Ĉ3 rotational symmetry of the bismuth (111) 

surface.) Indeed, we observe strongly localized edge states only at type A edges in Fig. 2 b) 

and d), which display the differential conductance map overlaid on top of the topographic 

data to illuminate the edge states at the van Hove singularity energy of the bismuth edge 

states. A previous experimental study38 showed a one-dimensional van Hove singularity of 

the edge states (E = 183 meV) and quasi-particle interference of the spin-orbit locked edge 

states. The same study demonstrated the absence of k to −k scattering for these states. These 

experimental observations and model calculations strongly suggest that the edge states are 

living in the momentum dependent energy gap of the bismuth (111) surface states38. Every 

other edge of a hexagonal pit exhibits localized edge states and these edge states are 

discontinued at the corner where type A and type B edge meet [Fig. 2 c) and d)]. This 

feature remarkably reproduces the hinge modes calculated for the hexagonal nanowire as 

shown in Fig. 1 d).

Transport experiment

We exploited proximity-induced superconductivity to reveal ballistic hinge states along 

monocrystalline bismuth nanowires39,40. When these (non superconducting) nanowires are 

connected to superconducting contacts (implementing a superconductor/bismuth nanowire/

superconductor or S/Bi/S Josephson junction), a supercurrent runs through them at low 

temperature. Our experiments unambiguously demonstrate that the supercurrent flows via 

extremely few narrow one-dimensional channels, rather than via the entire surface or bulk of 

the nanowire. The experimental indications are the following: i) Periodic oscillations of the 

critical current through the nanowires caused by a magnetic field, with a period 

corresponding to one magnetic flux quantum through the wire section perpendicular to the 

field39,40. Such oscillations indicate interference between two supercurrent-carrying paths 

located at the nanowire edges60 (see also the Supplementary Material), since a uniform 

current density in such a long narrow wire would produce instead a monotonously decaying 

critical current. ii) The supercurrent flowing through the nanowire persists to extremely high 

magnetic fields, up to several Teslas in some samples. Since the orbital dephasing due to a 

magnetic flux through the supercurrent-carrying channel area destroys the induced 

supercurrent, this indicates that the channels are extremely narrow spatially. iii) Finally, we 

have recently provided a direct signature of ballistic transport along those one-dimensional 

channels, by measuring the supercurrent-versus-phase relation (also called current phase 

relation, or CPR) of the S/Bi/S junction. This was done by inserting the bismuth nanowires 

into an asymmetric superconducting quantum interference device (SQUID) 

configuration40,61. Whereas tunneling or diffusive transport give rise to the usual nearly 

sinusoidal current phase relation of superconductor/normal metal/superconductor Josephson 

junctions, the sharp sawtooth-shaped current phase relation we found instead, demonstrates 

that transport occurs ballistically along the wire. The scattering probability p was estimated 

to be 0.1 along the 1 μm long bismuth wire from the harmonics content of this current phase 

relation (where the nth harmonic decays like (1 − p)2n/n). This leads to a lower bound of the 

mean free path le along these edges equal to 10 μm, much longer than the value le = 0.1 μm 

determined for the surface states. This surprising result is explained by the dominant 

contribution of the topologically protected hinge states to the supercurrent. Indeed, the 
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supercurrent carried by a diffusive channel is (L/le)2 ≈ 100 times smaller than the 

supercurrent carried by a ballistic channel (le and L are the elastic mean free path and wire 

length, respectively). The position of the edge states can be deduced from the periodicity of 

the SQUID oscillations, which is inversely proportional to the area enclosing the flux. In a 

sample of parallelogrammatic cross-section whose geometry and orientation was precisely 

determined, we detected a beating of two paths enclosing different fluxes Φ and Φ′ [see Fig. 

3 a)].40 This demonstrated that the edge states are located along the two acute edges of the 

(111) facets. Those edges coincide with the expected hinge states perpendicular to the 

trigonal [111] axis [see Fig. 3 b)]. The contribution of each path was extracted and is shown 

in Fig. 3 d) and e). The supercurrents carried by the two hinges differ by a factor of four. 

This can be explained by a difference in the quality of the contact to these hinge states: The 

top hinges of the wire have been more severely etched than the bottom ones during the 

deposition of the superconducting electrodes [see Fig. 3 a)]. This strong etching reduces the 

coupling of edge states to the superconducting contacts and the supercurrent is decreased 

even though the ballistic nature is unaffected.

Comparing Fig. 3 d) and Fig. 1 c), we note that one of the two hinges on top of the nanowire 

must be of A type and the other one of B type (the same is true for the bottom two hinges). 

Our observation of a ballistic channel at one of these hinges at the top, and one at the bottom 

of the nanowire, is thus in line with the theoretical expectation from the higher-order 

topology of bismuth.

Summary

The bismuth-antimony alloy, Bi1−xSbx, was the first material realization of a 3D TI3,5. The 

composition x was used to interpolate between the bismuth without band inversion and the 

band inverted antimony. In this work, we demonstrated theoretically that the allegedly trivial 

end of this interpolation, bismuth, has in fact a 3D topological band structure as well. It is a 

HOTI with helical hinge states. We presented two complementary pieces of experimental 

evidence supporting this result, using STM and Josephson-interferometry measurements. 

The type of hinge states discussed here may be used for lossless electronic transport due to 

their local protection from backscattering by TRS disorder. Further applications include 

spintronics, due to their spin-momentum locking, and – when proximitized with 

superconductivity – topological quantum computation. For the latter, a nanowire with 

hexagonal cross-section may provide a particularly convenient way of building a hexon – a 

group of six Majorana states, one at each hinge. Hexons have been proposed as building 

blocks for a measurement-only quantum computer62.

Methods

First-principle calculations

We employed density functional theory (DFT) as implemented in the Vienna Ab Initio 

Simulation Package (VASP)64–67. The exchange correlation term is described according to 

the Perdew-Burke-Ernzerhof (PBE) prescription together with projected augmented-wave 

pseudopotentials68,69 and the spin-orbit interaction included. For the self-consistent 

calculations we used a 12 × 12 × 12 k-points mesh for the bulk band structure calculations. 
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The eigenvalues of the symmetry transformations were deduced from the matrix 

representations of the respective symmetry operation calculated using the Bloch eigenstates 

from VASP.

STM experiment

Bismuth crystals were cleaved at room temperature in ultra-high vacuum conditions and the 

cleaved samples were cooled down to a temperature of 4 K at which scanning tunneling 

microscopy (STM) and spectroscopy (STS) measurements were carried out. The cleaved 

bismuth crystal exhibits a (111) plane of the bismuth rhombohedral structure [which is the 

(001) plane of the bismuth hexagonal structure]. The topographic data and the differential 

conductance maps were. For STM measurements, a mechanically sharpened platinum-

iridium tip was used, and electronic properties of the probe tip were characterized before the 

experiments on bismuth by checking a reference sample. Differential conductance maps 

[Fig. 2 b) and d)] are taken simultaneously with topographic data at the van Hove singularity 

energy (V = 183 meV) of the bismuth edge states using a lock-in amplifier with an 

oscillation of 3 meV and with I = 3.5 nA. The data shown in this manuscript is reproduced 

on many step edges of Bi (111) with atomically different tips. All of the islands on the Bi 

(111) surface show the expected step height of 4 Å for bismuth bilayers and all of the 

extended edges are identified as zigzag structures of either A type or B type. A type and B 

type edges are equivalent in the hexagonal nanowire geometry as described in the main 

manuscript [Fig. 1 c)], however, the existence of the Bi (111) surface under the bismuth 

bilayer breaks the inversion symmetry, and A as well as B type edges can be identified in 

STM measurements. Only A type edges show the spectroscopic feature of a sharp peak at 

183 meV which is the van Hove singularity energy of the one-dimensional edge state. Quasi-

particle interference (QPI) measurements reveal that this edge state is continuously 

dispersing down to the Fermi level and starts to merge with the surface states at the 

momentum where the surface gap closes38. This spectroscopic feature of geometric 

confinement only at A type edges resembles the topological hinge modes expected for the 

hexagonal nanowire, as discussed in the main text.

Transport experiment

The nanowires grew during slow sputtering deposition of high purity bismuth on a slightly 

heated silicon substrate. High resolution transmission electron microscopy (TEM) indicates 

high quality single crystals, of hexagonal or rhombohedral cross-sections, with clear facets. 

The facet widths are typically 50 to 300 nm wide. Resistance measurements show that 

transport in the normal state (i.e., when contacts to the nanowires are not superconducting) 

occurs predominately due to surface states, with an elastic mean free path of the order of 100 

nm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Electronic structure of a HOTI with Ĉ3 and Î.
a) Brillouin zone with TRS points that are used to evaluate the topological indices in Eq. (1). 

b) Unit cell of the crystal structure of bismuth, which has Ĉ3 and inversion-symmetry. There 

are six inequivalent sites in the conventional (hexagonal) unit cell, which is shown in red. 

Black lines delineate the primitive unit cell (rhombohedral), which has only 2 inequivalent 

atoms. c) Schematic of the hinge states of a hexagonally-shaped HOTI oriented along the 

trigonal [111] axis, with Ĉ3 and inversion-symmetry (e.g., bismuth). Note that a prism with 

triangular rather than hexagonal cross-section would would not respect inversion symmetry. 

All edges of the hexagonal cross-section are along bisectrix axes. Red lines represent a 

single one-dimensional Kramers pair of gapless protected modes. In the Dirac picture of a 

HOTI surface, red and blue surfaces correspond to opposite signs of the unique TRS surface 

mass terms. d) Localized hinge modes of the minimal tight-binding model of a HOTI with 

the same topology and symmetries as bismuth, as defined in the Supplementary Information. 

The model is solved on the hexagon geometry described in (c) with open boundary 

conditions in all directions. Plotted is the sum of the absolute squares of the eigenstates that 

lie in the bulk and surface gap. Note that while the tight-binding model considered has the 

same topology as bismuth, it lacks its metallic surface states which are not protected by Ĉ3 

and inversion symmetry. e) Band structure of bismuth with inversion eigenvalues (green) and 

Ĉ3 eigenvalues on the Γ–T line (black). Since valence bands (red) and conduction bands 

(blue) are not degenerate anywhere in momentum space, their topological indices, Eq. (1), 

are well defined despite the appearance of a small electron and hole pocket. Black arrows 

indicate the two valence bands contributing to the Ĉ3-eigenvalue-graded band inversion. f) 
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Spectrum of the same model solved on a nanowire with hexagonal cross-section and 

periodic boundary conditions in the trigonal z direction ([111] direction). Only a portion of 

the spectrum at small momentum deviations from the T point kz = π is shown. Six Kramers 

pairs of hinge modes traverse the surface and bulk gap. Consult Fig. S2 c) in the 

Supplementary Information for a zoomed-out version showing the spectrum for all 

momenta. g) Localization of these topologically protected hinge modes in the x-y-plane.
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Fig. 2. Experimental observation of the alternating edge states on a bismuth (111) surface 
perpendicular to its trigonal axis.
a) 3D rendered topographic image of the bismuth (111) surface. The red (type A) and blue 

(type B) lines then indicate the types of edge, which are along bisectrix axes. Note that the 

edges of type B in this particular pit geometry are much shorter than edges of type A, while 

still large enough to be experimentally accessible. b) Differential conductance map at the 

van Hove singularity energy (V = 183 meV) of the one-dimensional edge states. In contrast 

to the type B edges, all the type A edges exhibit localized high conductance. c) Topographic 

image of a hexagonal pit on a bismuth (111) surface. The hinge modes are schematically 

shown as purple lines. Blue and red arrows indicate the flow of the spin-momentum locked 

hinge modes. d) Differential conductance map simultaneously acquired with the topographic 

data from c), showing high conductance at every other edge of the hexagonal pit.
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Fig. 3. Evidence for hinge states from Josephson-interference experiments.
a) Single-crystal bismuth nanowire (colored in brown) connected to superconducting 

electrodes (colored in blue). The wire has a parallelogrammatic cross-section. Its orientation 

along one of the bisectrix axes of bismuth was determined by electron diffraction, showing 

evidence of (111) facets parallel to the substrate. The 1.4 μm long, rightmost section of the 

wire, in parallel with a super-conducting weak link, forms an asymmetric SQUID. b) 

Schematic representation of the investigated bismuth nanowire of parallelogrammatic cross-

section described above, indicating (red lines) the position of the experimentally identified 

topological hinge states in relation to the hinge states determined theoretically in a bismuth 

sample of hexagonal symmetry oriented along the trigonal [111] axis. c) The magnetic field 

dependence of the critical current shown is modulated by the current phase relation of the 

bismuth Josephson junction (whose critical current is much lower than the superconducting 

weak link). This current phase relation can be decomposed into the sum of two sawtooth 

waves d) and e) of different periods corresponding respectively to the internal and external 

area of the SQUID Φ and Φ′ shown in a).
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