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Abstract

Agent-based models (ABMs) integrate multiple scales of behavior and data to produce higher-

order dynamic phenomena and are increasingly used in the study of important social complex 

systems in biomedicine, socio-economics and ecology/resource management. However, the 

development, validation and use of ABMs is hampered by the need to execute very large numbers 

of simulations in order to identify their behavioral properties, a challenge accentuated by the 

computational cost of running realistic, large-scale, potentially distributed ABM simulations. In 

this paper we describe the Extreme-scale Model Exploration with Swift (EMEWS) framework, 

which is capable of efficiently composing and executing large ensembles of simulations and other 

“black box” scientific applications while integrating model exploration (ME) algorithms 

developed with the use of widely available 3rd-party libraries written in popular languages such as 

R and Python. EMEWS combines novel stateful tasks with traditional run-to-completion many 

task computing (MTC) and solves many problems relevant to high-performance workflows, 

including scaling to very large numbers (millions) of tasks, maintaining state and locality 

information, and enabling effective multiple-language problem solving. We present the high-level 

programming model of the EMEWS framework and demonstrate how it is used to integrate an 

active learning ME algorithm to dynamically and efficiently characterize the parameter space of a 

large and complex, distributed Message Passing Interface (MPI) agent-based infectious disease 

model.
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I. INTRODUCTION

RECENT improvements in high-performance agent-based models (ABMs) have enabled 

the simulation of a variety of complex systems, including the spread of infectious diseases 

and community-based healthcare interventions [1],[2], critical materials supply chains [3], 

and land-use and resource management [4], [5]. As ABMs have become more complex, 

capturing more salient features of the systems under study, parameters that dictate the 

structural (e.g., social networks), behavioral, and other dynamical elements of the models 

have increased in number. Other complex systems modeling approaches (e.g., mathematical 

modeling, system dynamics) can rely on assumptions about model and parameter space 

structures to make use of relatively efficient methods for model calibration and optimization. 

However, the highly nonlinear relationship between ABM input parameters and model 

outputs, as well as feedback loops and emergent behaviors, require less efficient ensemble 

modeling approaches. These approaches execute large numbers of simulations, often in 

complex iterative workflows driven by sophisticated model exploration (ME) algorithms, 

such as active learning (AL), which adaptively refine model parameters through the analysis 

of recently generated simulation results and launch new simulations.

In order to facilitate these dynamic ME-based approaches, we have created the Extreme-

scale Model Exploration with Swift (EMEWS) framework [6], [7]. EMEWS, which is built 

on Swift/T [8], offers the capability to run very large, highly concurrent ensembles of 

simulations of varying types while supporting a wide class of ME algorithms, including 

those increasingly available to the community via Python and R libraries. Furthermore, it 

offers a software sustainability solution, in that ME studies based around EMEWS can easily 

be compared and distributed. A central EMEWS design goal is to ease software integration 

while providing scalability to the largest scale (petascale plus) supercomputers, running 

millions of ABMs, thousands at a time. Initial scaling studies of EMEWS have shown robust 

scalability [9]. The tools are also easy to install and run on an ordinary laptop, requiring only 

an MPI (Message Passing Interface) implementation, which can be easily obtained from 

common OS package repositories. By combining novel stateful tasks with traditional run-to-

completion many task computing, our framework solves many problems relevant to high-

performance workflows, including scaling to very large numbers (millions) of tasks, 

maintaining state and locality information, and the multiple language problem.

EMEWS enables the user to plug in both ME algorithms and models (e.g., ABMs). Thus, 

researchers in various fields who may not be parallel programming experts can simply 

incorporate existing ME algorithms and run computational experiments on their scientific 

application without explicit parallel programming. A key feature of this approach is that the 

model is unmodified and the ME algorithm is only minimally aware of its existence within 

the EMEWS framework. EMEWS uses a novel form of inversion of control (IoC), where 
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Swift/T instantiates the ME algorithm, that then provides model parameters back to Swift/T 

(over IPC, without returning). These parameters are distributed to worker processes for 

model execution. Swift/T provides a variety of methods for integrating models, including via 

built in interpreters, command line invocation, and as compiled libraries. Upon completion, 

the model outputs are registered back to the ME algorithm, which provides more parameters 

until a convergence criterion is satisfied or a computing budget is exhausted.

EMEWS also relies on new “many resident task computing” (MRTC) capabilities that 

extend the notion of many-task computing (MTC). This allows running tasks to effectively 

suspend, waiting for queries. We demonstrate that mixing resident tasks with traditional run-

to-completion tasks is a powerful programming model that supports the development of 

calibrated and validated scientific applications, including realistic ABMs that can be used as 

electronic laboratories to answer important research and policy questions.

This paper offers the following contributions:

1) It describes a software integration model for high-performance workflow-like 

applications, where advanced algorithms, such as AL, implemented in languages 

like R, can be integrated.

2) It describes a compelling, real-world application infectious disease dynamics 

and presents results from running a large-scale AL workflow to characterize the 

parameter space of a distributed ABM.

3) It proposed and investigates novel, flexible concurrency schemes for these 

workflows.

4) It evaluates the performance and scalability of the application up to 10K cores 

on a Cray supercomputer.

The remainder of this paper is organized as follows. In §II we describe ABMs, ABM 

ensemble model exploration methods and our Susceptible Exposed Infected Recovered 

(SEIR) ABM. In §III we describe the EMEWS programming model and its implementation. 

In §IV we describe how the various components in our SEIR model and AL EMEWS 

workflow are connected. In §V we present the results from running a large-scale AL 

workflow to characterize the SEIR model parameter space. In §VI we report performance 

numbers for the workflow. In §VII we restate our contributions and offer conclusions.

II. ABM, ENSEMBLE MODEL EXPLORATION METHODS AND THE SEIR 

MODEL

Agent-based modeling and simulation (ABMS) is a method of computing the potential 

system-level consequences of the behaviors of sets of individuals [10]. ABMS allows 

modelers to specify the individual behavioral rules for each agent; to describe the 

circumstances in which the individuals reside; and then to execute the rules, via simulation, 

in order to determine possible system-level results. Agents themselves are individually 

identifiable components that usually represent decision makers at some level. Agents often 
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are capable of some level of learning or adaptation ranging from simple parameter 

adjustment to the use of neural networks, evolutionary algorithms, and market models.

As larger and more complicated models of complex systems are developed, high-

performance computing (HPC) resources are increasingly required to run the computational 

experiments needed for developing validated (i.e., trusted) models that can support decision-

making. On the one hand, ABMS studies require the execution of many model runs to 

account for stochastic variation in model outputs and for the various ensemble model 
exploration (ME) methods that are required to calibrate and analyze them. These methods 

can be used to carry out:

• adaptive parametric studies

• large-scale sensitivity analyses and scaling studies

• optimization and metaheuristics

• inverse modeling

• uncertainty quantification

• data assimilation.

On the other hand, ABMs can also be distributed across processes to accommodate very 

large numbers of agents (e.g., > 109 [11]) or very complex agents1. These facts combine to 

make ABMs well suited for HPC resources and, through the EMEWS framework, they can 

easily and efficiently be run as part of large-scale scientific workflows.

A. Ensemble model exploration methods

Depending on the aims of a computational experiment, different dynamic ensemble ME 

methods are appropriate2. In the realm of stochastic optimization there are simulated 

annealing [15], adaptive mesh [16], genetic algorithms [17], approximate Bayesian 

computation [18], [19] and other techniques. Ensemble Kalman filtering [20] and particle 

filters [21], [22] are useful for combining ensembles of model outputs and empirical 

observations. AL [23] can be used to efficiently characterize large parameter spaces. These 

types of techniques are increasingly being used with ABMs [24]. Many of the methods are 

being actively developed and are implemented as free and open source libraries in popular 

data analysis programming languages (e.g., R) and general purpose languages (e.g., Python).

While sophisticated ME techniques have been a generally fruitful approach for combining 

ensemble mathematical (e.g., compartmental) models and empirical observations, for 

example in infectious disease modeling [25], [26], [27], we also see that such events as the 

2013 West African Ebola outbreak have exposed some limits to the predictive power of these 

approaches [28]. The possible reasons for this are many, but some of the simplifying 

assumptions inherent in the compartmental models that are used for the infectious disease 

1So called ‘thick’ agents may include sophisticated and computationally expensive cognitive abilities.
2We note that there exist static parameter search techniques (e.g., full factorial design [12], Latin hypercube sampling [13], Morris 
method [14]) that a priori determine the sampling from a parameter space. While these can be useful for some purposes, they are not 
adaptive and do not require complex workflow logic and hence are not the focus of this paper.
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studies might be at issue. Compartmental models use differential equations relating 

aggregate variables (e.g., the fractions of the population that are susceptible, infected, or 

recovered/removed) to derive the dynamics of disease progression in a population. But such 

models are not able to capture “complex social networks and the direct contacts between 

individuals, who adapt their behaviors [29].” By developing more realistic models in the 

form of ABMs, the complexity, for example of the inter-agent and biological-social 

interactions inherent in many infectious diseases, can be encapsulated in the specification of 

processes such as agent activities and decision-making, agent interactions over social 

networks, demographic and geographic heterogeneity, and agent adaptation and learning.

With EMEWS, the ensemble ME techniques that have been applied to simpler modeling 

paradigms can be carried over to the ME of large, complex, parallel, and distributed ABMs. 

Furthermore, many of these techniques are being actively developed and are implemented as 

free and open source libraries in popular programming languages. As indicated earlier, 

rather than requiring the reimplementation of these algorithms in the Swift/T language, the 

goal of the EMEWS framework is to be able to have these libraries directly control large-

scale HPC workflows, thereby making them more accessible to a wider range of researchers 

and, at the same time, enable them to run at HPC scales.

B. The SEIR model

Our SEIR model (Susceptible, Exposed, Infected, Recovered) is a distributed parallel agent-

based model of the transmission of a flu-like disease using SEIR model dynamics [30]. The 

model represents each person in a selected geographical region (e.g., the City of Chicago) as 

an agent. Each person in the model is in one of four disease states: susceptible, exposed, 

infected, or recovered. Persons transition through states, moving from susceptible to exposed 

to infected and ending with recovered. While susceptible, a person can become exposed in 

the presence of infectious persons. Exposed persons are infectious but not yet infected, i.e., 

they can infect other persons but are not yet symptomatic. Infected persons are symptomatic 

and also infectious for at least part of the period of infection. Recovered persons are no 

longer infected or infectious and, being effectively immune to the disease, will not become 

susceptible again. The model begins with some specified number (parameter CI) of persons 

in the exposed state who subsequently transition through the infected and recovered state 

while, in turn, exposing other persons to the disease, triggering the transition of those 

persons through the disease states.

The transition and duration of each state is determined by model state, and user-specifiable 

input parameters. A susceptible person will transition to exposed in the presence of 

infectious persons with a base probability (PS→E) modified by the number of co-located 

infectious persons. The duration of a person’s stay in the exposed state is drawn from a 

triangular distribution specifed by a mode (Motinc), minimum (Mitinc) and maximum 

(Mxtinc) where the minimum (Mitinc) defaults to one day and the maximum (Mxtinc) to four 

[31]. After the exposed duration has elapsed, an exposed person enters the infected state. 

Exposed persons are infectious from one day prior to entering the infected state to seven 

days after entering it [31]. The length of the infected state is also drawn from a triangular 

distribution (MotI , MitI , MxtI ) with a default minimum of seven days and a default 
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maximum of fourteen days [32]. While infected, a person will remain at home thus avoiding 

contact with anyone outside the household. With a user-specifiable probability (PhomeA) a 

person will remain at home as soon as they become infected, otherwise they will remain at 

home beginning one day after becoming infected. A person will remain at home for either 

five, six, or seven days depending on a user-specifiable probability (PhomeB,PhomeC ), after 

which they will resume their normal activities.

Once the infected period ends, a person transitions to the recovered state. The parameters of 

the triangular distributions, the “stay at home” probabilities, and the initial number of 

exposed persons are model parameters (see Table I) and thus can be altered to affect the 

number of persons in each state as the model progresses.

The SEIR model is implemented in C++ using the Repast for High Performance Computing 

(Repast HPC) [33] and the Chicago Social Interaction Model (chiSIM) [34] toolkits. Repast 

HPC is an agent-based model framework for implementing agent-based models in MPI and 

C++ on high performance distributed-memory computing platforms. chiSIM is a framework 

for implementing models that simulate the hourly mixing of a synthetic population, in this 

case the City of Chicago consisting of approximately 2.9 million individual agents and 1.2 

million distinct places. Synthetic populations with baseline socio-demographic data, derived 

from combined U.S. Census files, are available from a growing number of sources. chiSIM 

uses baseline synthetic population data such as those developed through the NIH MIDAS 

network [35], [36]. The socio-demographic attributes of the synthetic population match that 

of the actual population for Chicago in the aggregate for the Census years of 2000 and 2010. 

Each agent has a baseline set of socio-demographic characteristics (e.g., race/ethnicity, age, 

gender, educational attainment, income). All places are characterized by place type, 

including households, schools, hospitals and workplaces, and have a geographic location. In 

the synthetic population agents are assigned to households, workplaces and schools (for 

those of school age). Places are categorized as having different types of activities that may 

occur there.

In a chiSIM based model, such as SEIR, each agent, that is, each person in the simulated 

population, resides in a place (a household, dormitory or retirement home/long term care 

facility, for example) and moves among other places such as schools, workplaces, hospitals, 

jails and sports facilities. Agents move between places according to their shared activity 

profiles. Each agent has a profile that determines at what times throughout the day they 

occupy a particular location [33]. Our Chicago agent activity profiles are empirically based 

on 24-hour time diaries collected as part of the U.S. Bureau of Labor Statistics annual 

American Time Use Survey (ATUS) for individuals aged 15 years and older and from the 

Panel Study of Income Dynamics (PSID) for children younger than 15 years. Both are 

nationally representative samples and collect diary data on randomly assigned days. In the 

SEIR model, two profiles (one weekday and one weekend) from ATUS /PSID respondents 

living in metropolitan areas are assigned to each agent in the model. This is done by 

stochastically matching each agent with an ATUS or PSID respondent who is either identical 

or similar with respect to socio-demographic characteristics. Agents move between places 

according to their activity profiles. Once in a place, an agent mixes with other agents in 

some model or domain-specific way. In the case of the SEIR model, infectious agents infect 
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co-located susceptible agents, who having become infected can then in turn infect other 

agents as they move.

chiSIM itself is a generalization of a model of community associated methicillin-resistant 

Staphylococcus aureus (CAMRSA) [2]. The CA-MRSA model was a non-distributed model 

in which all the model components (all the agent, places, et cetera) run on a single process. 

chiSIM retains and generalizes the social interaction dynamics of the CA-MRSA model and 

allows models implemented using chiSIM to be distributed across multiple processes. Places 

are created on a process and remain there. Persons move among the processes according to 

their activity profiles. When a person agent selects a next place to move to, the person may 

stay on its current process or it may have to move to another process if its next place is not 

on the person’s current process. A load balancing algorithm has been applied to the synthetic 

Chicago population to create an efficient distribution of agents and places, minimizing this 

cross-process movement of persons and balancing the number of persons on each process 

[34]. In addition, chiSIM provides the ability to cache any constant agent state, given 

sufficient memory, lessening the amount of data transferred between processes.

The following sections describe how the EMEWS framework is used to perform an adaptive 

parametric study of the SEIR model by integrating it with a ME algorithm, in this case AL 

[23].

III. EMEWS PROGRAMMING MODEL

The EMEWS framework is designed to implement a high-level programming model that 

allows us to coordinate calls to scientific applications, such as large ABMs, as well as 

various control and analysis scripts over a scalable, MPI-based computing infrastructure. 

Specifically, EMEWS was implemented to meet the following requirements:

1) The ability to construct a workflow of many (potentially millions of) calls to a 

scientific application (such as an ABM simulation) with different parameters;

2) The ability to allow simulation results to feed forward into future application 

parameters;

3) The ability to integrate a complex ME algorithm, like AL, into the parameter 

construction;

4) The ability to call into the native code models and scientific applications (e.g., 

written in C++) and the 3rd-party implementation of a ME algorithm (written in 

R in the current application);

5) The ability to maintain the state of the ME algorithm from call to call, and to 

programmatically access this state in the system.

We provide an overview of how EMEWS and Swift/T addresses these requirements in the 

following.

1) The ability to manage an extreme quantity of tasks is a main design feature of 

the Swift/T implementation [8],[37], which essentially translates the Swift script 

into an MPI program for execution on the largest scale supercomputers. The 
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Swift-Turbine Compiler (STC) [38] optimizes the script using multiple 

techniques, both conventional and oriented toward novel concurrency. In 

synthetic tests, Swift/T has been used to run trillions of tasks at over one billion 

tasks per second. It can also send very small tasks to GPUs at high rates [39], 

enabling powerful mixed programming models.

2) Swift is a dataflow language. In this model, the user defines data items 

(numbers, strings, binary data, and various collections of these) and connects 

them with functional execution. Swift also offers conventional constructs such as 

if, for, foreach, and so on with their definition only slightly modified for 

automatic parallelism. Following dataflow (not control flow) functions execute 

when their inputs are available, possibly concurrently. Thus, typical Swift loops 

are automatically parallel loops. Dataflow analysis allows common expressions 

like g(f(1),f(2)); to expose available concurrency (2 simultaneous executions of 

f()).

3,4) Swift/T has rich support for integrating complex logic into workflows, including 

using scripting languages like Python and R. It enables this on HPC machines 

(where fork() may be undesirable or unavailable) by optionally bundling script 

interpreters for Python, R, Julia, Tcl, JVM languages, etc., into the Swift/T 

runtime [40]. These interpreters are called through their native code interfaces 

(thus reusing the Swift/T ability to call into native code libraries) but high-level 

interfaces are provided for Swift. For example, the Swift code:

string result = python(“a=2+2”,”str(a)”);

would store “4” in result. The python() function takes two string arguments, 

code and an expression. The code is executed and the string expression is 

returned as a Swift string. Users may set PYTHONPATH, load their own 

modules or 3rd-party modules such as Numpy, etc. They may also call through 

these scripting layers into native code.

The Repast HPC code is called as an MPI library as described in §III-A.

5) Various states may be maintained in the Swift/T implementation, while 

remaining outside the main dataflow model. This is typically done in the tasks, 

avoiding confusion with the dataflow. For example, a configuration file could be 

loaded from disk by a Python-based task, and cached in a global Python 

variable. This data would be available on the next invocation of a Python task on 

that process.

Developers can target different parts of the system by using the locality features in Swift/T. 

These were initially added to allow users to send tasks to data in a compute-node resident 

filesystem [41]. However, they can also be used to send tasks to state in a script interpreter. 

Tasks can be targeted at a rank or a node, and be strict or non-strict. We use strict rank 

targeting in this work, while non-strict, node-based targeting is used in (for example) cache 

storage systems.

Ozik et al. Page 8

IEEE Trans Comput Soc Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The following subsections go into further details on the EMEWS and Swift/T features that 

address the programming model requirements.

A. Hierarchical concurrency

MPI enables the concurrent execution of multiple cooperating multiprocessing codes, each 

of which can have a separate communication context shared with only the MPI processes 

executing that code. MPI represents these contexts with communicators that typically form a 

tree hierarchy, starting from an initial world communicator, that encompasses all processes. 

Given a communicator, new child communicators can be created and passed to libraries for 

their exclusive use, allowing an application to be constructed through composition of 

existing parallel libraries and codes.

Our execution model has multiple levels of concurrency and a great deal of flexibility in how 

the workflow uses the available processing power of a supercomputer. Since the SEIR model 

itself uses MPI, it must be treated as an MPI library. Swift/T uses the MPI 3.0 

MPI_Comm_create_group() feature to allocate a new communicator for each task [42]. 

These are handed to the application for each new task and deallocated (MPI_Comm_free()) 

at the end of the task. The user can specify the number of processes (e.g., p) for each task 

programmatically with:

@par=p f(…);

When launching a simulation task, Swift/T constructs the communicator and passes it to the 

SEIR model, which is a shared library loaded by Swift/T. The use of MPI in the SEIR model 

is completely independent of the use of MPI by Swift/T. There is no mixture of control flow 

from Swift to the SEIR model; once the SEIR task starts, it proceeds with normal MPI/C++ 

semantics, until returning control back to Swift/T.

B. Location-aware many-task scheduling

MTC workloads, on the one hand, generally allow the scheduler a great deal of leeway in 

determining where tasks will execute. Bag-of-tasks workloads, for example, are the most 

lenient, allowing tasks to execute anywhere in any order. Programming models such as MPI, 

on the other hand, give the programmer total control over execution locality.

Swift/T strikes a balance between these two extremes with its location annotation. By 

default, tasks can execute on any worker process, but the programmer has the option of 

specifying the annotation with @location=L f(), where f() is the task and L is a location 

value. A location value is constructed from an MPI rank r with optional accuracy and 

strictness qualifiers. (Swift/T features allow a hostname to be translated to one or more MPI 

ranks.) The accuracy may be RANK, specifying the process with rank r, or NODE, 

specifying any process that shares the same network host with r. The strictness may be 

SOFT, allowing the task to run anywhere in the system if there is nothing else to do at a 

given point in time, or HARD, specifying that the scheduler should wait until the location 

constraint can be satisfied (even at the expense of maintaining idle processors).
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The location features in Swift/T were originally added for data-intensive workloads [41]. 

These provide a novel model for best effort, data-aware scheduling, when data is stored on 

the compute nodes. Compute node-resident storage systems that advertise data locations can 

be exploited by these programming features. In EMEWS, we extend the utility of this 

feature by using it to target program state instead of bulk data. By keeping program state 

resident, we avoid any cost associated with approaches that depend on data serialization. 

More importantly, we can more easily leverage third party libraries as resident programs 

without extensively modifying them to fit a data serialization based scheme.

C. Resident tasks for ensemble control

Previous uses of workflow languages to control ME typically take one of two approaches. In 

the first approach, the ME algorithm is encoded in the workflow language. While some 

workflow languages provide rich support for arithmetic operations (Swift/T is notable in this 

regard), many do not. Even so, this approach requires that such algorithms be coded from 

scratch in the workflow language, and makes it impossible to directly reuse code in other 

languages. In the second approach, the algorithm is provided as a built-in feature of the 

workflow system. This approach has been taken by Nimrod/O [43] and Dakota [44], among 

others. It does not allow the end users much control over the ME algorithm used, unless they 

can modify the source code of the workflow system itself.

EMEWS defines and uses resident tasks as a building block to implement user-defined ME 

workflows. The key technological feature is the ability to launch a task in a background 
process or thread. Background indicates that the foreground process or thread returns control 

to Swift/T after execution (as a normal task would), but the background task is still running. 

It retains state and potentially performs ongoing computation. For the current example, the 

background task maintains the state of an AL ME algorithm. The overarching workflow 

must simply query this task for instruction on what tasks to execute next. To do so, a task is 

issued to the same location as the resident task, which communicates with it over IPC.

D. EMEWS Queues for R

To query the state of the AL algorithm, we designate one worker on location L for exclusive 

use by AL. Interaction with this worker via the EMEWS Queues for R (EQ/R) extension is 

shown in Figure 1. The EQ/R extension allows Swift/T workflows to communicate with a 

persistent embedded R interpreter on a worker at some location L via two blocking queues, 

IN and OUT. The extension provides C++ functions that allow string data to be pushed onto 

and retrieved from these queues. These functions are wrapped in an interface and are 

accessible to Swift/T and shared with the R environment. Upon initialization, EQ/R adds 

these functions to the R environment and spawns a thread in which the R script is run. 

Through these functions, the R script places string data in the OUT queue where the Swift/T 

parent thread can retrieve it with the EQR_get() function. Similar functionality exists for the 

IN queue, and in this way string data is passed back and forth from the R script to the 

Swift/T workflow. The queues themselves will block if the queue is empty, allowing the 

Swift/T workflow to pause and wait for data from the R script and vice versa. When the R 

script waits and control returns back to Swift/T, the R interpreter is not deallocated. When 

subsequent R tasks execute on location L, they have access to the IN and OUT queues via 
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the same functions. Through blocking queues and resident tasks, EQ/R implements an 

inversion of control (IoC) pattern, where the logic embedded within the external ME 

algorithm, rather than in the Swift/T script, determines the progression of the workflow. As a 

note, a similar IoC pattern is employed with the EMEWS queues for Python (EQ/Py) 

extension, for Python-based ME algorithms.

E. Worker types

Swift/T offers worker types, a powerful, high-level way to map execution to various parts of 

the system. The user may specify any number of task types by simply providing a token. 

Then, functions that are defined with this token will execute only on workers (ranks) 

configured to accept these task types.

1 pragma worktypedef resident_work;

2 @dispatch=resident_work

3        register(string params) {

4           …  //  body

Similarly to the Swift/T locality features (§III-B), these offer a tradeoff between automated 

load balancing and full user control over execution location. They could be used to ensure 

that a small number of workers are allocated for performance-critical control tasks (e.g., 

tasks that produce input parameters for many other tasks), or to throttle the number of I/O-

intensive tasks running at any point in time.

The EQ/R tasks have their own worker type resident work. This enables R based analysis 

code to be used for tasks, such as calculating complex objective functions from simulation 

outputs, without affecting the R interpreter used by the AL calculations.

F. Contiguous ranks

In previous work with Swift/T parallel tasks, worker ranks were assembled into per-task 

subcommunicators essentially randomly. This was the most flexible technique and was 

immune to fragmentation problems. For EMEWS, we extended the Swift/T parallel tasks 

feature to additionally support “parmod” (parallel-modulus) tasks. Communicators 

constructed to run tasks denoted with parmod = n have two additional constraints: 1) they 

must start on a rank r such that r 0 (mod n) and 2) the ranks in the new subcommunicator are 

contiguous in the parent communicator. For example, on a computer with 32 cores per node, 

the user could set parmod = 32, then a 32-process (@par=32) task would always consume 

exactly 1 node; when parmod = 64, a 64-process task would consume exactly 2 nodes, 

which are topologically neighbors (assuming the MPI implementation is configured to lay 

out ranks in such a manner).

In this work we use parmod tasks for two reasons. The first is simply to gain the benefit of 

achieving the intranode performance for parallel SEIR model tasks by ensuring that all the 

processes in that node are running the same model instance. We run each task, that is, each 
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model instance on 256 processes with a per process node count of 8, and thus fully utilize 32 

nodes. Second, it allows us to cache data more easily, since the task layout is always the 

same. If communicator layouts were more random, it would take a great deal more 

development time to correctly manage data cached in the SEIR model, in this case, the 

initial synthetic population, from one parallel task to the next.

IV. INTEGRATION

Our focus is on the identification of the viable regions within the parameter space of the 

SEIR model. These regions represent input parameters resulting in model outputs that fall 

within the range of plausible flu incidence trajectories. The SEIR model includes 

stochasticity in two of its key elements. First, the initially exposed population is randomly 

distributed across the synthetic population. Second, the collocation-based infection 

dynamics stochastically determines whether an infection has occurred. Thus, as modelers we 

are faced with the task of determining how to evaluate the “goodness” of a parameter set. We 

cannot simply look for time series fits to historical flu trends, since the empirical time series 

are individual trajectories of flu infection dynamics that have been observed. What the 

empirical data doesn’t show, for example, are all of the flu trajectories that did not occur (or 

possibly were not identified). Also, since the SEIR model distributes the initially exposed 

population randomly, it is highly unlikely that any actual distribution of initially exposed 

people would match this and, since the infections are not spread in aggregate but through 

contacts between collocated individuals, the initial spatial distribution has the potential to 

greatly affect the timing and size of the flu incidence peak. As such, as we describe below, 

we resolved to run twenty stochastic variations for each parameter combination and 

characterize the parameter set as viable or not based on two aggregate statistics.

In this current parameterization of the SEIR model, the inputs that are allowed to vary are 

the initial number of infected individuals (CI) and the hourly probability of going from 

susceptible to exposed per each collocated infectious agent (PS→E). CI ranged from 1 to 100 

in increments of 1. PS→E ranged from 2e−5 to 4e−5 in increments of 0.02e−5. For each 

combination of these two parameters, the SEIR model outputs a table of newly infected 

agents for each week of a 35 week period. The objective function we use to characterize the 

model output calculates the mean and maximum values for each 35 week period. We define 

a threshold condition using the mean and maximum values within which the model outputs 

are deemed to adequately resemble empirically observed infection count trends for Chicago, 

obtained from [45]. The threshold condition used was less than 10,000 newly infected in any 

single week for the maximum and a mean across all 35 weeks of greater than 100 new 

infections per week. The computational challenge then becomes one of trying to characterize 

the SEIR model parameter space into viable and non-viable regions efficiently, that is, 

without having to run too many simulations to evaluate the viability of parameter 

combinations. While a number of different ensemble methods could potentially be used for 

this, the AL approach, described next, maps naturally to the problem.
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A. The AL algorithm

AL [23] is a promising approach for characterizing large parameter spaces of computational 

models (see e.g., [46]) with less expensive reduced order models, or meta-models. AL 

combines concepts from adaptive design of experiments (e.g., [47]) and machine learning to 

iteratively and strategically sample from an unlabeled data set. AL works well in situations 

where, “… unlabeled data may be abundant or easily obtained, but labels are difficult, time-

consuming, or expensive to obtain” [23]. The AL approach can be naturally mapped to the 

characterization of the parameter spaces of computer simulations when one considers the 

unlabeled data as points in a parameter space and the labelling activity as evaluating those 

points by running (possibly expensive) simulations.

In this paper we chose to implement an R-based AL algorithm in order to highlight the types 

of useful and sophisticated parameter search approaches that can be developed when 

leveraging existing functionality in widely used open source data analytics languages. 

Rather than requiring the time-intensive and error prone reimplementation of these 

algorithms in Swift/T for the sole purpose of running large ensembles of simulations, we are 

able to have these algorithms directly control large-scale HPC workflows.

AL is a general approach that can afford a fair amount of customization in its specific 

implementation. The overall goal is to iteratively pick points (individual or sets) to sample, 

where the sampled points are chosen through some query strategy. In our case, we choose an 

uncertainty sampling strategy, where we employ a machine learning classifier on the already 

collected data and then choose subsequent samples close to the classification boundary, i.e., 

where the uncertainty between classes is maximal. In this way we exploit the information 

that the classifier provides based on the existing data. To take advantage of the concurrency 

that we have available on HPC systems, the samples at each round of the AL procedure are 

batch collected (and evaluated) in parallel. In order to decrease the overlap in reducing 

classification uncertainty that nearby maximally uncertain sample points are likely to have, 

we cluster all the candidate points and choose an individual point within each cluster. This 

ensures a level of diversity in the sampled points and, therefore, a greater expected reduction 

of uncertainty [48]. We balance the exploitation of the classifier model with an exploratory 
component, where random points in the parameter space are sampled in order to investigate 

additional regions that may not have been sampled yet. This can prevent premature 

convergence to an incorrect or incomplete meta-model.

The pseudo-code for our AL algorithm is shown in Figure 2. The workflow proceeds until 

the cross validation metric, a proxy for out-of-sample model performance, is satisfied. 

Parallel evaluations of the objective function F () – the SEIR model simulation – are 

performed in lines 11 and 19 over some sample of parameters. At each iteration, the sampled 

results feed into the classifier R (lines 13 and 21). At the end of the workflow, the final meta-

model predictions are generated for the remaining parameter space.

B. Inversion of Control Implementation

Our central EMEWS workflow pattern is shown in Figure 3. For our AL R algorithm, 

located at location L, the doAL function is called. The for loop continues to iterate while 
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new sets of parameters are obtained from the AL algorithm via the EQ/R EQR_get call. The 

parameter sets are sent to run_model, where they are split up and evaluated concurrently via 

a Swift/T foreach loop (not shown). Objective function results results, indicating a viable 

parameter combination or not, are returned by run_model and passed back to the AL 

algorithm via the EQ/R EQR_put call. This loop continues until the EQR_get call obtains 

the special token “FINAL”. Note that the EQR_put and EQR_get calls take the location L as 

a parameter. The implementation of EQR_get and EQR_put use this location in a location-

aware many-task scheduling annotation as described in §III-B.

Also as described earlier, this qualifies as an IoC pattern since rather than Swift/T, the R-

based AL algorithm controls the overall workflow logic. The algorithm produces simulation 

parameters and consumes results, but instead of calling the model code directly, the 

parameters are intercepted and sent to Swift/T for distributed execution, with results 

seamlessly returned. This powerful pattern allows many 3rd-party algorithms to be easily 

dropped into our framework and coordinate large-scale ensemble ME workflows.

C. AL EQ/R communication interface

As described in §III-D, the interprocess communication is performed over queues. The 

queues are implemented in C++, but must also be accessible from Swift and R. The interface 

to these queues is shown in Figure 4. Their implementation uses a straightforward Standard 

Template Library (STL)-based locking scheme. This library is exposed to Swift/T by using 

its SWIG-based library calling technique [49]. It is exposed to R via RInside [50]. Thus, the 

C++ data structure is available to both the Swift/T workflow and the R-based algorithm, via 

Tcl and R wrapper interfaces, respectively.

D. SEIR model as parallel leaf function

Since the SEIR model is a MPI-application it must be compiled as a shared library and 

wrapped in a Swift/T Tcl interface [42]. Through this interface Swift/T passes a parameter 

string that contains all the parameters (i.e. the initial number of exposed persons, the various 

distribution values, and so forth) for the current model run to the SEIR model. In addition, 

the Tcl interface also passes the MPI communicator for the current run. When the model 

receives the first set of parameters, it fills a cache with the required input data from the files 

specified in the parameter string, virtually eliminating I/O overhead in subsequent model 

runs. The caches are per process and contain the data for that process rank. The input data 

consists of person, place and activity definitions. As part of the load balancing scheme 

mentioned above, places are assigned to particular process ranks and persons move among 

processes as they move to the next place in their activity schedules. Each cache then contains 

the data for its process rank. Consequently, the caching mechanism requires consistent 

contiguous process ranks such that the cache originally created on process n, remains on 

process n during subsequent runs. We make sure this is the case by setting the environment 

variable ADLB_PAR_MOD to the number of processes required to run the model (i.e., 256), 

enabling contiguous process ranks in communicators of that size.
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For a more in-depth and technical description of the elements within an EMEWS workflow, 

including a complete AL workflow utilizing a distributed MPI-based model, the reader is 

referred to the EMEWS tutorial, accessible through the EWEWS site [7].

V. AL RESULTS

All experiments presented in the next two sections were performed on the Cray XE6 Beagle 
at the University of Chicago, hosted at Argonne National Laboratory. Beagle has 728 nodes, 

each with 2 AMD Operton 6300 processors, each having 16 cores, for a total of 32 cores per 

node; the system thus has 23,296 cores in all. Each node has 64 GB of RAM.

For the AL workflow run presented in this section, each SEIR model run was distributed 

over 256 processes (32 nodes) and we ran up to 6 models concurrently (192 nodes), 

demonstrating the hierarchical concurrency that EMEWS workflows can generate. Each 

model took approximately 7 seconds to run per simulated week, and we ran them for 35 

weeks (≈245 seconds per model run). The initial cache loading of person, place and activity 

definitions occurred exactly once across each of the six sets of 32 nodes, and took a total of 

2 minutes.

Figure 5 shows the progression of the AL algorithm evaluating parameter points, training the 

random forest model and generating predictions for the out-of-sample points in the two 

dimensional CI vs PS→E parameter space over 40 iterations, where the parameter space was 

gridded into 10100 discrete points (101 × 100). Each parameter point evaluation consists of 

twenty model runs of that parameter combination with the random seed varied for each of 

the runs, and with the viability of the parameter set determined as described in §IV. Iteration 

0 shows the initial design, where 100 randomly chosen points were evaluated. The black and 

red dots signify parameter sets evaluated to be viable and nonviable, respectively. The 

orange and blue regions indicate the random forest meta-model out-of-sample prediction for 

viable and nonviable parameter space regions, respectively. The shading between the orange 

and blue regions represents the uncertainty in these predictions, where the darkest regions 

represent maximal uncertainty, i.e., equal probability of being viable or nonviable. As the 

iterations progress, points that were newly added since the last iteration panel are indicated 

by green dots. For this particular AL workflow, at each iteration we added 5 points close to 

the classification boundary (exploit) and 5 randomly sampled points (explore), for a total of 

10 new points per iteration. Thus, at the end of iteration 40, about 5% of the parameter space 

was sampled. What can be observed is that as the AL progresses, the initial prediction 

boundary is gradually refined as additional points along it are evaluated, while the rest of the 

parameter space, where there is less uncertainty in the model prediction, e.g., the central part 

of the viable region, is not as densely explored. Importantly, regions of high uncertainty are 

seen to be reduced in width, sharpening the distinction between the two categories of 

interest. This pattern of parameter space evaluation is useful from the point of view of 

efficiently utilizing a computational budget, as the boundary points are the main drivers of 

an accurate meta-model. While the exploitation/exploration balance that we used appears to 

sufficiently cover and characterize our parameter space, other parameter spaces with, e.g., 

different dimensionality or granularity, may benefit from a different ratio.
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An iterative model exploration algorithm needs a termination condition. This can be based 

simply on a pre-determined computation budget or some expected performance metric. In 

this example we chose to monitor the cross-validation (CV) accuracy, both its sample mean 

and standard deviation. At each AL algorithm iteration the random forest model is trained 

and 10-fold cross validation is applied in order to get an estimate of the expected out-of-

sample model performance. Figure 6 shows the progression of the CV accuracy and standard 

deviation. What is observed is that, while the CV accuracy is near constant, the standard 

deviation gradually decreases. This indicates that as the meta-model is being improved at 

each iteration with the addition of more data we are able to better trust its out-of-sample 

performance level. This also reflects the increased certainty of the meta-model as seen by the 

reduction of shaded regions in Figure 5. Finally, this also suggests additional AL 

experiments, such as varying the number of initial samples or the number of samples chosen 

at each iteration, to observe the effects on the trajectory of CV accuracy, or other CV 

metrics.

VI. PERFORMANCE RESULTS

A. Task parallelism

In our application model (cf. §III-A), there are multiple potential concurrency modes. Here 

we describe the task-specific parallelism. As described in § II-B, the SEIR model can be 

load balanced to run on any number of processes, parameterized by p_count. For these task 

parallelism experiments, we configured it to run on p_count=4,8,16,32,64,128,256 

processes. We measured the average time it took for the SEIR model to simulate one week 

within the workflow and reported it in Figure 7.

The results show that the SEIR model scales well to 128 and potentially to 256 processes. 

This scaling is important, as many of the ensemble methods of interest are iterative in nature, 

such that any performance increases that can be achieved for the simulation runs themselves 

are generally multiplied by the number of iterations required for the complete workflow, if 

the necessary concurrency is available. Thus, the simulation developer has the option to 

retain a model’s complexity rather than simplify it such that it “… be amenable to 

comprehensive and systematic analysis.” [24]

B. Total time to completion

For our SEIR/AL workflow performance evaluation, we constructed test AL workflows 

using a one ZIP code version (Ȉ 44k agents) of the SEIR model. The tests in this study 

exercised the full set of AL workflow components to observe their individual and collective 

performance characteristics. The cross validation metric condition was modified to run past 

satisfaction to produce a consistent number of tasks (and thus always ran to the provided 

maximum number of iterations).

Our performance objective was to determine how workflow overheads might affect the total 

time to complete the AL workflow. For each number of total processes, we ran the workflow 

at p_count=4. This is the most challenging case for Swift, as higher p_count values reduces 

the number of tasks running at a time (as each task has more processes). For each increasing 
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number of total processes, we increased the workload size (weak scaling). The total number 

of tasks in each workflow was hand-specified by selecting a maximum iterations number 

multiplied by the number of total processes; thus, the AL convergence criterion was 

disabled. The total number of tasks for each run was set to the number of total processes, 

and the maximal concurrency per round (Prand+Pclus) was equal to the number of total 

processes divided by 4, thus, there were 4 iterations. We recorded the total runtime reported 

by Swift and plotted it in Figure 8.

As shown, the total workflow time is only minimally affected by scale. In our largest run, on 

10,240 cores of Beagle, there is no utilization loss due to workflow overheads, 

demonstrating the robust scalability of EMEWS.

VII. CONCLUSION

In this paper we have presented EMEWS, a framework for running large ensembles of 

simulations in which sophisticated ME algorithms can iteratively and adaptively refine 

simulation parameters through the analysis of recently generated results and launch new 

scientific applications based on the refined parameters. The mechanism itself has been 

implemented by using the Swift/T dataflow language and exhibits a novel form of inversion 

of control using location-aware many task scheduling, resident tasks, and non-trivial IPC 

over HPC resources.

Using EMEWS, we developed an AL workflow through the selective reuse of 3rd-party R 

packages, highlighting the multiple parallel programming language and runtime innovations, 

including novel features for parallel tasks (§III-A, §III-F), task locality (§III-B), and stateful 

tasks (§III-C) that make such a workflow possible. We demonstrated how the AL workflow 

was able to efficiently characterize the parameter space of a stochastic, large-scale, 

distributed SEIR model into viable and non-viable regions while sampling only a small 

fraction of possible parameters.

Performance results illustrate the basic scalability of EMEWS on a typical supercomputer. 

We demonstrated that a flexible range of concurrency strategies are within the performance 

envelope of our tools, enabling anything from a massive battery of single-process 

simulations to a mix of varying multiprocess runs. Furthermore, while the focus here was the 

use of EMEWS for ABMs, EMEWS is being effectively applied to a variety of modeling 

methods (e.g., microsimulation [51], machine learning hyperparameter optimization [52], 

bio-physical modeling [53]) that require calibration, parameterization or optimization 

achieved through the iterative execution of large numbers of computations.

We believe that as application teams consider good uses of near-exascale resources, they will 

observe that defensible scientific investigations will have to be backed by large and novel 

many-task ensemble studies.

EMEWS has been released as an open source framework for the community [7], and we 

intend to continue to refine and improve it, while continuing to develop additional use case 

examples that exploit widely available model exploration libraries. Ultimately, the goal of 

EMEWS is to democratize the use of HPC resources by allowing non-expert researchers to 
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tap into advanced 3rd party ensemble model exploration methods, such as optimization or 

AL algorithms, to take advantage of the extreme scale systems that will become available in 

coming years.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under contract 
number DE-AC02–06CH11357, and by the NIH (awards R01GM115839 and R01GM121600). This work was 
completed in part with resources provided by the Beagle system and the Research Computing Center at the 
University of Chicago.

Biography

Jonathan Ozik, Ph.D., is Computational Scientist, in the Decision and Infrastructure 

Sciences Division at Argonne National Laboratory and Senior Scientist at the Consortium 

for Advanced Science and Engineering at the University of Chicago. He leads the Repast 

(https://repast.github.io) agent-based modeling toolkit and the EMEWS (http://emews.org) 

framework for large-scale model exploration.

Nicholson T Collier, Ph.D., is Software Engineer in the Decision and Infrastructure 

Sciences Division at Argonne National Laboratory and Research Staff at the Consortium for 

Advanced Science and Engineering at the University of Chicago. He is the lead developer of 

the Repast (https://repast.github.io) agent-based modeling toolkit and a core developer of the 

EMEWS framework.

Justin M Wozniak, Ph.D., is Computer Scientist in the Mathematics and Computer Science 

Division at Argonne National Laboratory and Scientist at the Consortium for Advanced 

Science and Engineering at the University of Chicago. He is the lead developer of the 

Swift/T (http://swift-lang.org/Swift-T/) parallel scripting language and a core developer of 

the EMEWS framework.

Charles M Macal, Ph.D., P.E., is Senior Systems Engineer, Argonne Distinguished Fellow, 

Group Leader of the Social, Behavioral and Decision Science Group within the Decision and 

Infrastructure Sciences Division of Argonne National Laboratory, and Senior Scientist at the 

Consortium for Advanced Science and Engineering at the University of Chicago. Dr. Macal 

is recognized globally as a leader in the field of agent-based modeling and simulation and 

has led interdisciplinary research teams in developing innovative computer simulation 

models in application areas including global and regional energy markets, critical materials, 

electric power, healthcare and infectious diseases, environment and sustainability, and 

technology adoption.

Gary An, M.D., is Associate Professor of Surgery in the Department of Surgery at the 

University of Chicago. His research involves the development of: mechanism-based 

computer simulations in conjunction with biomedical research labs, high-performance/

parallel computing architectures for agent-based models, artificial intelligence systems for 

modular model construction, and community-wide meta-science environments, all with the 

goal of facilitating transformative scientific research. Towards this end he has developed 

agent-based models of sepsis, multiple organ failure, wound healing, surgical site infections, 

Ozik et al. Page 18

IEEE Trans Comput Soc Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://repast.github.io/
http://emews.org/
https://repast.github.io/
http://swift-lang.org/Swift-T/


necrotizing enterocolitis, tumor metastasis, breast cancer, C. difficile colitis, and the link 

between oncogenesis and inflammation.

REFERENCES

[1]. Germann TC, Kadau K, Longini IM, and Macken CA, “Mitigation strategies for pandemic 
influenza in the United States,” Proceedings of the National Academy of Sciences, vol. 103, no. 
15, pp. 5935–5940, Apr. 2006.

[2]. Macal CM, North MJ, Collier N, Dukic VM, Wegener DT,David MZ, Daum RS, Schumm P, 
Evans JA, Wilder JR, Miller LG, Eells SJ, and Lauderdale DS, “Modeling the transmission of 
community-associated methicillin-resistant Staphylococcus aureus: a dynamic agent-based 
simulation,” Journal of Translational Medicine, vol. 12, no. 1, p. 124, 5 2014. [PubMed: 
24886400] 

[3]. Riddle M, Macal CM, Conzelmann G, Combs TE, Bauer D, and Fields F, “Global critical 
materials markets: An agent-based modeling approach,” Resources Policy, vol. 45, pp. 307–321, 
Sep. 2015.

[4]. Ozik J, Collier N, Murphy JT, Altaweel M, Lammers RB, Prusevich AA, Kliskey A, and Alessa L, 
“Simulating Water, Individuals, and Management Using a Coupled and Distributed Approach,” in 
Proceedings of the 2014 Winter Simulation Conference, ser. WSC ‘14. Piscataway, NJ, USA: 
IEEE Press, 2014, pp. 1120–1131.

[5]. Bert F, North M, Rovere S, Tatara E, Macal C, and Podest G, “Simulating agricultural land rental 
markets by combining agent-based models with traditional economics concepts: The case of the 
Argentine Pampas,” Environmental Modelling & Software, vol. 71, pp. 97 – 110, 2015.

[6]. Ozik J, Collier NT, Wozniak JM, and Spagnuolo C, “From desktop to large-scale model 
exploration with swift/t,” in Proceedings of the 2016 Winter Simulation Conference, ser. WSC 
‘16 Piscataway, NJ, USA: IEEE Press, 2016, pp. 206–220. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3042094.3042132

[7]. “EMEWS: Extreme-scale Model Exploration with Swift.”. [Online]. Available: http://emews.org

[8]. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, and Foster IT, “Swift/T: Scalable data 
flow programming for distributed-memory task-parallel applications,” in Proc. CCGrid, 2013.

[9]. Ozik J, Collier N, and Wozniak JM, “Many resident task computing in support of dynamic 
ensemble computations,” in Proc. MTAGS at SC, 2015.

[10]. North MJ and Macal CM, Managing Business Complexity: Discovering Strategic Solutions with 
Agent-Based Modeling and Simulation, 1st ed. Oxford University Press, USA, Mar. 2007.

[11]. Murphy JT, “Computational Social Science and High Performance Computing: A Case Study of 
a Simple Model at Large Scales,” in Computational Social Science Society of America Annual 
Conference Proceedings, Santa Fe, NM, USA, Oct. 2011.

[12]. Box GEP, Hunter JS, and Hunter WG, Statistics for Experimenters: Design, Innovation, and 
Discovery, 2nd Edition, 2nd ed. Hoboken NJ: Wiley-Interscience, 5 2005.

[13]. McKay MD, Beckman RJ, and Conover WJ, “Comparison of Three Methods for Selecting 
Values of Input Variables in the Analysis of Output from a Computer Code,” Technometrics, vol. 
21, no. 2, pp. 239–245, 5 1979.

[14]. Morris MD, “Factorial Sampling Plans for Preliminary Computational Experiments,” 
Technometrics, vol. 33, no. 2, pp. 161–174, 5 1991.

[15]. Kirkpatrick S, “Optimization by simulated annealing: Quantitative studies,” Journal of Statistical 
Physics, vol. 34, no. 5–6, pp. 975–986, Mar. 1984.

[16]. Verfrth R, “A posteriori error estimation and adaptive mesh-refinement techniques,” Journal of 
Computational and Applied Mathematics, vol. 50, no. 13, pp. 67 – 83, 1994.

[17]. Holland JH, Adaptation in Natural and Artificial Systems: An Introductory Analysis with 
Applications to Biology, Control, and Artificial Intelligence Cambridge, Mass: A Bradford Book, 
Apr. 1992.

[18]. Beaumont MA, “Approximate Bayesian Computation in Evolution and Ecology,” Annual Review 
of Ecology, Evolution, and Systematics, vol. 41, no. 1, pp. 379–406, 2010.

Ozik et al. Page 19

IEEE Trans Comput Soc Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dl.acm.org/citation.cfm?id=3042094.3042132
http://dl.acm.org/citation.cfm?id=3042094.3042132
http://emews.org


[19]. Hartig F, Calabrese JM, Reineking B, Wiegand T, and Huth A, “Statistical inference for 
stochastic simulation models theory and application,” Ecology Letters, vol. 14, no. 8, pp. 816–
827, Aug. 2011. [PubMed: 21679289] 

[20]. Evensen G, Data Assimilation - The Ensemble Kalman Filter, 2nd ed. Springer-Verlag Berlin 
Heidelberg, 2009.

[21]. Gordon N, Salmond D, and Smith A, “Novel approach to nonlinear/non-Gaussian Bayesian state 
estimation,” IEE Proceedings F Radar and Signal Processing, vol. 140, no. 2, p. 107, 1993.

[22]. Arulampalam M, Maskell S, Gordon N, and Clapp T, “A tutorial on particle filters for online 
nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 
2, pp. 174–188, Feb. 2002.

[23]. Settles B, “Active Learning,” Synthesis Lectures on Artificial Intelligence and Machine Learning, 
vol. 6, no. 1, pp. 1–114, Jun. 2012.

[24]. Thiele JC, Kurth W, and Grimm V, “Facilitating Parameter Estimation and Sensitivity Analysis of 
Agent-Based Models: A Cookbook Using NetLogo and R,” Journal of Artificial Societies and 
Social Simulation, vol. 17, no. 3, p. 11, 2014.

[25]. Shaman J and Karspeck A, “Forecasting seasonal outbreaks of influenza,” Proceedings of the 
National Academy of Sciences, vol. 109, no. 50, pp. 20 425–20 430, Dec. 2012.

[26]. Shaman J, Karspeck A, Yang W, Tamerius J, and Lipsitch M, “Real-time influenza forecasts 
during the 20122013 season,” Nature Communications, vol. 4, Dec. 2013.

[27]. Yang W, Karspeck A, and Shaman J, “Comparison of Filtering Methods for the Modeling and 
Retrospective Forecasting of Influenza Epidemics,” PLoS Comput Biol, vol. 10, no. 4, p. 
e1003583, Apr. 2014. [PubMed: 24762780] 

[28]. Shaman J, Yang W, and Kandula S, “Inference and Forecast of the Current West African Ebola 
Outbreak in Guinea, Sierra Leone and Liberia,” PLoS Currents, 2014.

[29]. Epstein JM, “Modelling to contain pandemics,” Nature, vol. 460, no. 7256, p. 687, Aug. 2009. 
[PubMed: 19661897] 

[30]. Brauer F, van den Driessche P, and Wu J, Eds., Compartmental Models in Epidemiology Berlin: 
Springer Berlin Heidelberg, 2008, ch. 2, pp. 19–79.

[31]. C. for Disease Control, “How flu spreads,” http://www.cdc.gov/flu/about/disease/spread.htm, 
2016, [Online; accessed 25-March-2016]. [Online]. Available: http://www.cdc.gov/flu/about/
disease/spread.htm

[32]. ——, “Flu symptoms,” http://www.cdc.gov/flu/consumer/symptoms.htm, 2016, [Online; 
accessed 25-March-2016]. [Online]. Available: http://www.cdc.gov/flu/consumer/symptoms.htm

[33]. Collier N and North M, “Parallel agent-based simulation with Repast for High Performance 
Computing,” SIMULATION, Nov. 2012.

[34]. Collier NT, Ozik J, and Macal CM, “Large-scale agent-based modeling with repast HPC: A case 
study in parallelizing an agent-based model,” in Euro-Par 2015: Parallel Processing Workshops - 
Euro-Par 2015 International Workshops, Vienna, Austria, August 24–25, 2015, Revised Selected 
Papers, 2015, pp. 454–465. [Online]. Available: 10.1007/978-3-319-27308-2\37

[35]. Wheaton WD, Cajka JC, Chasteen BM, Wagener DK, Cooley PC, Ganapathi L, Roberts DJ, and 
Allpress JL, “Synthesized population databases: A us geospatial database for agent-based 
models,” Methods report (RTI Press), no. 10, 2009.

[36]. Gallagher S, Richardson L, Ventura SL, and Eddy WF, “SPEW: Synthetic Populations and 
Ecosystems of the World,” arXiv:1701.02383 [physics, q-bio, stat], Jan. 2017, arXiv: 1701.02383 
[Online]. Available: http://arxiv.org/abs/1701.02383

[37]. Armstrong TG, Wozniak JM, Wilde M, and Foster IT, Programming Models for Parallel 
Computing, 2015, ch. Swift: Extreme-scale, implicitly parallel scripting, ed. Balaji P.

[38]. ——, “Compiler techniques for massively scalable implicit task parallelism,” in Proc. SC, 2014.

[39]. Krieder SJ, Wozniak JM, Armstrong TG, Wilde M, Katz DS,Grimmer B, Foster IT, and Raicu I, 
“Design and evaluation of the GeMTC framework for GPU-enabled many task computing,” in 
Proc. HPDC, 2014.

[40]. Wozniak JM, Armstrong TG, Maheshwari KC, Katz DS, Wilde M, and Foster IT, “Interlanguage 
parallel scripting for distributed-memory scientific computing,” in Proc. WORKS @ SC, 2015.

Ozik et al. Page 20

IEEE Trans Comput Soc Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cdc.gov/flu/about/disease/spread.htm
http://www.cdc.gov/flu/about/disease/spread.htm
http://www.cdc.gov/flu/about/disease/spread.htm
http://www.cdc.gov/flu/consumer/symptoms.htm
http://www.cdc.gov/flu/consumer/symptoms.htm
http://arxiv.org/abs/1701.02383


[41]. Duro FR, Blas JG, Isaila F, Carretero J, Wozniak JM, and Ross R, “Experimental evaluation of a 
flexible I/O architecture for accelerating workflow engines in ultrascale environments,” Parallel 
Computing, vol. 61, 2017.

[42]. Wozniak JM, Peterka T, Armstrong TG, Dinan J, Lusk EL, Wilde M, and Foster IT, “Dataflow 
coordination of data-parallel tasks via MPI 3.0,” in Proc. EuroMPI, 2013.

[43]. Abramson D, Lewis A, Peachey T, and Fletcher C, “An automatic design optimization tool and 
its application to computational fluid dynamics,” in Proc. SuperComputing, 2001.

[44]. Adams B, Bauman L, Bohnhoff W, Dalbey K, Ebeida M, Eddy J, Eldred M, Hough P, Hu K, 
Jakeman J, Stephens J, Swiler L, Vigil D, and Wildey T, “Dakota, a multilevel parallel object-
oriented framework for design optimization, parameter estimation, uncertainty quantification, and 
sensitivity analysis: Version 6.0 users manual,” July 2014, sandia Technical Report SAND2014–
4633, Updated 11 2015 (Version 6.3).

[45]. Shaman J, “Columbia Prediction of Infectious Diseases,” http://cpid.iri.columbia.edu, 2016.

[46]. Cevik M, Ergun MA, Stout NK, Trentham-Dietz A, Craven M, and Alagoz O, “Using Active 
Learning for Speeding up Calibration in Simulation Models,” Medical Decision Making, p. 
0272989X15611359, Oct. 2015.

[47]. Jin R, Chen W, and Sudjianto A, “On Sequential Sampling for Global Metamodeling in 
Engineering Design,” pp. 539–548, Jan. 2002.

[48]. Xu Z, Akella R, and Zhang Y, “Incorporating Diversity and Density in Active Learning for 
Relevance Feedback,” in Advances in Information Retrieval, ser. Lecture Notes in Computer 
Science, Amati G, Carpineto C, and Romano G, Eds. Springer Berlin Heidelberg, Apr. 2007, no. 
4425, pp. 246–257, dOI: 10.1007/978-3-540-71496-524.

[49]. Wozniak JM, Armstrong TG, Maheshwari KC, Katz DS, Wilde M, and Foster IT, “Toward 
interlanguage parallel scripting for distributed-memory scientific computing,” in Proc. 
CLUSTER, 2015.

[50]. Eddelbuettel D and Francois R, “RInside CRAN package,” https://cran.r-project.org/web/
packages/RInside.

[51]. Rutter C, Ozik J, DeYoreo M, and Collier N, “Microsimulation Model Calibration using 
Incremental Mixture Approximate Bayesian Computation,” arXiv:1804.02090 [stat], Apr. 2018, 
arXiv: 1804.02090 [Online]. Available: http://arxiv.org/abs/1804.02090

[52]. Wozniak JM, Jain R, Balaprakash P, Ozik J, Collier N, Bauer J, Xia F, Brettin T, Stevens R, 
Mohd-Yusof J, Cardona CG, Van Essen B, and Baughman M, “Candle/supervisor: A workflow 
framework for machine learning applied to cancer research,” to appear in BMC Bioinformatics, 
2018.

[53]. Ozik J, Collier N, Wozniak J, Macal C, Cockrell C, Friedman S, Ghaffarizadeh A, Heiland R, An 
G, and Macklin P, “High-throughput cancer hypothesis testing with an integrated physicell-
emews workflow,” to appear in BMC Bioinformatics, 2018 [Online]. Available: https://
www.biorxiv.org/content/early/2018/02/12/196709

Ozik et al. Page 21

IEEE Trans Comput Soc Syst. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cpid.iri.columbia.edu
https://cran.r-project.org/web/packages/RInside
https://cran.r-project.org/web/packages/RInside
http://arxiv.org/abs/1804.02090
https://www.biorxiv.org/content/early/2018/02/12/196709
https://www.biorxiv.org/content/early/2018/02/12/196709


Fig. 1: 
EQ/R EMEWS workflow with an AL model exploration resident task.
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Fig. 2: 
Pseudo-code for AL algorithm.
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Fig. 3: 
Main Swift/T workflow loop.
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Fig. 4: 
Queue implementation header: Swift to C++ linkage.
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Fig. 5: 
Progression of the AL workflow, where the black/red dots indicate the evaluated (viable/

nonviable) points, green points are newly added points since the previous panel, and orange/

blue regions correspond to the out-of-sample predictions for (viable/nonviable) regions.
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Fig. 6: 
Cross-validation (CV) accuracy means and standard deviation based on 10-fold CV of the 

random forest meta-model at each AL iteration.
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Fig. 7: 
Average time for the SEIR model to run a week as a function of p_count. Error bars are the 

sample standard deviation from 210 simulated weeks.
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Fig. 8: 
Total makespan times for the one ZIP code SEIR model.
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TABLE I:

SEIR model input parameters.

Parameter Description

CI Initial number of infected individuals

PS→E Hourly probability of going from susceptible to exposed per each collocated infectious agent

Motinc, Mitinc, Mxtinc Mode, minimum, and maximum of the triangular distribution for exposed to infected incubation period

MotI, MitI, MxtI Mode, minimum, and maximum of the triangular distribution for time in infected state

PhomeA, PhomeB, PhomeC
Probabilities for infected individual
to remain home on first day, sixth day and seventh day of infection
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