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Abstract

A damage model suggested by the Tuler-Butcher concept of dynamic accumulation of microscopic 

defects is obtained from experimental data on microcrack formation in synthetic kidney stones. 

Experimental data on appearance of microcracks is extracted from micro-computed tomography 

images of BegoStone simulants obtained after subjecting the stone to successive pulses produced 

by an electromagnetic shock-wave lithotripter source. Image processing of the data is used to infer 

statistical distributions of crack length and width in representative transversal cross-sections of a 

cylindrical stone. A high-resolution finite volume computational model, capable of accurately 

modeling internal reflections due to local changes in material properties produced by material 

damage is used to simulate the accumulation of damage due to successive shocks. Comparison of 

statistical distributions of microcrack formation in computation and experiment allows calibration 

of the damage model. The model is subsequently used to compute fracture of a different aspect-

ratio cylindrical stone predicting concurrent formation of two main fracture areas as observed 

experimentally.

1 Introduction

A fundamental understanding of the processes in shock wave lithotripsy (SWL) can suggest 

procedures to avoid undesired side effects such as kidney bleeding and edema [18]. Standard 

treatments require generation of a few thousand shocks to reduce a kidney stone to 

fragments of small enough size (~ 2mm) to be evacuated through the urinary tract. The basic 
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mechanism of stone fracture and comminution is considered to involve successive crack 

formation due to stresses induced in the stone by passing shock waves in conjunction with 

surface damage produced by collapsing cavitation bubbles [20, 9, 36]. The concept of 

dynamic fatigue arising from damage accumulation has been used [20, 37] to provide order 

of magnitude estimates of the number of shocks required to induce stone breakdown within 

the framework of the widely-used cohesive zone concept of brittle fracture [4]. Though 

several possible mechanisms have been proposed, detailed modeling of stone comminution 

presents challenges due to inherent material heterogeneity as well as dynamic changes in 

material properties as successive shocks lead to accumulation of cracks. Attempts have been 

made to account for material heterogeneity in an averaged sense using representative volume 

elements (RVE) [37]. As remarked in [37], length scales imposed by the incoming SWL 

pulse (~ 40μm in the stone for a typical pulse rise time of 10 ns) can be smaller than the 

RVE characteristic length (ranging from 50μm for smooth cystine stones to 0.5mm for a 

struvite stone), thus limiting the validity of mean-field descriptions based upon RVEs. In 

fact, focalization phenomena within a stone may lead to even smaller length scales, a 

situation in which quantitatively correct prediction of fracture is possible only through fully 

numerical approaches.

Kidney stone comminution in SWL is a subset of the larger problem of fracture in brittle 

materials. Numerical simulation of the full comminution process is challenging due to the 

interaction of widely disparate scales: a continuum scale at which stress waves propagate 

through the material and a microscopic scale at which microcracks form (see, e.g., [27] for a 

review). Discrete crack models require complicated geometric tracking and formulation of a 

closure relation to provide crack tip velocities, typically through continuum-level 

momentum and energy conservation [25]. The geometric complexity of crack tracking can 

be alleviated in level-set methods [31], and a localized tip closure relation can be replaced 

by a diffuse zone such as in the cohesive zone concept [4] that recognizes that unresolved 

microcracks play a fundamental role in crack propagation in addition to conservation of 

momentum and energy. Unresolved processes at the continuum scale have recently been 

described through enriched basis methods (e.g., XFEM [1]) that supplement a finite element 

basis meant to capture continuum fields with stochastic representations of unresolved 

microcracks. Though these developments are promising, significant additional development 

would be needed to advance these methods from proof-of-concept problems to realistic 

applications in SWL. In particular, dynamic fracture behavior that arises from the 

accumulation of a large number of microcracks is difficult to model accurately with current 

deterministic fracture models (see [27] for a recent review).

Phenomenological models [30] eschew detailed computational modeling in favor of positing 

some statistical distribution of failure events (typically a Weibull distribution) in order to 

predict overall properties of the comminution process, such as the correlation of fragment 

sizes to SWL parameters under clinical control such as shock dosage and average peak 

pressure. Such relationships are important for practical lithotripter design, but lack detail on 

the comminution process and variability due to various stone types and geometric 

configurations.
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Damage models [15] are at an intermediate level of description with respect to the above 

approaches. A continuum level description is used to resolve stress fields, but the material 

properties change in time due to the formation of microcracks. Damage models can be 

combined with partially resolved cracks [7]. As in all incompletely resolved models the key 

aspect is relating microcrack formation and growth to local stresses, and most current 

modeling relies on homogenized models such as the Griffith criterion [14] that compares the 

energy of the elastic strain to the surface energy of a new crack.

In this work we consider the issue of dynamic changes in material properties due to 

accumulation of damage. The tenet of this work is that first-principle models for crack 

initiation and propagation can be replaced by experimental calibration of posited damage 

models or extraction of a damage model through data assimilation procedures. The approach 

falls within the general class of stochastic fracture models [19, 26, 13], but adopts two main 

novel features: (1) calibration of damage model coefficients from experiments on a kidney 

stone simulant (BegoStone), and (2) use of adaptive mesh refinement to resolve microcrack 

aggregation into macrocracks that lead to stone fracture. Experimental databases of changes 

in crack configuration in a stone simulant due to successive impingement of shock waves are 

constructed from micro-tomography images. The data is used to extract statistical 

distributions of changes in the damaged microstructure. The statistical distributions serve as 

a stochastic closure model for numerical computations of elastic wave propagation in a 

heterogeneous medium representing the kidney stone. The elastic moduli are updated to take 

into account the accumulated damage, thus capturing internal reflections and transmission 

due to formation of internal fractures. Adaptive mesh refinement is used to keep track of 

crack formation processes. Model predictions on the location and shape of the first fracture 

of a cylindrical stone are compared to experimental results.

2 Methods

2.1 Elasticity equations and numerical solution

Stress (σ) and displacement velocity (u) in a stone are assumed to be accurately described 

by the linear elasticity equations [3, 28]. The conservation of momentum equations for a 

medium of mass density ρ

ρ∂u
∂t = ∇ · σ, (1)

are closed through the geometric relationship between strain (ε) and displacements (δ,u = δ̇)

ε = 1
2(∇δ + (∇δ)T), (2)

and the linear (Hooke) constitutive relation
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ε = 1 + ν
E σ − ν

E Tr(σ)I, (3)

with E the Young modulus, ν the Poisson ratio, Tr(σ) the trace of the stress, and I the 

identity matrix. The above equations can be reformulated as a system of partial differential 

equations [21]

qt + Aqx + Bqy + Cqz = 0, (4)

for a vector containing the stress and velocity components

q = σxx σyy σzz σxy σyz σxz u v w T, (5)

where u = u v w T, and matrices A,B,C are defined by the mass density ρ and Lamé 

parameters λ, μ. In particular,

A = −

0 0 0 0 0 0 λ + 2μ 0 0
0 0 0 0 0 0 λ 0 0
0 0 0 0 0 0 λ 0 0
0 0 0 0 0 0 0 μ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 μ

1/ρ 0 0 0 0 0 0 0 0
0 0 0 1/ρ 0 0 0 0 0
0 0 0 0 0 1/ρ 0 0 0

, (6)

with B,C of similar form obtained through permutation of components [21]. The matrices 

A,B,C admit a complete eigensystem, hence the system (4) is hyperbolic. Solving the 

eigenproblem AR = RΛ, gives eigenvalues

diag(Λ) = ( − cp, cp, − cs, cs, − cs, cs, 0, 0, 0), (7)

with cp = (λ + 2μ)/ρ denoting the longitudinal or P-wave speed, and cs = μ/ρ denoting the 

transverse or S-wave speed. The eigenvectors of A are
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R =

λ + 2μ λ + 2μ 0 0 0 0 0 0 0
λ λ 0 0 0 0 0 1 0
λ λ 0 0 0 0 0 0 1
0 0 μ μ 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 μ μ 0 0 0
cp −cp 0 0 0 0 0 0 0
0 0 cs −cs 0 0 0 0 0
0 0 0 0 cs −cs 0 0 0

, (8)

with columns 1–2 giving forward and backward P-waves in the x-direction, columns 3–6 

forward and backward shear waves in the y, z-directions. Remaining columns correspond to 

non-propagating modes. Again, the eigensystems for B,C can be obtained through 

permutation of components. The system (4) is discretized through a second-order accurate 

finite volume approach and advanced in time by dimensional splitting and a wave 

propagation algorithm [21] that decomposes jumps in q at finite volume cell interfaces into 

left- and right-propagating elastic waves. Of particular relevance to this study is the fact that 

the numerical method captures reflections and transmissions at interfaces of cells with 

different material properties, where the propagating eigenvectors are formulated as

R∼ =

(λ + 2μ)L (λ + 2μ)R 0 0 0 0
λL λR 0 0 0 0
λL λR 0 0 0 0
0 0 μL μR 0 0
0 0 0 0 0 0
0 0 0 0 μL μR

(cp)
L

−(cp)
R

0 0 0 0

0 0 (cs)L
−(cs)R

0 0

0 0 0 0 (cs)L
−(cs)R

. (9)

This allows accurate simulation of the modification of P-, S-wave propagation inside a stone 

due to accumulation of damage as reflected in changes in the values of the elastic moduli λ, 

μ. The amplitudes a of the wave components induced by a jump Δq at a cell interface are 

solutions of Δq = R̃a, with P-wave amplitudes

a1 =
(cp)

R
δ1 + MRδ7

bR(cP)
L

+ ML(cp)
R

, a2 =
(cp)

L
δ1 − MLδ7

bR(cP)
L

+ ML(cp)
R

, (10)

Fovargue et al. Page 5

Int J Fract. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with M = λ + 2μ denoting the P-wave modulus., and S-wave amplitudes

a3 =
(cs)R

δ4 + μRδ8
(cs)R

μL + (cs)L
μR

, a4 =
(cs)L

δ4 − μLδ8
(cs)R

μL + (cs)L
μR

,

a5 =
(cs)R

δ6 + μRδ9
(cs)R

μL + (cs)L
μR

, a6 =
(cs)L

δ6 − μLδ9
(cs)R

μL + (cs)L
μR

.

(11)

Transverse wave propagation corrections [21] ensure accurate capturing of transmitted and 

reflected components in regions where the material interface is not colinear with the 

computational grid. Fractured regions are assumed to have properties of the background 

medium, i.e., water.

2.2 Damage model

Damage models maintain the basic framework of linear elasticity, but modify the elastic 

moduli to take into account irreversible plastic deformation associated with appearance of 

unresolved microcracks. In the simplest formulation, the orientation of the unresolved 

microcracks is assumed to be uniformly distributed, leading to an isotropic damage law 

characterized by a single additional field variable D [17]. In a finite volume that has cross-

section S, the presence of unresolved microcracks and cavities reduces the cross-sectional 

area by SD, leading to the definition of the scalar damage

D = SD/S . (12)

As seen from Equation (12) the damage, D, ranges from 0 to 1, and 0 corresponds to a 

completely undamaged state. Some critical value, Dc, is specified which corresponds to the 

rupture of the element or the initiation of a macrocrack. This value typically ranges from 0.2 

to 0.8 depending on the material. While damage models can be extended to account for 

anisotropic effects [22, 23, 33], the approach taken here is to assume that unresolved 

microcracks are isotropic and to fully resolve macrocracks in a kidney stone. Whereas in the 

absence of damage the local stress would be σ, the presence of damage increases this to an 

effective local stress σ̃ = σ/(1 − D). This can readily be modeled by modifying the local 

values of the Lamé parameters to become λ̃ = λ(1 − D), μ̃ = μ(1 − D).

An additional equation modeling damage growth is needed to close the system of equations 

(4), which is given here in terms of the local principal stresses σ1, σ2, σ3 and specific 

material properties. A damage law suitable for brittle materials [23, 16]

dD
dt = ασc

s σm
σc

− 1
s
, (13)
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is adopted, where σm is a maximum local stress, σc is a critical stress value denoting 

unresolved local failure (i.e., appearance of microcracks) and α, s are material properties 

describing crack nucleation and propagation. The damage law (13) conforms to the power-

law model or Paris-law description of crack growth, a model with wide experimental support 

across a variety of materials [2]. Note that (13) corresponds to a cummulative Tuler-Butcher 

model [32] with (α, s) describing average damage production in time. The damage law (13) 

is applied only if |σm| > |σc|, otherwise no additional damage is produced dD/dt = 0. The 

material fails and a macrocrack appears if the maximum tensile stress σT = max(σ1, σ3) 

exceeds the material critical tensile strength σT,c, or if the minimum compressive stress σC = 

−min(σ2, σ3) is less than the critical compressive strength σC,c. In this work both processes 

are assumed to evolve damage at the same rate such that a single pair of parameters (α, s) is 

extracted from the data, though the thresholds σT,c and σC,c are allowed to have different 

values.

The material properties α, s, σc within the damage law (13) are determined by processes at 

an unresolved microscopic scale. Theoretical attempts at deriving analogous damage models 

(e.g., [20]) lead to wide variability in model predictions (i.e., by as much as two orders-of-

magnitude difference in predictions of number of shocks to failure in [20]). This is a direct 

result of the complexity of the microscopic processes related to kidney stone failure that 

involves multiple possible mechanisms (e.g., spall, compression-induced tensile cracks). 

Rather than attempt a theoretical derivation of the damage law coefficients, the procedure 

put forward in this work is to use experimentally observed damage accumulation produced 

by passage of successive shocks as a statistical closure model.

2.3 Experimental set-up

Data for a statistical damage closure model is obtained from experiments on BegoStone 

artificial kidney stones with a powder-to-water mixing ratio of 5:1, with mechanical 

properties similar to calcium oxalate monohydrate and brushite stones. Cylindrical stones 

were placed in an electromagnetic (EM) shock wave generator with an acoustic lens to 

focalize pulses produced by the EM source at 14kV. The pulses propagate in 0.2 

micrometer-filtered and degassed water (<3mg/l oxygen concentration at 23°C) within a 

Lucite tank of dimensions 40 × 30 × 30 cm (Fig. 1). Experimental pressure measurements 

obtained at various points near the lens focus compare favorably with the numerical 

simulations [12] of the focalization process that will furnish boundary conditions for the 

penetration of acoustic pulses into the stones (Fig. 2).

2.4 Micro-CT data

Micro-CT (μCT) images at a resolution of 6 μm (Scanco USA μCT 40 system, Wayne PA) 

were acquired of the initial state of the stones as well as after subjecting stones to shocks 

(Table 1). Stones were subjected to shocks until the first fracture of the stone was produced 

(Fig. 3).

Image data was processed to characterize the statistics of cracks produced in the stone by the 

passage of shocks. Cross-sections within the zone were processed individually. Strong 

absorption due to quasi-spherical voids in the stones were identified through a threshold and 
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eccentricity condition (Fig. 4a). Identified voids were filled in at the average image intensity 

level, and intensity levels were rescaled to cover entire range (0,1), thus highlighting the 

appearance of cracks against the variable background (Fig. 4b). Points within a crack were 

identified through a threshold (Fig. 4c), clustered and a skeleton representation was 

constructed for each cluster furnishing information on crack length and thickness. The 

implementation used for image processing is completely documented (Appendix of [11]).

2.5 Statistical model for experimentally-observed microcracks

The piecewise linear representation of microcracks resulting from μCT images is used to 

construct a statistical model of damage accumulation in a stone due to passage of successive 

shock waves. A parametric statistical distribution of microcrack length and thickness is 

sought. Analysis of the validity of the data conforming to a particular parametric distribution 

led to identification of the log-normal distribution

f (x; μ, σ) = 1
xσ 2π

exp − ( ln x − μ)2

2σ2 ,

at a significance level of p = 0.05, with all other common parametric distributions exhibiting 

p > 0.1. Figure 5 presents a comparison of the data and best-fit for the three closest statistical 

descriptions of the data.

Once the form of the parametric distribution has been established, μCT data obtained after 

each shock passage is used to construct log-normal distributions for resolved microcrack 

segment length and thickness (Fig. 6, Left). The evolution with shock number of the (μ,σ) of 

the log-normal distributions for microcrack segment lengths and widths in a transversal 

section at 2/3 of the stone length are represented in (Fig. 6, Right, top). The total crack 

volume in the stones is approximated as the product of length, width, and μCT slice 

thickness (6μm), and is represented in Fig. 6 (Right, bottom).

Several aspects of the measured data are worthy of further discussion.

1. Recall that the mean m and variance v for a log-normal distribution are given by 

m = exp(μ + σ2/2), v = [exp(σ2) − 1] exp(2μ + σ2). For the 7mm stone 1 data in 

(Fig. 6, Right, top), the increase in μ (width) from μ6 = 3.6 at shock number 6 to 

μ12 = 4.05 at shock number 12 corresponds to an increase of the average width of 

micro-cracks observed through the μCT scan from w6 = 37μm to w12 = 57μm, an 

increase of 54% in the average width, and well resolved by the μCT scan 

resolution of 6μm. Similar increases in crack width are observed for the other 

stones.

2. The micro-crack average length does not change with increasing shock number. 

For the 7mm stone, the average length is Δa ≅ 55μm. Though surprising at first, 

the result is consistent with the scenario of crack propagation in these 

experiments. Measurements are made after each shock application, and growth 

of the average micro-crack length would only occur if crack growth occurs along 

the same direction. Experimental observations of the microcrack patterns (e.g., 
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Fig. 4) indicate branching of the micro-cracks produced by each shock. Changes 

in local damage reorient the principal stresses in succeeding shocks, and it is 

expected that growth of the crack would occur along different directions in each 

shock. In short, crack growth does occur after each shock as new segments of 

approximately the same length and differing orientations. The length is constant 

since the applied shock intensity is constant. Width of the previously existing 

segments increases with each applied shock.

3. The overall fracture volume (Fig. 6, Right, bottom) does indeed grow with each 

shock, indicating accumulation of damage. The rates of growth, though 

comparable in magnitude, differ between the various stones, suggesting 

importance of the initial distribution of defects in the stone. The observed 

fracture volume growth rates were ΔV = 0.167, 0.433, 0.825 mm3/shock for 7 

mm stone 1, stone, 10 mm stone, respectively. The difference in fracture volume 

growth rate between stones of the same size is smaller than that between stones 

of different sizes.

A consistency check can be made between the observed microcrack growth rate and the 

energy imparted to the material by each successive shock. The energy released per unit 

thickness ΔU by crack growth Δa is ΔU = (σ2/2E)π(Δa)2. The number of new crack 

segments can be estimated as n = ΔV/(Δaw̄2). Using typical values for the 7 mm stones ΔV = 

0.3mm3/shock, Δa ≅ w̄ ≅ 50μm, n ≅ 2400 new crack segments are produced, and the 

corresponding tensile energy release is ΔUtot = nΔUL = 0.3 mJ, (σ ≅ 7MPa, the onset of 

damage threshold cf. 3, E = 9.2GPa, L = 7mm). The energy density of a shock from the 

surrounding water medium is W = pmax
2 /(ρc2), with pmax = 45MPa (Fig. 2), and ρ = 103 

kg/m3, c ≅ 1500m/s for water. The fraction of this shock energy that refracts into the stone is 

f = (2ρc)2/(ρc + ρscP)2 ≅ 0.22, with stone density, P-wave speed from Table 2. If uniformly 

distributed, the energy within the newly created fracture volume would be Wfr = fWΔV = 

0.06 mJ. Focalization of P, S-waves within the stone [35] lead to increases of stress by a 

factor of c ≅ 3 (Fig. 8) leading to an estimate of the energy release in the fracture volume of 

c2Wfr ≅ 0.5 mJ, of the same order of magnitude as ΔUtot = 0.3 mJ.

2.6 Damage model calibration

Microcracks observed in μCT images arise from a complex process of increased local stress 

due to focalization of P- and S-waves that propagate through the stone and interact with 

inherent material inhomogeneities and the additional internal interfaces associated with 

previous cracks. The objective of this study is to capture this process in a statistical sense 

through a prescribed damage evolution equation, e.g., the damage law (13). The critical 

tensile and compressive strengths σT,c, σC,c are assumed to be known for the material of 

interest.

The main challenge in construction of computational fracture models is to balance modeling 

of homogenized effects of unresolved microcracks (damage) with the necessity of capturing 

a representative resolved crack pattern that leads to fracture. The approach adopted in this 

work is to determine the damage law (13) parameters (α, s) by comparison of probability 
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distributions of crack lengths and thickness obtained from experiment and numerical 

computation.

Let D(n, t, x; αk, sk) denote the damage after n shocks at time t and position x within the 

stone as obtained by computation using the damage law (13) with model parameters αk, sk. 

Before application of any shocks the stone is assumed to have uniform damage D(0, 0, x; 

αk, sk) = D0. Starting from a known damage configuration, D(n, 0, x; αk, sk) the 

inhomogneous elasticity equations (4) are solved and the extremal tensile and compressive 

stresses within a stone are computed (Fig) starting from an initial grid with cell mesh size h. 

Additional damage is produced whenever σT < σT,c or σC < σC,c. Adaptive mesh refinement 

[6, 5] is used to determine grid cells of size δ within the stone in which the damage exceeds 

a threshold indicating the formation of a microcrack D > Dc. After each shock passage the 

best-fit log-normal distributionbrittles of microcracks within transversal sections taken at 

1/3, 1/2, 2/3, 3/4 of the stone axial dimension are determined leading to a parameter vector

pn(αk, sk) = (μ1/3
n σ1/3

n μ1/2
n σ1/2

n μ2/3
n σ2/3

n μ3/4
n σ3/4

n ) . (14)

The parameter vector pn describing computational microcrack formation depends on the kth 

approximation of the damage model parameters (αk, sk). The cummulative error between the 

computed microcrack statistical distribution pn with respect to that extracted from 

experimental data pexp
n  is given by

F(αk, sk) = ∑
n = 1

N1
‖pn(αk, sk) − pexp

n ‖2 . (15)

A gradient descent procedure is used to update the damage law parameters (αk, sk)

(αk + 1, sk + 1) = (αk, sk) − λk(∂αFk, ∂sFk), (16)

until ||(∂αFk, ∂sFk)|| < ε, with ∂αFk = ∂F/∂α(αk, sk), ∂sFk = ∂F/∂s(αk, sk). The gradient of the 

error function F is approximated numerically, e.g., ∂αFk = [F(αk + dα, sk) − F(αk − dα, 

sk)]/(2da).

Note that the above procedure propagates forward previous microcrack formation in the 

stone, capturing the discrete process of microcrack accumulation to formation of a fracture. 

Unresolved damage is also propagated forward by cell damage values D < Dc.
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3 Results

To closely mimic experimental conditions, the actual geometry of a quasi-cylindrical stone 

of 7mm length and 5mm diameter was reconstructed from μCT data, including measured 

void geometry and slight misalignment of the stone with respect to the incoming pulse 

direction (Fig. 7). Material properties are given in Table 2. The stone is immersed in water 

and the voids within the stone are assumed to have same properties as water. Water is 

assumed to have a small S-wave speed to avoid singularity in the shear wave coefficients 

(11). Pulses with a peak pressure of pmax = 45MPa are input as a P – wave propagating into 

the computational domain from the left boundary along the x-direction. The computational 

domain of 12 × 10 × 10 mm is initially discretized with a 60 × 50 × 50 grid, with cell size h 
= 200μm. Adaptive mesh refinement (AMR) with three levels and refinement ratios (4, 4, 2) 

was used to obtain a minimal cell size δ = h/32 = 6.25μm, close to the resolution of the μCT 

scan. An assumption of no initial damage was made D(0, 0, x) = 0.

The inhomogeneous elasticity equations (4) are solved with a time step δt = 69 ns 

corresponding to a Courant number ν = cP,max · δt/h = 0.98, with time subcycling on finer 

grids within the AMR hierarchy. Typical density plots of the hydrostatic pressure p = 

trace(σ)/3 are presented in Fig. 8, in which the perturbative effect of the voids in the material 

are apparent.

The ultimate compressive and tensile strengths of the material were set as σC,max = −60MPa, 

σT,max = 40MPa, respectively. Any finest level cell in which the local stress values σC, σT 

exceeded these thresholds was flagged as a crack. The threshold for onset of damage was 

chosen as equal for both compression and tension −σC,c = σT,c = 7.2MPa. In any cell where 

local stress values exceeded these thresholds the damage law (13) was integrated forward in 

time. If the damage on a finest level cell exceeded Dc = 0.5, that cell was flagged as a 

microcrack. Initial values for the damage model parameters were chosen from Tuler and 

Butcher’s orginal work to represent those for aluminum with s0 = 2, α0 = 5 × 10−22 units of 

damage per Pas0, per second. The reasoning was to investigate qualitative difference in 

damage production in the BegoStone brittle material versus that of aluminum through any 

marked change in the exponent s, as well as to test the gradient descent procedure used in 

the minimization of the error function (15). Final values after 5 gradient descent iterations 

were s = 1.4 and α = 7.5 × 10−18 units of damage per Pa1.4 per second. These values are 

very close to the results s = 1.3, α = 8.9 × 10−18 units of damage per Pa1.3 per second 

obtained when using a parameter vector with only two independent components

pn(αk, sk) = μ2/3
n σ2/3

n , (17)

with the additional statistical parameters in the cross sections i = 1/3, 1/2, 3/4 taken as 

(μi
n, σi

n) = f i × (μ2/3
n , σ2/3

n ). The fractions fi are determined from the current maximal tensile 

stresses σT,i in cross section i,
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f i = 1 − 1
2μ2/3

log
σT , i

σT , 2/3
, (18)

by comparison to those in the cross-section at 2/3 of the stone length. For the particular case 

of a cylindrical stone the focal region of maximal stress is well known to be at 2/3 of the 

stone length. For more complicated geometries, the full optimization procedure across 

statistical parameters in multiple cross sections might have to be used.

Typical evolution of damage and the appearance of microcracks in the material is shown in 

Fig. 9, computed with final (α, s) values, in which the position of the stone fracture 

compares favorably to that observed experimentally (Fig. 3).

The calibrated damage model was applied to an axisymmetric cylindrical stone of 10mm 

diameter and 1:1 aspect ratio to provide a more detailed numerical investigation of stress and 

damage patterns with results shown in Fig. 10. The axisymmetric computation was carried 

out on a fine grid with mesh size h = 5μm. Note the significant change in location of 

maximal tensile stress as damage accumulates in the stone, and the formation of two areas of 

fracture close to the distal surface and the middle transverse section of the stone. 

Experimental observations of such a stone (Fig. 11) also suggests formation of two 

observable fractures, one closer to the middle transverse section, but the other further from 

the distal boundary than obtained in the computational model. The computational model 

predicts full fracture after 10 shocks, as also observed experimentally (cf. Tabel 1).

4 Discussion

This work introduces a procedure to extract a calibrated damage model for kidney stone 

simulants and an adaptive mesh refinement approach to the representation of crack 

formation. The approach combines homogenized stochastic representation of damage 

production at length scales below the resolution threshold of the computational grid with 

tracking of resolved cracks through adaptive mesh refinement. The main benefit of the 

overall approach is that it offers an experimentally validated procedure that is 

computationally tractable, and can be extended to investigation of further fracturing and 

stone comminution. Though constructed for the specific case of shock-wave lithotripsy, the 

overall approach can readily be applied to other materials for which experimental data is 

available.

Within previous work on fracture of kidney stones, numerical computation of elastic wave 

propagation [8, 29] was considered in homogeneous stones in order to provide supporting 

data for various fracture mechanisms. As seen in the examples presented in this paper, both 

stone inhomogeneities and developing cracks have a significant effect upon fracture patterns. 

In particular in all cases considered here, a secondary fracture area appears ahead of the 

main fracture. The main fracture has been argued to occur at approximately 2/3 of the stone 

length based upon ray tracing arguments [35]. Within this interpretation the appearance of a 

secondary fracture area can be interpreted as arising from reflection of incoming shocks at 
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the interface formed by the first fracture. Elastic wave propagation in inhomogeneous media 

using methods closely related to the approach in this work, but without consideration of a 

damage model, have also been reported [10]. Work directly addressing fatigue in SWL [20, 

37] has mostly concentrated on analytical estimates in order to provide estimates of the 

number of cycles needed for appearance of the first fracture, with results that can vary by 

orders of magnitude [20] in the predicted number of shocks, mainly attributed to the need for 

incorporation of experimental data to better characterize crack growth.

At this point, the overall model is incompletely tested since the damage model has been 

calibrated using data from only three stones and verified against experimental results of a 

single larger stone. The variability of the damage model parameters has to be investigated on 

a larger variety of stones in order to assess general applicability of the approach proposed 

here. As such, the main contribution from this paper is the overall framework for 

establishing an efficient model for computational fatigue based upon a combination of local 

grid refinement to follow larger cracks and a damage model for unresolved microcracks. It is 

useful to compare this approach to current work with XFEM methods (e.g., [24, 34]). The 

basic idea underlying XFEM is to enrich a finite element basis meant to resolve the mean 

field with additional degrees of freedom capable of capturing the effect of sharp interfaces. 

This same function is carried out by adaptive mesh refinement within the method proposed 

here.
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Figure 1. 
Schematic of experimental setup.
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Figure 2. 
Comparison of numerical and experimental pressure pulses [12]
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Figure 3. 
Left: Cylindrical BegoStone sample after first fracture. Middle: μCT transversal image at 

production of first fracture with identification of fracture shape. Right: Transversal image of 

stone before application of shocks with voids filled in at average background to highlight 

any pre-existing cracks. Small cracks are observed, but away from the area of first fracture.
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Figure 4. 
Succession of image processing steps: (a) initial μCT image; (b) image after void 

elimination; (c) crack identification; (d) crack skeletons.
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Figure 5. 
Comparison of data and best-fit parametric distributions for three closest descriptions of 

microcrack segment length (in μm) obtained from μCT images of a 7mm cylindrical stone 

subjected to 12 shocks. Rows show data and best fits at 1/3, 1/2, 2/3 and 3/4 of the stone 

length. Left: cummulative probability density. Right: probability density.
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Figure 6. 
Evolution of micro-crack statistics with increasing number of shocks. (Left) Microcrack 

length (μm) histograms and log-normal PDF best fits at 1/3, 1/2, 2/3 and 3/4 of the 7mm 

stone 1. (Right, top) Evolution of log-normal PDF parameters with shock number. (Right, 

bottom) Evolution of fracture volume with shock number.
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Figure 7. 
Computational model setup. Left: Longitudinal cross-section through the stone showing 

measured void geometry and alignment with incoming pulse that propagates from left 

boundary along x-direction. Right: Three-dimensional perspective of actual stone geometry.
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Figure 8. 
Contours of the stress tensor trace (pressure). Left: At t = 1.86 ns after pulse impingement 

onto proximal surface of stone. Right: After reflection on distal surface and resultant 

focalization (t = 3.71 ns).
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Figure 9. 
Evolution of fractured cells after passage of successive shocks. Left: three-dimensional 

representation of cracks (red) and voids (white). Right: Longitudinal cross-section showing 

cracks and damage evolution.

Fovargue et al. Page 24

Int J Fract. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Detailed evolution of formation of fracture in a cylindrical stone of 1:1 aspect ratio. Top 

row: Maximum tensile stress throughout the stone after 3,6,9 shocks. Bottom row: Cells 

with damage D > 0.5.
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Figure 11. 
Experimentally observed fracture in 10mm 1:1 aspect ratio cylindrical stone.
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Table 1

Schedule of μCT image acquisition, with indication of images with resolved cracks within the stone (bold 

values)
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Table 2

Material properties

Material Density ρ (kg/m3) cP (m/s) cS (m/s)

5:1 Begostone 1700 2840 1430

water 1000 1482 1
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