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Photonic implementation of Majorana-based
Berry phases
Jin-Shi Xu1,2*, Kai Sun1,2*, Jiannis K. Pachos3, Yong-Jian Han1,2†,
Chuan-Feng Li1,2†, Guang-Can Guo1,2

Geometric phases, generated by cyclic evolutions of quantum systems, offer an inspiring playground for
advancing fundamental physics and technologies alike. The exotic statistics of anyons realized in physical
systems can be interpreted as a topological version of geometric phases. However, non-Abelian statistics has
not yet been demonstrated in the laboratory. Here, we use an all-optical quantum system that simulates the
statistical evolution of Majorana fermions. As a result, we experimentally realize non-Abelian Berry phases with
the topological characteristic that they are invariant under continuous deformations of their control parameters. We
implement a universal set of Majorana-inspired gates by performing topological and nontopological evolutions and
investigate their resilience against perturbative errors. Our photonic experiment, though not scalable, suggests the
intriguing possibility of experimentally simulating Majorana statistics with scalable technologies.
INTRODUCTION
The Berry phase is one of the most intriguing concepts in physics
(1). It inspired numerous investigations toward theoretical frontiers
with its possible generalizations (2) and technological applications in
quantum computation (3). At the forefront of research in geometric
evolutions is the controlled realization of anyonic statistics in
condensed matter systems (4–6). This is manifested by the cyclic evo-
lution of two anyonic quasiparticles braided around each other. The
anyonic quasiparticles are deemed Abelian or non-Abelian depending
on the possible geometric evolutions from the exchange being simple
global phase factors or noncommuting unitaries, respectively. The sta-
tistical character of the exchange evolutions dictates that the resulting
geometric phases are topologically robust. This robustness is a very de-
sirable characteristic because it makes non-Abelian anyons a promising
platform for fault-tolerant quantum computation (5–8). In the past dec-
ades, non-Abelian anyons have been extensively theorized in condensed
matter systems (9–12). The most promising direction for realizing non-
Abelian anyons is the investigation of Majorana zero modes (MZMs).
There are already several positive signatures for the realization of MZMs
in the laboratory (13–21). Nevertheless, the experimental realization of
braiding operations is still a challenging open problem.
RESULTS
Encoding of MZM geometric evolutions
Here, we report the experimental quantum simulation of four MZM
braiding evolutions encoded in an all-optical system (22). The MZMs
are supported at the endpoints of two Kitaev chain models (KCMs)
composed of fermions. To perform the encoding, we first transform
the fermion system, with Hamiltonian HKCM, to a spin-1/2 system,
with Hamiltonian Hspin, through a unitary Jordan-Wigner (JW)
transformation, UJW (23, 24). The spin system is then encoded in
the spatial modes of single photons (25).
Under the JW transformation, the local Hamiltonians are uni-
tarily connected

Hspin ¼ U JWHKCMU
†
JW ð1Þ

As a result, the time evolutions of the KCM and the spin system are
identical when written in their corresponding basis states. The ge-
ometric phases that correspond to the braiding of MZMs are par-
ticular cases of time evolutions that are cyclic and adiabatic. Hence, the
photonic system can simulate the statistical evolution of four MZMs by
simulating the corresponding spin system. The possibility to generate
an equivalent quantum evolution is in complete alignment with the
spirit of quantum simulation (26). The unitary equivalence (Eq. 1) be-
tween the KCM and the spin system guarantees that the Berry phase
obtained by evolving Hspin is non-Abelian and topological in nature.
Our previous experiment simulated the exchange of two MZMs po-
sitioned at the endpoints of the same chain, thus realizing a topological
Abelian Berry phase (25).

The topological character of the spin model results from the
topological character of the KCM. In the latter model, the topological
invariance corresponds to the invariance of the geometric evolution
against perturbations that are local in position space. As the environment
is assumed to act locally in space, the KCM is a promising candidate
for performing fault-tolerant quantum computation. The unitary
transformationUJW inherits the spin model with topologically invariant
geometric evolutions, but now with respect to perturbations that are
local in the parametric space of the adiabatic evolution. As these per-
turbations are not necessarily local in the position space, they may not
correspond to possible environmental errors in the spin system. In ad-
dition, in our photonic experiment, the resulting non-Abelian geometric
phases are insensitive of the exact timing of each controlled evolution
when it is large enough. This is a highly desirable characteristic that
facilitates the experimental realization of the non-Abelian evolution
with high fidelity.

By experimentally simulating the braiding of different pairs of
MZMs, we can only realize Clifford gates (27), such as the Hadamard

gate, H ¼ 1ffiffi
2

p 1 �1
1 1

� �
, and the ð� p

4Þ-phase gate, R ¼ 1 0
0 �i

� �
,

which are not universal for quantum computation (28). The inclusion
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of a non-Clifford gate, such as the p
8-phase gate, T ¼ 1 0

0 eip=4

� �
, can

resolve this problem (29). We experimentally simulate the p
8-phase gate

by moving two MZMs at the same site and exposing them to a
controlled local perturbation.We experimentally demonstrate that, un-
like the H and R topological gates, the p

8-phase gate is not immune to
local perturbations in MZMs B and C. Nevertheless, “magic state distil-
lation” (30) can be used to produce error-corrected p

8-phase gates from
noisy ones.When access to an arbitrary number of Kitaev chains is pos-
sible, two-qubit topological gates can be realized by using the control
procedures presented here.

Quantum gates based on MZM braiding
The smallest system of two connected Kitaev chains that remains fault-
tolerant against local perturbations at all times during the braiding
evolution is composed of six fermion sites (31). Using six, rather than
five, sites guarantees that no pairs of MZMs ever meet at the same
site, which would render them unprotected to local perturbations.
Here, we describe these fermions through the canonical operators
cj and c

†
j , with positions j = 1,…, 6, where j = 1, 2 constitutes the first

chain, j = 4, 5, 6 constitutes the second chain, and j = 3 corresponds
to the link between them, as shown in Fig. 1. The KCM for the two
chains is given in terms of Majorana operators, gja ¼ cj þ c†j and
gjb ¼ iðc†j � cjÞ, by the Hamiltonian

HM0 ¼ iðg1bg2a þ g4bg5a þ g5bg6aÞ þ ig3ag3b ð2Þ

The Majorana operators gm satisfy the relations g†m ¼ gm and glgm +
gmgl = 2dlm for l,m = 1a, 1b,..., 6a, 6b. Note that the particular operators
g1a, g2b, g4a, and g6b are not present in Hamiltonian (Eq. 2), so
½HM0 ; gj� ¼ 0 for j = 1a, 2b, 4a, 6b. As a result, these Majorana modes
have zero energy, giving rise to four endpoint MZMs, which we denote
as A, B, C, andD in Fig. 1. The logical qubit states are taken to be |0L〉 =
|00g〉 and |1L〉 = |11g〉 corresponding to the degenerate ground states of
HM0 with even fermion parity, given by |00g〉 = Nf1d1 f2d2d3|vac〉 and
j11gi ¼ f †1 f

†
2j00gi, where f1 = (g1a+ ig2b)/2, f2 = (g6b+ ig4a)/2,d1 = (g1b+

ig2a)/2, d2 = (g4b + ig5a)/2, and d3 = (g5b + ig6a)/2. For convenience, we
denote the appropriate normalization constant by N.

The Hadamard gate H on the logical qubit can be realized by the
anticlockwise braiding of MZMs A and C positioned at sites 1 and 4,
Xu et al., Sci. Adv. 2018;4 : eaat6533 19 October 2018
respectively, as shown in Fig. 1A. The transport of the MZMs around
the chain network is performed by adiabatically evolving the system
through the following sequence of Hamiltonians, HM0, Hh1, Hh2, Hh3,
and HM0 , where

Hh1 ¼ iðg1bg2a þ g1ag3a þ g5bg6aÞ þ ig4ag4b;
Hh2 ¼ iðg1bg2a þ g1ag3a þ g3bg4b þ g5bg6aÞ;
Hh3 ¼ iðg1bg2a þ g1ag3a þ g4bg5a þ g5bg6aÞ

ð3Þ

Section S1B shows a depiction of the resulting MZM transporta-
tion. The ground states of these Hamiltonians have the MZMs
located at the desired sites. Hence, braiding can be implemented
by a set of consecutive imaginary-time evolution (ITE) operators,
e�HM0 t, e�Hh1 t, e�Hh2 t, e�Hh3 t, and e�HM0 t, where t is taken to be large
enough for these operators to faithfully represent projectors onto
the corresponding ground states up to overall normalization (25).
Because of the topological nature of the produced evolutions, the
exact value of t does not matter as long as it is long enough to
suppress the contribution from the excited states (see Materials
and Methods and section S1A). The theoretically expected non-
Abelian Berry phase resulting from this set of evolutions is given

by H ¼ 1ffiffi
2

p 1 �1
1 1

� �
when written in the logical basis {|00g〉, |11g〉}

(see Materials and Methods).
To realize the R gate on the logical qubit, we need to anticlockwise

braid the MZMs C and D, as shown in Fig. 1B. The experimental
simulation of the braiding evolution is performed by switching be-
tween the corresponding Majorana Hamiltonians Hr1 , Hr2 , and Hr3 .
This time evolution can be implemented by a set of consecutive ITE
operators, e�HM0 t, e�Hr1 t, e�Hr2 t, e�Hr3 t, and e�HM0 t. The detailed process
is given in section S1C. The resulting non-Abelian Berry phase is given

by R ¼ 1 0
0 �i

� �
in the logical basis. The corresponding braiding

with a single chain was realized in the study of Xu et al. (25). The
Hermitian conjugate gates, H† and R†, are produced by reversing
the orientation of the exchanging paths. Realizing the Hadamard gate,
H, and the ð� p

4Þ-phase gate, R, by braiding of MZMs demonstrates the
non-Abelian character of the generated Berry phases. When these two
operations are performed in reverse order, they give a different com-
posite geometric evolution, because HR ≠ RH.
1 2

3

4 5 6

1 2

Hadamard gate

1

3

5 6

A B C

4

3

4 5 6

     )( -phase gate4– -phase gate8

2

Fig. 1. The set of universal quantum gates. The Kitaev chains consist of six fermions (numbered from 1 to 6) with four endpoint MZMs A, B, C, and D, which can be
used to demonstrate the universal gates. Each two Majorana fermions in the blue ellipse form a conventional fermion. The dashed lines between different Majorana
fermions represent the initial interactions between them. (A) The anticlockwise braiding of MZMs A and C implements a Hadamard gate, H, acting on the logical basis.
(B) The anticlockwise braiding of MZMs C and D implements a ð� p

4Þ-phase gate, R, acting on the logical basis. (C) The real-time population-dependent evolution on
MZMs B and C, which is realized by transporting the two MZMs to a single site (site 3 in our experiment) and applying a coupling between them, leads to a p

8-phase gate,
T, acting on the logical basis.
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To realize the p
8-phase gate, we place two MZMs at the same site

and apply a local field. This causes the splitting of the ground-state
degeneracy for a certain time, during which the appropriate dynamical
phase factor is accumulated (29). In particular, we transport the B and
C MZMs to site 3 by a set of ITE operations. Then, the population-
dependent Hamiltonian He = − ig3ag3b is operated for a certain time t,
as shown in Fig. 1C. Last, the MZMs are transferred back to their ini-
tial position. The details of this process can be found in section S1D.
During this evolution, the qubit states are transformed by M ¼

cost �isint
�isint cost

� �
¼ e�isxt . With the help of the Hadamard gate,

we can obtain the p
8-phase gate as H†MH ¼ e�it 1 0

0 e2it

� �
by

choosing the time to be t ¼ p
8. This gate is not protected against noise

perturbations acting on site 3 when both MZMs are positioned there.
Moreover, unlike the braiding gates, the dynamical gate is sensitive to
timing errors.

Spin encoding of two-chain system
To experimentally simulate the braiding evolutions of MZMs A and
C, we transform the fermionic HamiltoniansHM0,Hh1,Hh2, andHh3
of Eqs. 2 and 3, via a JW transformation, into the equivalent spin
Hamiltonians, H0, H1, H2, and H3, respectively, where

H0 ¼ �sx
1s

x
2 þ sz3 � s x

4s
x
5 � s x

5s
x
6 ;

H1 ¼ �s x
1s

x
2 þ s y

1s
z
2s

x
3 þ sz4 � sx

5s
x
6 ;

H2 ¼ �s x
1s

x
2 þ s y

1s
z
2s

x
3 þ sx

3s
y
4 � s x

5s
x
6 ;

H3 ¼ �s x
1s

x
2 þ s y

1s
z
2s

x
3 � sx

4s
x
5 � sx

5s
x
6 ð4Þ

During the adiabatic process, the spin system has the same spectrum
as the fermion system at all times. Hence, both systems share the same
time evolution operatorswhenwritten in their corresponding basis (25).
In particular, the non-Abelian geometric phase obtained during the
transport of MZMs can be faithfully studied in the equivalent spin
system. Because of the commutation relations between the terms
ofH0,H1,H2, andH3, the total process of ITE can be further simplified
as e�H0te�H3te�H2te�H1t jf0i ¼ e�sz

3tes
x
4 s

x
5 te�s x

3 s
y
4te�s y

1s
z
2s

x
3 te�sz

4t jf0i ,
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where |f0〉 is the ground state of H0. To experimentally simulate
the above dynamics, we need, in principle, a 27-dimensional Hilbert
space that corresponds to six spins for the chain network and an ex-
tra spin for implementing dissipation. However, because of the
character of the ITE, we need to focus only on manipulations that
act on the low-energy subspace, which is 25-dimensional (see
Materials and Methods). While our photonic simulator has limited
scalability as it does not have a tensor product structure, we success-
fully managed to encode the full low-energy Hilbert space.

The experimental setup that realizes the adiabatic evolutions be-
tween the spin Hamiltonians (Eq. 4) and, as a consequence, the evolu-
tions that correspond to the braiding of MZMs A and C is shown in
Fig. 2. We encode the quantum states in the optical spatial modes of
photons and manipulate them by beam displacers (BDs). A BD is a
birefringent crystal, which separates light beams with horizontal and
vertical polarizations by a certain displacement that depends on the
length of the crystal (32). In our experiment, the polarization of the
photons is used as the environmental degree of freedom for the real-
ization of the ITE operations. The coupling between the spatial modes
and the photon polarization is achieved using half-wave plates
(HWPs) and quarter-wave plates (QWPs), which rotate the polariza-
tion of the corresponding modes. A dissipative evolution is accomplished
in two steps. Initially, photons are passed through a polarizing beam
splitter (PBS), which transmits the horizontal component and reflects
the vertical one. Subsequently, photons with vertical polarization are
completely dissipated, and only the ones with horizontal polarization
are preserved. The resulting states correspond to the ground state of
the spin chain system. In this way, the state |f0〉 is initially prepared
and is then sent to the ITE operation of H1, H2, H3, and H0 for the
braiding of A and C with the dynamical map shown in Fig. 2A. The
ITE operations are realized in Fig. 2, B (see Materials and Methods)
and C, with one of the detailed processes shown in Fig. 2E. The com-
bination of HWPs and a QWP in Fig. 2F is used to exchange basis
between Pauli operators sy and sx (sz). The setup of basis rotation
shown in Fig. 2D is used to rotate the output state onto the same basis
of the input state. During the experiment, we need to construct a stable
interferometer with 16 spatial modes. The relative phases in the inter-
ferometer are compensated by inserting thin glasses in the corresponding
H0
Basis
rotationA

B

C

D

E

BD30 BD60 PBSHWP

H1 H2 H3 H0

F

QWP

 4  y1  2  x3

Basis rotation

 x3  y4  x4  x5  3/ /–

Fig. 2. Experimental setup. (A) ITEs between Hamiltonians that exchange MZMs A and C. (B) Setup to realize the ITE of H1 (needs only sz4 and s y
1s

z
2s

x
3 ). The state is

initially prepared to be the ground state of H0 involving four spatial modes, represented by solid circles. After rotation by BDs (BD30 with beams separated by 3.0 mm
and BD60 with beams separated by 6.0 mm), HWPs, and QWPs and subsequent dissipation by PBSs, there are eight output spatial modes. One of the operation
processes represented by the arrows is shown in (E), with HWPs set at different angles operating on different spatial modes. The combination of HWPs and a QWP
in (F) is used to exchange basis between the Pauli operators sy and sx (sz). (C) Setup for the ITE of H2 (needs onlys x

3s
y
4). The subsequent ITEs of H3 (needs only�sx4s

x
5) and H0

(needs only sz3) are similar to those of H2. (D) The setup for basis rotation is used to rotate the output state along the same basis as the input state.
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paths (not shown in Fig. 2). The effective operator of our setup (with
four input modes and four output modes) is reconstructed by quantum
process tomography with 256 measurements (33). The experimental
configurations that demonstrate the braiding of C and D and the p8-phase
gate are similar to the one shown in Fig. 2A and are given in section S2
(A and B). Section S1I shows the cross-section images for the state evo-
lution during the ITE operation.

Realization of quantum gates
To characterize the quantum gates resulting from the braiding of
MZMs, we experimentally reconstruct the whole density matrix in
the basis of {|00g〉, |01g〉, |10g〉, |11g〉} (see Materials and Methods).
The operators can be described in the 16-dimensional basis spanned
by Sa ⊗ Sb, with Sa(b) being I, X, Y, and Z for a(b) = 0, 1, 2, 3, respec-
tively, corresponding to the identity matrix and the three Pauli opera-
tors. The experimental result is shown in Fig. 3, A (real part) and B
(imaginary part). The evolution corresponds to aHadamard gate acting
on the Majorana-based encoding qubit. To show this, we express the
data in the logical basis {|00g〉, |11g〉}. The result for the corresponding
implementation of H ¼ ðI � iYÞ= ffiffiffi

2
p

is shown in Fig. 3, C (real part)
and D (imaginary part). The overall fidelity of the Hadamard op-
erator is 93.47 ± 0.02%. For the p

8-phase gate, T ¼ cos p8 I � isin p
8X ,

the experimental fidelity is 92.57 ± 0.01%. The real and imaginary parts
of the density matrix are shown in Fig. 4, A and B, respectively. The
ð� p

4Þ-phase gate, R ¼ cos p4 I þ isin p
4Z, is further demonstrated with

a fidelity of 93.44 ± 0.01%. All the density matrices corresponding to
these operations are given in section S2D. The uncertainty in the fidel-
ities is deduced from the Poissonian photon counting noise (25).

In our photonic experimental system, the main naturally occurring
errors include the imperfect interference, the rotation errors of the
wave plates, and the photon statistical fluctuation from the source.
Xu et al., Sci. Adv. 2018;4 : eaat6533 19 October 2018
These errors are well under control, and they lead to the reduction
of the fidelity (~93%). On the other hand, these fidelities are largely
independent of the exact value of the imaginary time evolution
parameter t as long as it is large enough to suppress contributions
from excited states. Our numerical simulations show that the resulting
evolutions stay unaffected even if we increase t by a factor of 2. In our
experiment, the timing t depends on the ratio between the reflected
and transmitted parts of the vertical polarization after the PBS in
our experiment, which can be higher than 500:1.

Fault tolerance
During the realization of the H and R topological gates, the braided
MZMs are never positioned at the same site. Thus, these gates are im-
mune to arbitrary single-site perturbative errors in the MZM system
(25). The p

8-phase gate is not expected to be resilient against perturba-
tions that act on site 3, where the two MZMs are brought together.
These perturbations can lift the degeneracy of the logical basis states,
thereby causing dephasing of the encoded quantum information.

In our experiment, the ITE operators not only drive the evolutions
that result to quantum gates but also induce the effective interaction to
supply the protection of the system. To experimentally probe this be-
havior, we add phase errors in the MZM system, realized by the spin
operation (1 + sz)/2, acting on various sites during the control
operations on the spin chains that give the p

8-phase gate. The experi-
mental setup is given in section S2B. The effective one-qubit gates in
our scheme act on the space spanned by {|00g〉, |11g〉}. Figure 4 shows
the final experimental density matrices with errors on different sites.
For comparison, Fig. 4 (A and B) shows the real and imaginary parts of
the density matrix after the implementation of the p

8-phase gate without
adding any errors at all. When local phase errors happen on site 4 during
the gate manipulations, only one MZM is disturbed at a time and the
operation remains unaffected. This resilience of the encoded information
is shown in Fig. 4 (C and D). On the other hand, when the phase error is
implemented on site 3, both MZMs are simultaneously disturbed.
Hence, the final state is corrupted as the evolution is not topologically
protected. A detailed analysis is given in section S1 (E and F).

Besides phase errors, we also consider flip errors. In the fermionic
system, a flip error happens when a fermion erroneously tunnels be-
tween neighboring sites of the wire (31). This evolution can be expo-
nentially suppressed by increasing the potential barrier between the
two sites. In the spin system, flip errors are realized by (sysy +
sxsx)/2. These errors degrade the encoded information, only if the
MZMs are positioned on the same or on neighboring sites to where
the flip error acts. To demonstrate this, we implement a flip error be-
tween sites 4 and 5 when the MZMs are both on site 3. In this case,
the operation remains unchanged, as shown in Fig. 4 (E and F). How-
ever, if the flip error acts on sites 3 and 4, while both MZMs are
positioned on site 3, then the operation is corrupted, as shown in
Fig. 4 (G and H). The theoretical analysis can be found in section
S1 (G and H). Apart from the phase and flip errors that have their
origin in the MZM system, the geometric phases are actually protected
against all noise with ℤ2 symmetry of the spin system.
DISCUSSION
In summary, we have experimentally demonstrated that it is, in prin-
ciple, possible to implement non-Abelian Berry phases that simulate
fault-tolerant quantum computation with MZMs. Our experiment is
based on the dissipation method for the implementation of Berry
A

C D

B

Fig. 3. Experimentally obtained density matrices for the Hadamard gate
operation. Real (Re) (A) and imaginary (Im) (B) parts of the Hadamard gate
operator in the basis {|00g〉, |01g〉, |10g〉, |11g〉}. Real (C) and imaginary (D) parts
of the Hadamard gate operator in the computational basis {|00g〉, |11g〉}. The mea-
surement operators I, X, Y, and Z represent the identity, s x, s y, and sz, respectively.
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phases introduced in our previous work (25). There, we experimentally
simulate the evolutions of a single Kitaev chain corresponding to the
exchange of its two endpoint MZMs and demonstrate the topological
invariance of the resulting Abelian Berry phases. Here, we experimen-
tally simulate the evolutions of two chains with four endpoint MZMs.
This setup allows us to generate with high accuracy Berry phases that
are both non-Abelian and topological in nature, mirroring the braiding
statistics of MZMs. With these evolutions in hand, we can implement
several quantum algorithms topologically, such as the Deutsch-Jozsa
algorithm (34). A detailed protocol is given in section S1I. While our
work simulates the evolution operator of Majorana braiding, the
physical system we use is not the same but is unitarily equivalent to
that of Majorana fermions. In our simulation, the obtained geometric
phases are invariant under continuous variations of the control param-
eters, as is the case with the Majorana braiding. This invariance is of
importance to quantum computation applications, as it provides stabil-
ity against control errors of the experimental parameters.

When more than two Kitaev chains can be encoded, topological
quantum computation with MZMs can be simulated by using exactly
the same control procedures demonstrated here, applied to arbitrary
pairs of chains. Because of the specific nature of our optical experiment,
we are able to perform control operations with very high fidelity, but the
scalability of our system is limited. Scalable MZM quantum compu-
tation can be experimentally simulated by translating our photonic sim-
ulator implementation to scalable systems, such as ion traps (35),
ultracold atoms (36), and superconducting circuits (37) technologies,
where the ITE dissipation methods have already been established.
MATERIALS AND METHODS
Performing ITE
Any pure state |f〉 can be expressed in a complete set of eigenstates
|ek〉 of a certain Hamiltonian H as |f〉 = ∑kqk|ek〉, where qk values
Xu et al., Sci. Adv. 2018;4 : eaat6533 19 October 2018
represent the corresponding complex amplitudes. The ITE operator
associated with H is given by exp(− Ht)∑kqk|ek〉 = ∑kqk exp(− Ekt)|ek〉,
where Ek is the eigenvalue corresponding to |ek〉. After the ITE, the
amplitude qk is changed to qk exp(− Ekt). The decay of the amplitude
depends exponentially on the energy: the higher the energy, the faster
the decay of the amplitude. Therefore, for sufficiently large t, only the
ground state of H (with lowest energy) survives with high fidelity.

The implementation of the ITE operations, used to perform the braid-
ing, can be simplified as the terms of the corresponding Hamiltonians
that commute with each other. For example, e�H0t can be decomposed
into es

x
5 s

x
6 te�sz

3tes
x
4 s

x
5 tes

x
1s

x
2 t. The ITE operator of each term can be di-

rectly implemented by local unitary operations and dissipation. To per-
form the dissipation in a controlled way, an environmental degree of
freedom was introduced, which is appropriately coupled to the system.
The total state of the system and its environment can be written as
jfti ¼ ðjfgij0ei þ jf⊥gij1e〉Þ=

ffiffiffi
2

p
, where jf⊥gi denotes the states that

are orthogonal to the ground state |fg〉 of the system. The environmental
state |1e〉 was dissipated during the evolution, and only |0e〉 was pre-
served. Therefore, the ground state of the corresponding Hamiltonian
was obtained.

Experimental procedure for implementing the ITE of H1

Consider the eigenvectors fjxi; j�x〉g, fjyi; j�y〉g, and fjzi; j�z〉g of the
Pauli operators sx (X), sy (Y), and sz (Z), with eigenvalues {1, − 1},
respectively. Then, the ground state of H0 in Eq. 4 is given by

jf0 i ¼ ajx1x2�z3x4x5x6i þ bj�x1�x2�z3x4x5x6i
þ mjx1x2�z3�x4�x5�x6i þ nj�x1�x2�z3�x4�x5�x6i ð5Þ

where a, b, m, and n are complex amplitudes satisfying |a|2 + |b|2 +
|m|2 + |n|2 = 1. Experimentally, the ground state (Eq. 5) of H0 is
represented as four spatial modes of single photons, as shown in
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Fig. 4. Experimental results of the effect phase and flip errors have during the p
8-phase gate on the logical qubit encoded in the basis |00g〉 and |11g〉.

Real (A) and imaginary (B) parts of the density matrix without errors. Real (C) and imaginary (D) parts of the density matrix with phase error on site 4. Real (E) and
imaginary (F) parts of the density matrix with flip error on sites 4 and 5. Real (G) and imaginary (H) parts of the density matrix with flip error on sites 3 and 4.
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the initial step of Fig. 2B. To evolve this state to the ground state of
H1, we only needed to implement the additional ITE operations of
s z
4 ands

y
1s

z
2s

x
3. Particle 4 is expressed in the basis fjzi; j�z〉g, as jx4i ¼

ðjz4i þ j�z4〉Þ=
ffiffiffi
2

p
and j�x4i ¼ ðjz4i � j�z4〉Þ=

ffiffiffi
2

p
. This change of basis

transformation was implemented by HWPs in the initial four spatial
modes. Eight spatial modes were created after splitting them by a
BD30. The polarization of the terms with |z4〉, which represent states
with higher energy, was set to be vertical with HWPs. The polarization
of the terms with j�z4i was set to be horizontal.

The dissipative evolution was realized by passing photons through
a PBS, where only four terms with horizontal polarization remain at
the end. Similarly, for the ITE of s y

1s
z
2s

x
3 , the basis of particle 1 was

rotated from fjxi; j�x〉g to fjyi; j�y〉g with the assistance of a combina-
tion of two HWPs and a QWP, as shown in Fig. 2F. Each of the spatial
modes was horizontally split into two other modes with a BD30. For
particle 2, the basis was rotated from fjxi; j�x〉g to fjzi; j�z〉g. The eight
spatial modes were further vertically split into 16 modes with a BD60.
The terms with the same form were combined with a BD30. Last, the
basis of particle 3 was changed to be fjxi; j�x〉g, in which 16 spatial
modes were obtained with another BD30. After passing through a
PBS, only the terms fj�y1z2x3�z4x5x6〉, j�y1�z2�x3�z4x5x6〉, jy1�z2x3�z4x5x6〉,
jy1z2�x3�z4x5x6〉, j�y1z2x3�z4�x5�x6〉, j�y1�z2�x3�z4�x5�x6〉, jy1�z2x3�z4�x5�x6〉 and
jy1z2�x3�z4�x5�x6〉g remain, and the output state corresponds to the
ground state of H2. The ITE operations of the other Hamiltonians that
are part of the cyclic evolution are found in section S1A.

After the basis rotation shown in Fig. 2D, the final state is ex-
pressed in the same basis as the initial state and takes the form

jf4 i ¼ ðaþ bÞjx1x2�z3x4x5x6i þ ðm� nÞjx1x2�z3�x4�x5�x6i þ
ðb� aÞj�x1�x2�z3x4x5x6i þ ðmþ nÞj�x1�x2�z3�x4�x5�x6i ð6Þ

To show the gate operation in the logical basis, we translated the basis by
jx1x2i ¼ ðj012i þ j112〉Þ=

ffiffiffi
2

p
,j�x1�x2i ¼ ðj012i � j112〉Þ=

ffiffiffi
2

p
,jx4x5x6i ¼

ðj0456i þ j1456〉Þ=
ffiffiffi
2

p
, and j�x4�x5�x6i ¼ ðj1456i � j0456〉Þ=

ffiffiffi
2

p
. The logi-

cal basis is given byj00gi ¼ j0120456ij�z3i,j01gi ¼ j0121456ij�z3i,j10gi ¼
j1120456ij�z3i, andj11gi ¼ j1121456ij�z3i. The initial state (ground state of
H0) is given in the logical basis by

jf0 i ¼ ðaþ b� m� nÞj00gi þ ðaþ bþ mþ nÞj01gi þ
ða� b� mþ nÞj10gi þ ða� bþ m� nÞj11gi ð7Þ

where, for simplicity, we omitted the overall normalization. After the
anticlockwise braiding, the final state becomes

jf4 i ¼ ðb� mÞj00gi þ ðbþ mÞj01gi þ ðaþ nÞj10gi þ
ða� nÞj11gi ð8Þ

Theunitary transformation that corresponds to the anticlockwise braid-
ing of MZMs A and C reads

U ¼ 1ffiffiffi
2

p
1 0 0 �1
0 1 �1 0
0 1 1 0
1 0 0 1

0
BB@

1
CCA ð9Þ
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written in the basis {|00g〉, |01g〉, |10g〉, |11g〉}. If we focus on the even
fermion parity sector spanned by |00g〉 and |11g〉, the unitary trans-
formation becomes

U ¼ 1ffiffiffi
2

p 1 �1
1 1

� �
ð10Þ

As a result, the braiding ofA andC corresponds to a generalized formof
the Hadamard gate operation, related to the standard Hadamard gate
by U ⋅ R2.

Experimental quantum process tomography
In our experiment, we used the quantum process tomography to
identify the efficiency of the performed gate operations (33). The
experimental measurement basis is chosen to be {hh, hv, vh, vv},
where h, v, r, and d represent the horizontal, vertical, right-hand
circular, and diagonal polarizations, respectively. For each input state,
we needed to reconstruct the final output state by two–qubit state
tomography with 16 measurement configurations, as shown in fig.
S13. To reconstruct the quantum process, we needed 16 different
input states. As a result, there are 162 measurement settings. By
expanding the output state E(r) in terms of the Pauli basis operators
{Êm} = {II, IX, IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, ZZ},
the quantum process can be expressed as E(r) = ∑mncmnÊmrÊn

†.
The physical process E is uniquely characterized by the 16-by-16
matrix c.

In our experiment, the spin basis is represented as fjx1x2�z3x4x5x6i;
j�x1�x2�z3x4x5x6i; jx1x2�z3�x4�x5�x6i; j�x1�x2�z3�x4�x5�x6〉g, which corresponds
to the polarization basis of {hh, hv, vh, vv}. The computation basis is
chosen to be {|00g〉, |01g〉, |10g〉, |11g〉}. The transformation between
the experimental basis and the computation basis is

jhhi
jhvi
jvhi
jvvi

0
BB@

1
CCA ¼ U

j00gi
j01gi
j10gi
j11gi

0
BB@

1
CCA

¼ 1
2

1 1 1 1
�1 1 �1 1
1 1 �1 �1
�1 1 1 �1

0
BB@

1
CCA

j00gi
j01gi
j10gi
j11gi

0
BB@

1
CCA ð11Þ

The output state in the computation basis can be represented as

Eðr′Þ ¼ ∑
i;j
lijÊ ir′Êj

† ð12Þ

where

lij ¼ ∑
n;m

cijTr½ðU†ÊnUÞÊi�Tr½ðU†ÊmUÞÊj� ð13Þ

A further restriction to the even parity sector can be performed by the
projector Pe = (|00g〉〈00g| + |11g〉〈11g|)/2. This results in 4-by-4 reduced
density matrices expressed in the logical basis {|00g〉, |11g〉}, as shown in
Figs. 3 and 4.
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Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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Section S1. Theoretical details
Section S2. Experimental details
Fig. S1. The circuit of one-step cooling algorithm.
Fig. S2. The process of anticlockwise braiding of MZMs A and C.
Fig. S3. The process of clockwise braiding of MZMs A and C.
Fig. S4. The process to anticlockwise braiding of MZMs C and D.
Fig. S5. The process of clockwise braiding of MZMs C and D.
Fig. S6. The process for implementing the phase gate based on the dynamics of MZMs.
Fig. S7. Spatial modes of the output states for the exchange of MZMs A and C.
Fig. S8. Spatial modes of the output states corresponding to the basis rotation.
Fig. S9. Spatial modes of the output states for the exchange of MZMs C and D.
Fig. S10. Spatial modes of the output states for the p

8-phase operation.
Fig. S11. The process to implement the Deutsch-Jozsa algorithm with the braiding of MZMs.
Fig. S12. Experimental setup for the exchange of MZMs C and D.
Fig. S13. Experimental setup for the implementation of p

8-phase gate and error operations.
Fig. S14. Experimental setup for the quantum process tomography.
Fig. S15. Experimental density matrices resulting from the ð� p

4Þ-phase gate operation.
Fig. S16. Experimental density matrices resulting from the gate operations in the full basis.
Fig. S17. Experimental density matrices resulting from the p

8-phase gate in the full basis.
Fig. S18. The state evolution in the Deutsch-Jozsa algorithm.
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