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Abstract

Given projected increases in the frequency of precipitation and temperature extremes in China, we 

examine the extent adults may be vulnerable to climate anomalies. We link nutrition, health, and 

economic data from the China Health and Nutrition Survey (1989–2011) to gridded climate data to 

identify which socioeconomic outcomes are particularly susceptible, including adult underweight 

incidence, body mass index, dietary intake, physical activity, illness, income, and food prices. We 

find warm temperatures augment the probability of being underweight among adults, with a 

particularly large impact for the elderly (ages > 60). Extremely dry and warm conditions produce a 

3.3-percentage point increase in underweight status for this group. Consequences on nutrition 

coincide with changes in illness rather than dietary, income or purchasing power shifts. Social 

protection targeting areas prone to excessive heat may consider supplementing bundles of goods 

with a suite of health care provisions catering to the elderly.
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Current research indicates considerable social costs of global climate change, with 

disproportionate consequences for the poor (World Bank, 2010; IPCC, 2014; Carleton and 

Hsiang, 2016). Greater emphasis has been placed on agricultural yields and other economic 

outputs (Lobell et al., 2011; Lobell et al., 2012; Burke et al., 2015), with less attention to 

how climate variability affects broader well-being, especially in the developing world (Burke 

et al., 2012; Phalkey et al., 2015). Malnutrition is one of the leading global health 

challenges, leading to 11 percent of losses in the annual gross domestic product of Africa 

and Asia (IFPRI, 2016). While climate extremes can jeopardize adult survival (Deschenes, 

2009; Deschenes and Greenstone, 2011; Shi et al., 2015) and child nutrition (Hoddinott and 

Kinsey, 2001; Dos Santos and Henry, 2008; Maccini and Yang, 2009; Skoufias and Vinha, 

2012; Kumar et al., 2016), the consequences of these events for adult nutrition continue to 

be poorly understood. Caloric intake is anticipated to shift in response to losses to income or 

purchasing power where insurance is absent (Dercon, 2004; Kazianga and Udry, 2006). 
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Pervasive climate effects on physiology (Graff-Zivin and Neidell, 2014; Zhao et al., 2016) 

and amplified risks of water- and vector-borne diseases (Pascual et al., 2006; Zhou et al., 

2008; Paaijmans et al., 2010) may reinforce nutritional deficits. A nuanced understanding of 

the impact of climate extremes on adult populations may help to better identify vulnerable 

groups and thus better target aid interventions in a world experiencing climate change.

We use the China Health and Nutrition Survey (CHNS, 1989–2011) to examine the impacts 

of contemporaneous temperature and precipitation anomalies on adult (over 19 years old) 

well-being. We focus on China because of its global significance and historical precedence 

of devastating droughts, floods, and crop failures (IPCC, 2012; Piao et al., 2010; Ma and 

Maystadt, 2017). Health indicators such as underweight, body mass index, dietary intake, 

physical activity, and morbidity allow for measurement of social resilience to climate 

variability. Household price and income information are used to determine the extent that 

shifts in well-being coincide with economic factors. We hypothesize that climate variability 

affects adult well-being through both physiological and economic channels. Thus, we expect 

climate-induced malnutrition, dietary intake, illness, and physical inactivity to comove with 

declines in agricultural income or increases in staple prices. We further predict the 

relationships will be more pronounced for vulnerable subpopulations such as the elderly.

As described below, we find only partial support for the first hypothesis but strong support 

for the second hypothesis. Specifically, we find that positive temperature anomalies 

substantially increase the probability of being underweight for older adults and that this 

coincides with deterioration in health outcomes but not economic outcomes. The study 

proceeds as follows: Section 2 describes the main channels through which weather extremes 

can impact adult health. Section 3 describes the data and the econometric methodology. 

Results are presented in section 4, while section 5 concludes.

Conceptual Framework

Climate can affect nutrition and health through multiple pathways. Variations in climate alter 

susceptibility to water- and vector-borne diseases (Pascual et al. 2006; Zhou et al. 2008; 

Paaijmans et al. 2010), with consequences that include malnutrition (McNeish, 1986; 

Guerrant et al., 1992). Hot temperatures can further induce physiological responses, such as 

overheating, on working adults (Graff-Zivin and Neidell, 2014; Zhao et al., 2016). Such poor 

health can also lead to physical inactivity and a reduction in nutrients and caloric intake. The 

literature has, thus far, focused on climate-induced adult mortality, which occurs among the 

elderly due to weakened cardiovascular and respiratory systems and not necessarily 

malnutrition (Klinenberg, 2002; Patz et al., 2005; Browning et al., 2006; McMichael et al., 

2006 and Gosling et al, 2009, for reviews; Deschenes and Moretti, 2009; Deschenes and 

Greenstone, 2011; Barreca et al., 2012).

Perhaps more nuanced are the climate effects on other socioeconomic metrics, which can 

indirectly jeopardize adult health and nutrition. Linkages between climate and income losses 

are relatively well-established in the agricultural sector (Jayachandran, 2006; Mueller and 

Osgood, 2009; Schlenker and Roberts, 2009; Seo et al., 2009; Lobel et al., 2011) as well as 

non-agricultural sector (Hsiang, 2010; Burke et al., 2015). Yet, how these losses translate 
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into changes in the demand for calories, nutrient-rich food, and medication to treat illnesses 

is poorly understood (Phalkey et al., 2015). Losses in income might cause households to 

ingest fewer calories, and to replace expensive, nutrient- and protein-rich foods (e.g. 

vegetables and meat) with cheaper, calorie-rich foods devoid of these contents (e.g, rice) 

(Lehmann- Uschner, and Kraehnert, 2016). Health expenditures typically allocated for (anti-

diarrheal or malarial) medications may decline. Malnutrition can, thus, arise directly from a 

decline in caloric consumption and nutrients, or indirectly through increased exposure to 

illnesses.

However, the change in agricultural yields caused by a change in climate can produce an 

ambiguous impact on the purchasing power of households. How the subsequent changes in 

prices affect household welfare will depend on a variety of individual and national factors, 

such as the reliance on purchased food for consumption, the share of the market that is 

affected, and the national context for imports (Burke and Lobell, 2010). To illustrate, in the 

case where losses in agricultural yields induce food shortages, farmers, who are not directly 

affected by the climate event, may be advantaged from the profit gains added by the price 

premium, leading to income benefits. Furthermore, the same farmers could benefit from 

lower prices for non-staple food items. This could arise if enough households vulnerable to 

the income shock, shift their consumption away from food items like vegetables and meat 

causing a decline in their demand, lowering their prices in the short term. Others, however, 

might face food price hikes exacerbating consequences on caloric intake or dietary diversity. 

Urbanites or the rural landless are most vulnerable to sudden changes in food prices, as they 

cannot rely on their own production for consumption. Broader impacts can ensue among 

inhabitants of protectionist economies, preventing entry of cheap import substitutes. 

Together these findings make clear that climatic effects on adult health can occur via both 

physiological and livelihood channels. This motivates our prediction, above, that climate-

induced malnutrition, dietary intake, illness, and physical inactivity will comove with 

declines in agricultural income or increases in staple prices.

How the direct and indirect effects of climate culminate at the individual level is contingent 

on several factors, such as age, gender and the intrahousehold allocation of resources. The 

health literature typically focuses on children under five for a variety of reasons. First, 

infants and young children often rely on breast milk, where the supply and quality may be 

compromised under changes in climate (Dos Santos and Henry, 2008). Second, any sudden 

modification in their caloric intake, whether it be due to disease incidence or diet, has long 

lasting impacts on their development and therefore on anthropometric outcomes (Hoddinott 

and Kinsey, 2001; Alderman et al., 2006; Maccini and Yang, 2009; Gorgens et al., 2012, 

Grace et al., 2012; Skoufias and Vinha, 2012; Lohmann and Lechtenfeld, 2015; Groppo and 

Kraehnert, 2016; Kumar et al., 2016). Third, the intrahousehold allocation of resources 

typically favors more productive members of the household or those with status, particularly 

under periods of distress (Dercon and Krishnan, 2000; Mangyo, 2008). Thus, children may 

be called to sacrifice calories to support the daily food requirements of other adult members 

of the household.

Additional attention to the health and nutrition impacts of climate for marginalized adult 

groups, specifically the elderly, is warranted. In the analysis, we focus on adults and 
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distinguish between three age groups (20–40 years old, 41–60 years old, and over 60 years 

old). It has been established that the latter age group is physically vulnerable to increases in 

temperature (Browning et al., 2006; Deschenes and Moretti, 2009; Deschenes and 

Greenstone, 2011). Moreover, seniors may be asked to sacrifice their consumption in order 

for the household to cope with an income shock. Other marginalized groups, such as 

women, have been found to be worse affected during periods of economic crisis; they are the 

first to liquidate their assets, change their consumption and dietary composition, and 

increase their employment and domestic tasks (Quisumbing et al., 2008, Kumar and 

Quisumbing, 2013). These findings motivate our second hypothesis, noted above, that 

climate-health relationships will be more pronounced for vulnerable subpopulations such as 

the elderly.

Materials and Methods

Data

We build a person-period dataset and a household-period dataset (which includes food prices 

and incomes) using information from 8 inter-survey intervals of the CHNS (1989–91, 1991–

93, 1993–97, 1997–00, 2000–04, 2004–06, 2006–09, 2009–11). In this dataset, explanatory 

variables such as assets are measured at period baseline, climate exposure is measured 

during the survey interval, and outcomes are measured at period follow-up.1 Outcomes 

include body mass index (kilograms over meters squared), daily caloric intake (kcal), daily 

fat intake (grams), daily protein intake (grams), an indicator for being underweight (body 

mass index less than 18.5), intensity of physical activity (indexed 1 through 5), and self-

reported illness (dichotomous).2 Dietary intake was collected via a 24-hour dietary recall 

(Zhai et al., 2014). Explanatory variables include age, education, household size, a consumer 

asset index (Kolenikov and Angeles, 2009), a business asset index, and an urbanicity index 

(Zhai et al., 2014). The consumer asset index is defined as the first polychoric principal 

component from a set of 22 binary measures for asset ownership and housing quality, with 

large positive weights on consumer assets. The business index is defined as the second 

principal component, with large positive weights on productive assets. Our dataset includes 

63,597 person-periods from 20,990 individuals in 9 provinces (Table A1).3 Because 

participants who leave the study communities are not tracked for re-interview, we carefully 

examine the robustness of our results to potential attrition bias as described below.

Temperature and precipitation were extracted from the Climate Research Unit’s Time Series 

(CRUTS) version 3.22 at the county level as a spatial average (Harris et al., 2014). CRUTS 

1Thus, the first year in which an outcome enters the analysis is in 1991, in order to include lagged explanatory variables in our 
regression model.
2The physical activity scale is the following: 1) very light physical activity (working in a sitting position, e.g., office worker, watch 
repairer, etc.); 2) light physical activity (working in a standing position, e.g., salesperson, laboratory technician, teacher, etc.); 3) 
moderate physical activity (e.g., student, driver, electrician, metal worker, etc.); 4) heavy physical activity (e.g., farmer, dancer, steel 
worker, athlete, etc.); and 5) very heavy physical activity (e.g., loader, logger, miner, stonecutter, etc.).
3Thirty percent of the sample of individuals appears in all 8 rounds. Thirty-seven percent of the sample has 5 to 7 repeated 
observations. Twenty-two percent of the individuals have 3 to 4 panel observations. Only 6 percent of the individuals each have 2 
observations in the sample. We keep the 2 percent of the individuals that only have one observation in the sample when providing a 
general description of the adult population (e.g., in Table A1), even though they technically are dropped from the regression analysis. 
The majority of the people that have one observation in our sample are adult members that joined the family in the latest wave (78 
percent).
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uses a spatial statistical approach to combine data on climate anomalies from over 4000 

weather stations, including a large number in China, with an underlying static climatology. 

This produces a monthly global dataset at 0.5 ° resolution from the year 1900 to present 

(Harris et al, 2014). To extract Climate Research Unit (CRU) values at the county level, the 

CRU gridcells were resampled from native 0.5° resolution to 0.1667° resolution in order to 

better accommodate smaller counties that would otherwise not be adequately represented. 

The grid resample process retained source data values unaltered and produced values for the 

new interpolated grid cells via bilinear interpolation from the four nearest cells. The 

interpolated gridded values were then extracted using time-varying county boundaries 

produced by the Australian Consortium for the Asian Spatial Information and Analysis 

Network.

Climate variability is measured as standardized anomalies or z-scores, defined as the 

deviation of the climate during the calendar year of interview from the mean climate from 

1981–2010 divided by the standard deviation of the climate measure over the same period. 

Because interviews were conducted in October-December, we use the year of interview as 

the period of exposure in order to capture a full annual weather cycle. The 1981–2010 

reference period is selected to capture the relative deviation of the local climate from the 

recent past and to be consistent with the recommendation of the United Nation’s World 

Meteorological Organization for defining climate anomalies. These time-varying measures 

of climate variability were linked to the person-period and household-period datasets using 

county location at the beginning of the inter-survey interval.

Sample Description

The individuals in our sample originate from nine provinces in China: Heilongjiang, Jiangsu, 

Shangdong, Henan, Hubei, Hunan, Guangxi, Guizhou, and Liaoning. The average county in 

each province has become increasingly urban over time (Figure A1). All provinces, with the 

exception of Henan, had an urbanicity value of 50 points or greater by 2000 indicating an 

interesting point of departure from the traditional rural environment (Jones-Smith and 

Popkin, 2010). Located in southern China, Guangxi has the highest temperature (Figure A2) 

and one of the highest precipitation levels (Figure A3) of the 9 provinces. 4 Northern 

provinces Liaoning and Heilongjiang have much cooler climates (Figure A2); Heilongjiang 

is the driest of the provinces (Figure A3). Annual temperature and precipitation averaged 

14.90 degrees Celsius and 83.54 millimeters per month for the person-period sample, with 

standard deviations of 4.6 and 30.63 units respectively (Table A1). The anomaly values 

indicate that inter-survey conditions were slightly warm (temperature z score=0.03) and dry 

(precipitation z score =-0.15) relative to the reference period.

The individuals in our sample are equally split between male and female. Forty-two and 

twenty-one percent of the sample are within the 41 to 60 and over 60 age groups. Only 19 

percent completed upper middle school or above (Table A1). The average household earns 

23,411 yuan (or 3624 USD) a year (Table A2). The average adult ingests 2,294 calories, 343 

grams of carbohydrates, 70 grams of fat, and 69 grams of protein per day (Table A1). 

4Despite the limited provincial coverage in the sample (9 provinces), the variation in our climate exposure measures come from using 
data over 54 counties and across 7 survey years over a 20 year-period.
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His/her body mass index averages 22.77, within the normal range of 18.5 to 24.9. Only 7 

percent are classified as underweight. Mean physical activity is 2.8 on a scale of 1 to 6. 

Twelve percent of the sample reported being sick or injured in the 4 weeks prior to the 

survey, with respiratory illnesses the most common (4 percent).

Statistical Approach

We estimate the following linear (probability) regression model to identify the age-

differentiated impact of temperature T and P precipitation anomalies on the individual 

continuous (discrete) outcome Yi:

Y it = γ0 + γi + γt + ∑ j = 1
3 α jAge jT it + ∑ j = 1

3 β jAge jPit + ∑ j = 2
3 ρ jAge j + ∑k = 1

K δkXit + εit .

(1)

The dependent variables are indicators of nutrition (the probability of being underweight or 

obese, body mass index (BMI)); dietary intake (total caloric, carbohydrate, fat, and protein 

intake); and health (physical activity, the probability of being sick, having a fever, sore 

throat, or cough, having diarrhea or a stomachache, having a headache or dizziness, having 

joint or muscle pain, having a rash or dermatitis, and having heart disease or chest pain). We 

differentiate effects by age using categorical variables denoted by Agej: Age 41–60 years 

old, Age > 60 years old; Age 20–40 years old omitted. Vector Xit includes variables that 

likely determine changes in nutrition and health, such as: lagged (previous round’s) 

education categorical variables (completed primary school, completed lower middle school, 

completed upper middle school, completed technical school degree, completed university 

degree, completed graduate degree; no school completion omitted); lagged household size; 

lagged indicators for above median consumer assets, above median business assets, and 

above median urban index.5 In all models, standard errors are corrected for clustering at the 

county level, accounting for the non-independence of climate exposure within counties.

The panel structure of the data is conducive for reducing concerns over omitted variable bias 

on the parameters of interest, αj and βj. We are interested in whether these parameters are 

consistent across nutrition, health and economic outcomes (Hypothesis 1), and whether older 

age groups are more vulnerable to these effects (Hypothesis 2). First, since CHNS 

repeatedly collected nutrition and health outcomes for each individual over time, we are able 

to include an individual fixed effect γi in (1). This allows us to control for any unobserved 

time invariant factors at the individual, household, and county level that typically influence 

nutrition and health. At the individual and household level, the individual fixed effect is 

inclusive of factors such as hygiene practices and access to health care facilities and 

services. More importantly, we are also addressing excluded variables at the county level 

5As education, household size, and assets are potentially endogenous to a contemporaneous shock, we incorporate these variables in 
lagged form, using the values from the previous round.
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(our unit of exposure) that may be correlated with climate, such as ecological zone. Thus, we 

are accounting for the non-random distribution of climate variability across space.

Second, the inclusion of a year fixed effect γt captures features of the national context that 

might vary over time. The models are thus identified by the between-interval variation in 

climate within counties. The underlying threat to interpreting our estimates of αj and βj as 

causal is the omission of time-varying factors that are correlated with climate and our 

outcomes of interest. To mitigate this issue, we include numerous time-varying variables in 

vector Xit. Given the coarse definition of climate exposure and the survey’s limited 

provincial coverage, we are unable to control for all relevant county-specific factors that 

vary over time by using county by year fixed effects. Thus, our estimates can only be 

interpreted as causal as long as many of these relevant factors are embodied in the current 

demographic, wealth, and urban explanatory variables.6

We additionally validate that the main specifications are insensitive to individual attrition 

across waves. Individual attrition in the sample ranges from 15 percent to 37 percent across 

waves, and is mainly attributable to the migration of individuals and households not being 

re-interviewed (Table A3). In 1997, the year of highest attrition, Liaoning province was 

excluded for logistical reasons. We estimate a pooled probit regression, conditioning on 

province and survey year, to detect the factors that are correlated with the probability of an 

individual remaining in the sample. Education and wealth reduce the probability of 

remaining in the sample over time (Table A4). Lagged household size and marriage increase 

the probability of staying in the sample. Lagged age has a non-linear effect on the 

probability of staying in the sample. Of the climate anomalies, only temperature has a 

modest, negative effect on the probability of remaining in the sample. To address concerns 

over attrition bias, we present results from a set of regressions in which we adjust our 

estimates for attrition using inverse probability weights (Fitzgerald et al., 1998). The inverse 

probability weights are constructed using the ratio of the predicted probabilities from a 

restricted version (excludes the county attrition rate,7 province, and urban variables) and 

unrestricted version (all variables) of the model presented in the Appendix (Table A4).

Results

Main Specifications

Table 1 presents the effects of climate anomalies (and their associated standard errors) on 

nutrition, dietary intake, physical activity, and self-reported health outcomes. The results 

suggest that temperature anomalies increase underweight incidence of adults that are 41 to 

60 or over 60 years old. There is weaker evidence that temperature anomalies might also 

reduce the body mass indices for these same age groups. The coefficients on the temperature 

parameters in the BMI specification are negative but imprecisely estimated, however, the F 

statistic testing the joint significance of the temperature parameters suggests that we reject 

6Note that the urbanicity index is constructed using several time-varying communal characteristics that one might otherwise include in 
this regression: population density, economic activity, traditional markets, modern markets, transportation infrastructure, sanitation, 
communications, housing, education, diversity, health infrastructure, and social services (Jones-Smith and Popkin, 2010).
7The county attrition rate is defined as the percentage of people within the county that exited the sample in that wave. For each 
observation, we exclude itself from the calculation to provide an exogenous measure of attrition at the county level.
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that they are all equal to zero (p-value=0.07). The age-specific temperature effects are also 

statistically meaningful according to the F statistic which tests whether the age by 

temperature parameters are equal (p-value=0.05).

In contrast, adult underweight incidence changes little with an increase in precipitation. 

While the F statistic of joint significance indicates that the effects are statistically different 

from zero, the coefficients themselves are small and insignificant at the 10 percent critical 

level. There is also weak evidence that precipitation anomalies decrease the body mass 

indices of the younger adult age groups.8 The negative coefficients on the precipitation 

parameters are statistically significant at the 10 percent critical level and we cannot reject 

that the magnitudes necessarily differ across age groups. Concerning the latter, we cannot 

reject the null hypothesis from an F statistic testing the equality of the precipitation 

coefficients across age groups (p-value=0.10).

One may be concerned that the reductions witnessed in Table 1 may be beneficial for a 

population suffering from obesity (IFPRI, 2016). However, we show that in spite of the 

temperature anomalies being associated with the underweight incidence of adults over 40 

years old, they do not affect obesity (Table 1). We define a person as obese if his/her BMI is 

greater than or equal to 30. Although there is a slight, positive and statistically significant 

effect of temperature variability on the obesity of adults ages 20 through 40, both F statistics 

testing the joint significance of the set of variables that interact age and temperature and age 

and precipitation indicate we cannot reject that the parameters are equal to zero.

We observe similar null effects of temperature and precipitation anomalies on the dietary 

intake of adults. For all outcomes, we reject that the temperature and precipitation 

parameters are jointly equal to zero according to the F tests at the 10 percent critical level. 

We similarly cannot reject that the temperature and precipitation coefficients are equal 

across age groups, with one exception. According to an F test, precipitation anomalies may 

have varying effects on the protein intake of adults from different age groups at the 10 

percent critical level. However, no single precipitation coefficient in the protein intake 

specification is statistically different from zero following the standard t statistics.

In line with the temperature effects on nutrition, we observe similar deleterious 

consequences on physiological status but only for the elderly population (Age > 60). The 

elderly become sicker, but there is no corresponding effect on physical activity. The 

magnitude of the increase in illness due to a 1-standard deviation increase in temperature 

(0.012) is equivalent to the magnitude of the increase in becoming underweight (0.011) from 

an equal change in temperature. This effect is statistically different than the effect detected 

for the other adult age groups (F test, p-value=0.00). The elderly become more susceptible to 

respiratory symptoms (fever, sore throat, cough in last 4 weeks), gastrointestinal symptoms 

(diarrhea or stomachaches), headaches and dizziness, joint and muscle pains, and skin 

conditions (rash and dermatitis) with increases in temperature anomalies (Table 2).

8Since z score values are negative for dry anomalies, a negative parameter on the anomaly coefficient actually implies a dry anomaly 
would have a positive effect on BMI.
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Income and price responses appear to exclude the possibility that economic conditions 

underlie observed malnutrition and health consequences among the elderly (Table 3). Prices 

of staples decline (rather than increase) with an increase in the temperature anomaly. 

Moreover, there is no net effect of temperature on income.

We use the predictions from (1) to predict the probability of an adult being underweight 

when temperature and precipitation z scores are −2, 0, and 2. Figures 1–3 display the 

predicted probabilities for the various scenarios per age group. For example, a scenario 

which assumes normal temperature (temperature z score is equal to 0) and normal 

precipitation (precipitation z score is equal to zero) would lead to a 0.118 probability of the 

elderly being underweight. An extremely hot and dry scenario (temperature z score is equal 

to 2 and precipitation z score is equal to −2) would alarmingly increase the probability of the 

elderly being underweight by 28 percent.

In summary, we find only partial support for the first hypothesis but strong support for the 

second hypothesis. Temperature anomalies substantially increase the probability of being 

underweight for older adults and this coincides with deterioration in other health outcomes 

but not economic outcomes. For the youngest adults (ages 20–40), temperature anomalies 

have positive but non-significant effects on underweight and this does not coincide with 

increases in illness, suggesting that this age group is partly protected. Consistent with 

previous studies (Carleton and Hsiang, 2016), we find that precipitation anomalies are 

generally less important than temperature. Precipitation has negative effects on BMI for the 

two younger age groups, but this does not translate into changes in either underweight or 

obesity.

Robustness Checks

We evaluate whether our results using specification (1) are robust to accounting for attrition 

and to alternative climate definitions. When accounting for the attrition of individuals (Table 

A5), the temperature effects for the elderly on underweight status are similar in magnitude 

and statistical significance, while the impact on their propensity of being sick remain similar 

in magnitude but lose precision (Sick p-value=0.10) (Tables A5). All F tests continue to 

support the joint statistical significance of the temperature variables (Underweight p-

value=0.02; Sick p-value=0.02). We can reject the equality of temperature effects across age 

groups at the 10 percent critical level for being Sick (p-value=0.01) but not being 

Underweight (p-value=0.13).

We additionally estimate underweight regressions which replace the current anomaly 

variables with anomaly variables for the year prior to the interview, raw temperature and 

precipitation levels for the survey year, and a set of indicators for temperature and 

precipitation values which are above and below 1 and −1 standard deviation (SD), 

respectively.9 The incidence of being underweight continued to be positively associated with 

9We create four dummy variables to reflect whether hot/cold or wet/dry shocks are driving the observed effects. The first variable, 
Temp. anomaly > 1 SD, is assigned a value of 1 if the temperature anomaly (or z-score) has a value greater than 1. The second 
variable, Temp. anomaly < −1 SD, is assigned a value of 1 if the temperature anomaly (or z-score) has a value less than −1. The 
variable omitted from the model is scenarios in which the temperature z score is within the range of −1 and 1. The third and fourth 
variables create similar indicators using precipitation instead of temperature anomaly values.
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raw temperature levels for the elderly sample (Table 4). From the specification that 

discretizes the climate anomaly variables into hot/cold and wet/dry indicators, it seems that 

the temperature effects on the elderly are mainly driven by hot periods. In Table 1, the 

coefficient on the temperature anomaly variable is 0.011. In Table 4, the coefficient is 0.012 

for the temperature anomalies above 1 SD but imprecisely estimated. The estimated 

coefficient for the temperature anomalies below −1 SD, in contrast, is only 0.002.

Discussion

The frequency of droughts and heat waves is expected to increase in China over the next 

century according to global climate models (Ma and Maystadt, 2017). The implications for 

the well-being of one of the largest demographic groups in China, older adults, is of growing 

concern. Not only may this impose strains on existing welfare programs, but it could 

potentially compromise overall productivity, given the reliance of prime-aged workers on 

this demographic for child rearing and other familial support (Pei and Pillai, 1999). When 

evaluating the impact of both temperature and precipitation anomalies on a suite of well-

being outcomes, we show that heat waves are likely to have the most pervasive effects. In 

particular, the probability of being underweight increases with a positive deviation in normal 

temperature for all adults over 40 years of age. However, the consequences extend to other 

health outcomes for the elderly (greater than 60 years old) population. The elderly 

population is more likely to report being sick during heat events and the magnitude of the 

change in morbidity corresponds with the magnitude of the change in the probability of 

being underweight. This suggests strong temperature-related nutrition-health linkages exist 

for this demographic group.

Our empirical model predicts that changes in temperature will have a substantive impact on 

the percentage of the elderly population that will become malnourished. For example, in an 

extremely dry and warm scenario, i.e. temperature and precipitation reach two standard 

deviations above and two standard deviations below the historical mean, respectively, the 

elderly will experience a 3.3-percentage point increase in being underweight. Since the 

elderly population of China consisted of 178 million people in 2010 (United Nations 

Statistics Division, 2017), our empirical estimates show a lower bound estimate of an 

additional 5.9 million elderly people expected to become malnourished during heat and 

drought conditions.

Given the relative size of the elderly population and its increasing role in child care 

provision, the question becomes what policies might one consider in making seniors more 

resilient to heat. Information campaigns may be necessary to bring awareness of the health 

risks posed by fluctuations in temperature and the preventive measures available to seniors 

in China to mitigate such risks. Alternatively, existing social protection programs which 

target the poor and areas prone to heat waves may consider supplementing their bundles of 

goods and services with a suite of health care provisions catering to the elderly.

These results also represent an important contribution to the small literature on adult 

morbidity and climate change. We show that for older adults in a key middle-income country 

that the negative effects of warming on health are large at temperature levels that will 
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increasingly be experienced this century. The narrow focus of the climate vulnerability 

literature to date on agriculture, mortality and migration clearly needs to be expanded to 

encompass a wider array of target populations and social outcomes, with the goal of giving a 

broad picture of the multidimensional consequences of climate change and variability.

Our study also has several methodological features that could be profitably incorporated by 

future studies. First, we make use a long panel dataset with a large spatial extent, ensuring 

exposure to a wide range of baseline and time-varying climate conditions. This permits 

measurement of micro-level covariates that predate the climate shock and also enables an 

analytical strategy that fully accounts for time-invariant factors as well as national-level 

time-varying factors that might confound the effects of climate. Second, we measure climate 

as both temperature and precipitation anomalies, advancing many previous studies which 

have focused on a single factor or have ignored the role of historical climate variability. 

Finally, rather than focusing narrowly on single social outcome, we examine a range of 

outcomes related to our core measure of interest, providing novel insight into the 

mechanisms of climate vulnerability in this context. Given the increasingly availability of 

rich, household panel datasets from the developing world, these features should increasingly 

be adopted by future studies.
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Appendix

Figure A1. Province Level Urbanicity (Scale from 0 to 100)
Source: China Health and Nutrition Survey
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Figure A2. Province Level Temperature (C°)
Source: China Health and Nutrition Survey
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Figure A3. Province Level Precipitation (mm)
Source: China Health and Nutrition Survey

Table A1

Descriptive Statistics of Individual Variables and Outcomes

Mean Std. N

Female 0.512 0.500 63,597

Age 41–60 years old 0.424 0.494 63,597

Age >60 years old 0.213 0.409 63,597

Completed primary school 0.219 0.414 62,936

Completed lower middle school 0.293 0.455 62,936

Completed upper middle school 0.118 0.322 62,936

Completed technical school degree 0.044 0.205 62,936

Completed university degree 0.027 0.164 62,936

Completed graduate degree 0.000 0.019 62,936

Married 0.815 0.388 63,597

Household size 3.677 1.541 63,597
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Mean Std. N

Consumer asset index 5.323 1.913 61,357

Business asset index 2.950 1.263 61,357

Urbanization index 0.480 0.500 63,597

Northern China indicator 0.504 0.500 63,597

Heilongjiang province 0.066 0.248 63,597

Jiangsu province 0.118 0.322 63,597

Shangdong province 0.115 0.319 63,597

Henan province 0.124 0.330 63,597

Hubei province 0.119 0.324 63,597

Hunan province 0.116 0.321 63,597

Guangxi province 0.137 0.344 63,597

Guizhou province 0.123 0.328 63,597

1993 0.136 0.343 63,597

1997 0.110 0.313 63,597

2000 0.129 0.335 63,597

2004 0.123 0.329 63,597

2006 0.120 0.325 63,597

2009 0.115 0.319 63,597

2011 0.124 0.329 63,597

Mean annual temperature 14.896 4.610 63,597

Mean annual monthly precipitation 83.543 30.629 63,597

Temperature anomaly, annual, year of survey 0.032 0.990 63,597

Precipitation anomaly, annual, year of survey −0.153 0.954 63,597

Temperature anomaly, annual, year before survey −0.053 0.854 63,597

Precipitation anomaly, annual, year before survey 0.153 0.868 63,597

Temperature anomaly is less than −1, year of survey 0.160 0.366 63,597

Temperature anomaly is greater than 1, year of survey 0.195 0.396 63,597

Precipitation anomaly is less than −1, year of survey 0.186 0.389 63,597

Precipitation anomaly is greater than 1, year of survey 0.103 0.304 63,597

Body mass index 22.765 3.293 56,567

Underweight 0.071 0.256 56,567

Obese 0.028 0.164 56,567

3-day Average: Energy intake, kcal (ages > 19) 2,294.375 822.747 60,739

3-day average carbohydrate intake, g (ages > 19) 342.615 133.710 60,739

3-day average fat intake, g (ages > 19) 69.615 58.189 60,739

3-day average protein intake, g (ages > 19) 68.846 24.430 60,739

Physical Activity Score, 1–6 (ages > 19) 2.819 1.220 59,273

Was sick or injured in the last month (ages > 19) 0.121 0.326 63,117

Had fever, sore throat, or cough in the last month 0.041 0.199 62,924

Had diarrhea or stomachache in the last month 0.014 0.118 62,893

Had headache or dizziness in the last month 0.031 0.173 62,927

Had joint or muscle pain in the last month 0.024 0.153 62,908
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Mean Std. N

Had rash or dermatitis in the last month 0.002 0.049 62,877

Had heart disease or chest pain in the last month 0.010 0.097 62,890

Notes: The omitted education, province, and time binary variables are: no schooling, Liaoning, and 1991.

Table A2

Descriptive Statistics of Household Variables and Outcomes

Mean Std. N

Household size 3.314 1.453 26,394

Consumer asset index 5.307 1.878 25,467

Business asset index 2.873 1.281 25,467

Urbanization index 0.475 0.499 26,394

Northern China indicator 0.504 0.500 26,394

Heilongjiang province 0.074 0.262 26,394

Jiangsu province 0.117 0.321 26,394

Shangdong province 0.109 0.311 26,394

Henan province 0.119 0.324 26,394

Hubei province 0.125 0.330 26,394

Hunan province 0.122 0.327 26,394

Guangxi province 0.124 0.330 26,394

Guizhou province 0.126 0.332 26,394

1993 0.121 0.326 26,394

1997 0.097 0.295 26,394

2000 0.123 0.328 26,394

2004 0.134 0.340 26,394

2006 0.137 0.344 26,394

2009 0.134 0.341 26,394

2011 0.127 0.333 26,394

Mean annual temperature 14.736 4.691 26,394

Mean annual monthly precipitation 82.881 30.100 26,394

Temperature anomaly, annual, year of survey 0.075 1.006 26,394

Precipitation anomaly, annual, year of survey −0.175 0.943 26,394

Temperature anomaly, annual, year before survey −0.044 0.867 26,394

Precipitation anomaly, annual, year before survey 0.163 0.874 26,394

Temperature anomaly is less than −1, year of survey 0.152 0.359 26,394

Temperature anomaly is greater than 1, year of survey 0.217 0.412 26,394

Precipitation anomaly is less than −1, year of survey 0.187 0.390 26,394

Precipitation anomaly is greater than 1, year of survey 0.097 0.296 26,394

Business income 3,200.198 17,398.286 26,394

Farm income 2,537.677 7,428.237 26,394

Fishing income 71.088 1,473.964 26,394

Garden income 2,459.521 6,113.776 26,394

Livestock income 442.323 3,702.456 26,394
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Mean Std. N

Other income 2,430.274 7,456.877 26,394

Subsidy income 580.033 2,951.534 26,394

Retirement income 2,734.079 9,099.741 26,394

Wage income 8,955.961 20,845.247 26,394

Total income 23,411.155 32,071.248 26,394

Good rice price 4.361 1.654 26,394

Common rice price 3.431 1.005 26,394

Bleached flour price 3.973 1.275 26,394

Unbleached flour price 3.385 1.034 26,394

Bleached noodles price 4.655 1.599 26,394

Unbleached noodles price 3.890 1.243 26,394

Corn flour price 3.517 1.580 26,394

Millet price 5.428 2.246 26,394

Sorghum price 4.410 2.285 26,394

Notes: Income and prices are presented in 2011 real terms. The omitted province and time binary variables are Liaoning 
and 1991. Temperature and precipitation levels are expressed in degrees Celsius and millimeters per month.

Table A3

Individual Attrition Rates by Wave

1991 1993 1997 2000 2004 2006 2009 2011

Not interviewed in wave 0.151 0.152 0.365 0.185 0.299 0.227 0.281 0.225

Reason for attrition: Unknown 0.003 0.006 0.014 0.005 0.007 0.010 0.011 0.010

Reason for attrition: No health 
measures

0.003 0.006 0.000 0.000 0.003 0.000 0.000 0.000

Reason for attrition: Temporary absence 0.000 0.000 0.012 0.007 0.066 0.059 0.052 0.062

Reason for attrition: Left household 0.074 0.053 0.080 0.051 0.055 0.035 0.033 0.031

Reason for attrition: Died 0.013 0.015 0.021 0.017 0.020 0.011 0.017 0.013

Reason for attrition: Household not 
interviewed

0.058 0.066 0.061 0.091 0.132 0.107 0.156 0.095

Reason for attrition: Community not 
interviewed

0.000 0.005 0.049 0.014 0.016 0.005 0.013 0.015

Reason for attrition: Province not 
interviewed

0.000 0.000 0.128 0.000 0.000 0.000 0.000 0.000

N 10,721 10,204 11,004 10,050 11,175 9,897 10,164 10,168

Table A4

Pooled Probit Regression Specifying the Probability an Individual Remains in the Sample in 

Each Wave

Female −0.006

(0.004)

Age 0.028

(0.001)***
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Age-squared −0.000

(0.000)***

Completed primary school −0.018

(0.007)**

Completed lower middle school −0.036

(0.008)***

Completed upper middle school −0.040

(0.009)***

Completed technical school degree −0.022

(0.013)*

Completed university degree −0.080

(0.015)***

Completed graduate degree −0.256

(0.062)***

Married 0.073

(0.008)***

Household size excluding migrants at baseline 0.078

(0.004)***

Consumer asset score, 0–10 −0.007

(0.002)***

Business asset score, 0–10 −0.017

(0.002)***

County attrition rate, excluding self −0.604

(0.033)***

Above median urbanization index −0.004

(0.007)

Temp anomaly, annual, year of survey −0.006

(0.003)**

Precip anomaly, annual, year of survey 0.002

(0.002)

N 77,847

Notes: Marginal effects reported. County-clustered standard errors in parentheses. Province and survey year fixed effects 
included.
*
p<0.1

**
p<0.05;

***
p<0.01.

Table A5

Table 1, Regression Using Inverse Probability Weights

Under. Obese BMI Cal. Carb. Fat Prot. Activity Sick

Temp anomaly × 
Age 20–40

0.002 0.003 0.049 −50.787 −12.123 0.113 −1.606 0.024 −0.011

(0.004) (0.002)* (0.042) (33.168) (5.897)** (1.476) (1.047) (0.022) (0.006)
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Under. Obese BMI Cal. Carb. Fat Prot. Activity Sick

Temp anomaly × 
Age 41–60

0.006 0.002 −0.030 −38.437 −9.629 0.078 −1.086 −0.004 0.002

(0.003)** (0.002) (0.035) (32.283) (5.191)* (1.837) (1.006) (0.026) (0.006)

Temp anomaly × 
Age > 60

0.011 0.002 −0.056 −36.855 −8.452 −0.337 −0.769 −0.045 0.012

(0.004)*** (0.002) (0.043) (29.906) (4.984)* (1.635) (0.988) (0.032) (0.008)

Precip anomaly × 
Age 20–40

0.004 0.001 −0.045 −3.536 1.574 −0.387 −0.878 −0.005 −0.001

(0.003) (0.002) (0.029) (23.049) (4.300) (0.969) (0.809) (0.012) (0.004)

Precip anomaly × 
Age 41–60

0.002 0.001 −0.034 2.389 0.928 0.531 −0.778 0.021 0.004

(0.002) (0.001) (0.023) (21.791) (3.879) (1.000) (0.759) (0.018) (0.006)

Precip anomaly × 
Age > 60

−0.004 −0.000 0.029 31.115 4.608 1.004 0.524 0.045 0.000

(0.003) (0.002) (0.039) (23.484) (4.135) (1.177) (0.774) (0.026)* (0.009)

R2 0.65 0.67 0.86 0.53 0.64 0.49 0.47 0.73 0.38

N 54,062 54,062 54,062 58,021 58,021 58,021 58,021 56,663 60,319

Hypothesis Testing

Joint significance 
of Temp 
parameters

0.020 0.323 0.213 0.499 0.249 0.984 0.326 0.123 0.017

Joint significance 
of Precip 
parameters

0.119 0.820 0.105 0.337 0.526 0.552 0.223 0.188 0.727

Equality of 
AgexTemp 
parameters

0.126 0.577 0.113 0.720 0.494 0.925 0.304 0.064 0.006

Equality of 
AgexPrecip 
parameters

0.069 0.850 0.161 0.216 0.394 0.357 0.118 0.095 0.523

Notes: We include the same explanatory variables as in Table 1. County-clustered standard errors in parentheses.
*
p<0.1

**
p<0.05;

***
p<0.01.

BMI=body mass index, Under.=underweight, Cal.=calories, Carb.=carbohydrates, Prot.=protein.
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Figure 1. Probability of Being Underweight (Age 20–40)
Notes: Predicted probabilities derived from coefficients presented in Table 1. Predicted 

probabilities are calculated assuming z-score values of −2, 0, and 2.
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Figure 2. 
Probability of Being Underweight (Age 41–60)
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Figure 3. 
Probability of Being Underweight (Age >60)
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Table 4

Climate Effects on the Probability of Being Underweight, Robustness

Climate Definition Raw,
current year

Anomaly,
lagged year

1/−1 SD
indicators,

current year

Temp × Age 20–40 0.009 0.004

(0.004)** (0.004)

Temp × Age 41–60 0.007 −0.004

(0.004)* (0.002)

Temp × Age > 60 0.011 0.001

(0.004)** (0.003)

Precip × Age 20–40 0.000 −0.000

(0.000) (0.003)

Precip × Age 41–60 −0.000 −0.000

(0.000) (0.002)

Precip × Age > 60 −0.000 0.000

(0.000) (0.003)

Temp < −1 SD × Age 20–40 0.005

(0.006)

Temp > 1 SD × Age 20–40 0.001

(0.009)

Temp < −1 SD × Age 41–60 −0.003

(0.005)

Temp > 1 SD × Age 41–60 0.004

(0.004)

Temp < −1 SD × Age > 60 0.002

(0.007)

Temp > 1 SD × Age > 60 0.012

(0.008)

Precip < −1 SD × Age 20–40 −0.008

(0.007)

Precip > 1 SD × Age 20–40 0.003

(0.006)

Precip < −1 SD × Age 41–60 −0.005

(0.004)

Precip > 1 SD × Age 41–60 0.003

(0.004)

Precip < −1 SD × Age > 60 −0.005

(0.006)

Precip > 1 SD × Age > 60 −0.002

(0.007)

R2 0.00 0.00 0.00
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Climate Definition Raw,
current year

Anomaly,
lagged year

1/−1 SD
indicators,

current year

N 54,062 54,062 54,062

Hypothesis Testing

Joint significance of Temp parameters 0.048 0.070 0.470

Joint significance of Precip parameters 0.036 0.997 0.762

Equality of Age × Temp parameters 0.046 0.056 0.387

Equality of Age × Precip parameters 0.016 0.982 0.934

Notes: The same explanatory variables are included as the models specified in Table 1. County-clustered standard errors in parentheses.

*
p<0.1

**
p<0.05;

***
p<0.01.
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